锂离子电池组的主动充电平衡法
- 格式:doc
- 大小:505.00 KB
- 文档页数:10
锂电平衡充电原理
锂离子电池的平衡充电原理是指,在锂离子电池的多个单体电池中,因不同单体电池电化学特性或工作状态不同而导致电池电量不平衡时,通过特殊的电路系统对电池进行平衡充电,使其各单体电池电量保持一致。
电池电化学反应是锂离子电池正常运行的基础,但由于单体电池内部结构和材料的差异,使得不同单体电池的电化学反应程度和电量消耗速度有所不同,最终导致电池组电量不平衡。
平衡充电原理借助于专门设计的控制芯片和管理系统,能够在电池电量不足时及时补充电量,并在电池电量过剩时快速放电以达到平衡的状态。
通过这一原理,能够有效地提高锂离子电池的使用寿命和可靠性,确保电池组的长期稳定运行。
总之,锂电平衡充电原理是通过合理的控制芯片和管理系统,对多个单体电池进行精准的电池电量控制和调节,从而达到电池组电量平衡的目的。
锂电池组并联均衡充电方法锂电池组由多只单体锂电池串联而成,由于单体的差异性,串联充电时端电压上升不一致会出现部分单体过充,部分单体充电不足的问题。
理想的状态是每个电池电压在充电过程中同步上升,完全一致,接近充满时充电器转灯,充电停止。
锂电池组定期做好均衡基本可以达到这种理想状态,这是不喜欢锂电保护板的人追求的效果。
锂电池保护板本身不一定可靠,保护板损坏锂电池的例子不少见。
本人试验的并联手动均衡方法,电路简单可靠,效果良好,具有实用价值。
基本原理是均衡充电时所有电池并联,常规充电和用电时串联。
均衡充电时所有电池并联电压相等,实现了各个电池的强制均衡。
1.二极管隔离并联充电均衡法见电路图1,以6只单体电池串联为例,断开开关S1—S5再接充电电源。
二极管选用1N5401—5408,3A额定电流下实测二极管正向压降为0.8V,正向压降0.7V时流过二极管的电流很小。
磷酸铁锂电池,最高充电电压3.65V,实际考虑到延长电池寿命最高充电电压定为3.5V,充电电压=3.5+0.7+0.7=4.9V加上线路压降选用5V电源很合适。
三元、聚合物类锂电池最高充电电压 4.25V,充电电压=4.1+0.7+0.7=5.5V合适,两种情况下电池都能在接近充满时自停。
充电过程中各个单体电池虽然被二极管隔离,但不影响电池的均衡,因为单体电压高的充电电流小,电压低的充电电流大。
断开均衡充电电源,合上开关S1—S5电池串联放电。
锂电池组在负载电流不大的情况下,S1—S5选用开关可行。
大电流放电场合用压接件代替开关体积小、接触电阻小、接线短、成本低,只是拧紧和松开螺丝比拨动开关费时间。
这种均衡依据电池使用情况一个月至三个月做一次,总体来说不麻烦。
2. 直接并联充电均衡法如电路图2所示,取消了隔离二极管。
磷酸铁锂电池充电电压选用3.5-3.6V,三元、聚合物电池选用4.1-4.2V。
红色鳄鱼夹引线都焊接在一起接充电电源正极;黑色鳄鱼夹引线都焊接在一起接充电电源负极。
几种锂电池均衡电路的工作原理分享新能源和电动汽车的发展,都会用到能量密度比较高的锂电池。
而锂电池串联使用过程中,为了保证电池电压的一致性,必然会用到电压均衡电路。
今天跟大家一起分享一下,我在工作中用过几种电池的均衡电路,希望对大家有所帮助。
最简单的均衡电路就是负载消耗型均衡,也就是在每节电池上并联一个电阻,串联一个开关做控制。
当某节电池电压过高时,打开开关,充电电流通过电阻分流,这样电压高的电池充电电流小,电压低的电池充电电流大,通过这种方式来实现电池电压的均衡。
但这种方式只能适用于小容量电池,对于大容量电池来说是不现实的。
负载消耗性均衡的示意图第二种均衡方法我没有实验过,就是飞渡电容法。
简单的说就是每一节电池并联一个电容,通过开关这个电容既可以并联到本身这节电池上,也可以并联到相邻的电池。
当某节电池电压过高,首先将电容与电池并联,电容电压与电池一致,然后将电容切换到相邻的电池,电容给电池放电。
