微带巴伦设计与仿真
- 格式:doc
- 大小:404.00 KB
- 文档页数:5
《微波技术与天线》HFSS仿真实验报告实验二印刷偶极子天线设计一、仿真实验内容和目的使用HFSS设计一个中心频率为2.45GHz的采用微带巴伦馈线的印刷偶极子天线,并通过HFSS软件Opitmetrics模块的参数扫描分析功能对印刷偶极子天线的一些重要结构参数进行参数扫描分析,分析这些参数对天线性能的影响。
二、设计模型简介整个天线分为5个部分,即介质层,偶极子天线臂,微带巴伦线,微带传输线,见图1。
天线各部分结构尺寸的初始值见表1。
图1 印刷偶极子天线结构图(顶视图)。
表1 印刷偶极子天线关键结构尺寸初始值。
三、建模和仿真步骤1、新建HFSS工程,添加新设计,设置求解类型:Driven Modal。
2、创建介质层。
创建长方体,名称设为Substrate,材质为FR4_epoxy,颜色为深绿色,透明度为0.6。
3、创建上层金属部分1)创建上层金属片,建立矩形面,名称Top_Patch,颜色铜黄色。
2)创建偶极子位于介质层上表面的一个臂。
画矩形面,名称Dip_Patch,颜色铜黄色。
3)创建三角形斜切角,创建一个三角形面,把由矩形面Top_Patch 和Dip_Patch组成的90折线连接起来。
4)合并生成完整的金属片模型。
4、创建下表面金属片1)创建下表面传输线Top_patch_1。
2)创建矩形面Rectangle1。
3)创建三角形polyline2。
4)镜像复制生成左侧的三角形和矩形面此步完成后得到即得到印刷偶极子天线三维仿真模型如图2所示。
5、设置边界条件1)分配理想导体。
2)设置辐射边界条件,材质设为air。
6、设置激励方式:在天线的输入端口创建一个矩形面最为馈电面,设置该馈电面的激励方式为集总端口激励,端口阻抗为50欧姆。
7、求解设置:求解频率(Solution Frequency)为2.45GHz,自适应网格最大迭代次数(Maximum Number of Passes):20,收敛误差(Maximum Delta S)为0.02。
传输线平衡器(巴伦)的原理、设计、制作及测试一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
微带巴伦设计与仿真在频率较高的情况下(大于 1GHz ), LC 巴伦由于电感,电容的寄生效应,自谐振频率等影 响,性能将变差,而在高频上,用微带线设计的巴伦在性能,尺寸上都比较理想,本文讲解在较高频率上如何设计微带线巴伦并进行ADS 仿真。
微带巴伦的结果如下所示:AA Ba 菲平耐入 AAE D B 3微带线A 的长度为0.5个波长,微带线 B 的长度为0.25个波长,波长为在实际基板上的信 号波长,需要考虑基板的介电常数。
巴伦的性能和所用的节数有关系,节数越多,频宽越宽,不过节数越多,尺寸也越大,上图为4节微带线巴伦。
F 面分别用ADS 对一节,两节,三节微带线巴伦进行仿真。
一节微带线巴伦:黑 S1PARAMETERS |' ..............................................SP1 .......................................St_art=3 GHz .......................Stop=4 GHzStep=10 MHz .......................■ TLIN ■ •-■TL3 -.Z=50,D OhmE=90F=3.5 GHz仿真结果:TLI 忖■ TLIN TL1- - - TLi - 子幫軒z ^5D 0衍祜 E=180. . , F 士grt ・• F^.5GHz ,F i.5GHz 叫丁口忖.'' HTL4 Z=50:0 Qhm E=18D .. ijermTermlNurri=1Z=60 OhmTjerm ” Term2 Num=2 Z=50 Ohm Term ' Tsrm3 - Num=3 Z=50 Ohm s ' pm4 freq=3.500GHz pM 犬(5(玄卄)二90.00。
|卜出汨£(2」))=90000大频宽内都保持180°正交,幅度在100MHz 范围内基本两路平衡输出保持一致,插损在0.5dB 左右。
传输线平衡器(巴伦)的原理、设计、制作及测试一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
一、平衡器(巴伦)的由来平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。
以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。
巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。
结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。
下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!二、传输线平衡器(巴伦)的简单原理平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。
我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。
传输线变换器的结构如上图,它是在高频磁环上缠绕一组或几组传输线,利用不同的连接方法来完成阻抗变换和平衡-不平衡变换作用。
能量从变换器的始端到终端是通过传输线的分布电容、分布电感以及电磁能量交换的形式来传送的,这和通常的绕匝变压器不同,它克服了绕匝变压器在高频时由于线圈的分布电容所带来的不利影响,改善了高频特性。
一种新型的超宽带微带转共面带状线巴伦余冬【摘要】设计了一种新型的微带转共面带状线(Coplanar StripLine以下简称CPS)的巴伦结构.它可以应用于多种常用的介质板上,具有结构紧凑、超宽带、低损耗的特点.制作了一个两端为50Ω微带线的背靠背电路,测试得插入损耗(S21)>-1dB、回波损耗(S11)<-15dB的带宽为2.7GHz~7.3GHz,S21>-4dB、S11<-10dB的带宽为1.4GHz~15.6GHz .【期刊名称】《数字技术与应用》【年(卷),期】2010(000)007【总页数】2页(P151-152)【关键词】微带;共面带状线;转换;巴伦;超宽带【作者】余冬【作者单位】上海航天局804所,上海,201109【正文语种】中文【中图分类】TN7131 引言CPS是一种单面的平衡线,具有尺寸小、易于集成在各种轮廓表面且不连续性带来的寄生效应小等优点,它广泛应用于微波平衡混频器、滤波器、移相器和天线等设备中。
微带线是一种最常用的非平衡传输线。
为了能充分应用这两种传输线的优点,我们需要设计一种低损耗、小尺寸、宽频带的巴伦电路。
现在已经报导了几种微带转CPS的巴伦结构。
一种基于模式转换原理的单面变换巴伦背靠背电路的3dB插损带宽为4.5 GHz[1];一种应用优化平衡T形结的巴伦变换背靠背电路的3dB插损带宽可以达到7GHz(68%)[2(]见图1(a));一种应用切比雪夫变换段和λ 4 扇形匹配的巴伦变换背靠背电路的3dB插损带宽达到9.4GHz(1GHz~10.5GHz,162%)[3],(见图1(b))。
以上介绍的电路中,其中部分需制作在高介电常数的介质板上以达到微带线和cps 之间的阻抗匹配;并且以上的电路中微带线和cps之间的地板存在不连续性,这会形成阻抗突变,电路的匹配性在高频端较差。
本文提出了一种新型的巴伦电路,它可以制作在多种常用介质板上。
通过调整地板的渐变区及扇形段的半径和角度来可以实现微带线与CPS的阻抗匹配。
LTCC微型巴伦设计
孙超;戴永胜
【期刊名称】《应用物理》
【年(卷),期】2016(006)003
【摘要】本文提出了一种基于LTCC (低温共烧陶瓷)技术的微型巴伦的设计与实现方法。
此种巴伦采用Marchand型结构,运用LTCC多层三维立体集成技术,通过宽边耦合的螺旋型结构实现1/4波长耦合线,大大减小了巴伦的实际体积。
随后通过带状线末端电容加载技术的改进型结构,近一步缩小了耦合线长,实现了结构的微型化。
最终设计的巴伦工作频带1.5~3 GHz,具有插损小,幅度平坦性好,相位一致性高的优点,巴伦尺寸为2.5 mm × 3 mm × 1.2 mm。
文章讨论了该巴伦工作原理、微型化的设计思路、三维结构,最后给出了设计的仿真和测试结果,两者一致性较好。
【总页数】6页(P36-41)
【作者】孙超;戴永胜
【作者单位】[1]南京理工大学电子工程与光电技术学院,江苏南京;;[1]南京理工大学电子工程与光电技术学院,江苏南京
【正文语种】中文
【中图分类】TN7
【相关文献】
1.基于LTCC技术的微型化巴伦设计 [J], 刘红;叶强
2.小型LTCC巴伦的设计 [J], 蒋万兵;金龙;杨世朝;胡季岗
3.用于实现LTCC双平衡星型混频器的宽带巴伦设计 [J], 张晓阳;陈建荣
4.用于实现LTCC双平衡混频器的宽带巴伦设计 [J], 黄齐波;陈建荣
5.一种小型化LTCC集总巴伦设计 [J], 王鑫;戴永胜;;
因版权原因,仅展示原文概要,查看原文内容请购买。
微带巴伦设计与仿真
在频率较高的情况下(大于1GHz),LC巴伦由于电感,电容的寄生效应,自谐振频率等影响,性能将变差,而在高频上,用微带线设计的巴伦在性能,尺寸上都比较理想,本文讲解在较高频率上如何设计微带线巴伦并进行ADS仿真。
微带巴伦的结果如下所示:
微带线A的长度为0.5个波长,微带线B的长度为0.25个波长,波长为在实际基板上的信
号波长,需要考虑基板的介电常数。
巴伦的性能和所用的节数有关系,节数越多,频宽越宽,不过节数越多,尺寸也越大,上
图为4节微带线巴伦。
下面分别用ADS对一节,两节,三节微带线巴伦进行仿真。
一节微带线巴伦:
仿真结果:
仿真结果可见相位在很大频宽内都保持180°正交,幅度在100MHz范围内基本两路平衡输出保持一致,插损在
0.5dB左右。
二节微带线巴伦:
仿真结果:
仿真结果可见相位在很大频宽内都保持180°正交,幅度在200MHz范围内基本两路平衡输
出保持一致,插损在0.5dB左右。
三节微带线巴伦:
仿真结果:
仿真结果可见相位在很大频宽内都保持180°正交,幅度在400MHz范围内基本两路平衡输
出保持一致,插损在0.5dB左右。
通过仿真发现巴伦节数越高,幅度平衡带宽越大,不过节数对插损基本影响不大。