实现能量的转移。
由于电容并不消耗能量,所以可以实现能量的无损转移。
但这种方式太繁琐了,现在的动力电池动不动几十节串联,要是采用这种方式,需要很多开关来控制。
飞渡电容法工作原理图,只是画出相邻两节电池的均衡原理图。
第一次做均衡,是做的一款动力电池组的充电,电池容量80ah 的两组并联,要求均衡电流为10a。
原来了解的一点均衡的原理根本不够用,这么大电流都相当于一个一个的小模块了,最后还真的是采用n 个小模块串联,每节电池并联一个小模块,如果单体电池电压低于设定值,启动相应的并联模块,对低电压电池启动充电,补充能量提升电压,实现均衡。
下图为当时采用的均衡电路的示意图,DC-DC 输入母线既可以是电池电压,也可以是别的模块提供的直流输入,根据需要灵活配置。
锂电池bms的均衡算法
锂电池BMS(电池管理系统)的均衡算法是一项关键技术,它对于提高锂电池的性能和延长其使用寿命至关重要。
随着锂电池在电动汽车、储能系统和移动设备等领域的广泛应用,如何有效地实现锂电池的均衡成为了一个备受关注的问题。
在锂电池组中,由于单体电池之间存在微小的差异,长时间的充放电循环会导致电池之间的电压和容量差异进一步扩大,从而影响整个电池组的性能和安全性。
因此,BMS的均衡功能就显得尤为重要。
目前,常见的锂电池均衡算法主要包括被动均衡和主动均衡两种方式。
被动均衡是通过将电池组中电压最高的单体电池进行放电以实现均衡,这种方式简单可靠,但效率较低,并且会浪费电能。
而主动均衡则是通过控制电流的方式,将电池组中电压较高的单体电池向电压较低的单体电池进行放电,以实现均衡。
主动均衡算法可以实现更高效的均衡,但需要更复杂的控制系统和硬件支持。
除了被动和主动均衡之外,还有一些先进的均衡算法,如基于模型的均衡算法、基于状态估计的均衡算法等,这些算法能够更加
精准地实现电池的均衡,并且能够根据电池组的实际工作状态进行动态调整,提高了均衡的效率和精度。
总的来说,锂电池BMS的均衡算法是一个不断发展和完善的领域,随着电池技术的不断进步和应用领域的不断拓展,我们相信会有更多更优秀的均衡算法被提出,并为锂电池的性能和安全性提供更好的保障。
锂电池的均衡充电的工作原理锂电池是一种常见的充电器设备,被广泛应用于移动设备、电动车辆和储能系统等领域。
在充电过程中,锂电池的均衡充电起着重要的作用,它能够保证各个电池单体充电状态的一致性,提高电池组的整体性能和寿命。
锂电池的均衡充电是通过均衡电路来实现的。
均衡电路是一种能够监测和调节电池单体之间电压差异的装置。
当充电过程中,电池单体之间的电压差异过大时,均衡电路会自动将电流从电压较高的电池单体转移到电压较低的电池单体,以实现充电状态的均衡。
均衡电路通常由均衡电路板、控制芯片和开关电路等组成。
均衡电路板上安装了多个均衡电路单元,每个均衡电路单元与一个电池单体相连接。
控制芯片负责监测电池单体之间的电压差异,并通过开关电路控制电流的流动。
当电池单体之间的电压差异超过设定的阈值时,控制芯片会启动均衡电路,将电流从电压较高的电池单体转移到电压较低的电池单体,直到电池单体的电压达到均衡。
均衡充电的工作原理是基于电池单体之间的电压差异。
在锂电池组中,由于电池单体的制造工艺和使用情况的差异,不同电池单体之间的电压可能存在差异。
而这种电压差异会导致电池单体之间的充放电不均衡,进而影响整个电池组的性能和寿命。
均衡充电的过程可以分为两个阶段:检测阶段和均衡阶段。
在检测阶段,控制芯片会周期性地监测电池单体之间的电压差异。
如果电压差异超过设定的阈值,控制芯片会进入均衡阶段。
在均衡阶段,控制芯片会通过开关电路将电流从电压较高的电池单体转移到电压较低的电池单体。
这样,电池单体之间的电压差异会逐渐减小,直到达到设定的均衡状态。
均衡充电过程中,控制芯片会根据电池单体的电压变化实时调整均衡电流的大小,以确保均衡充电的效果。
均衡充电可以有效地提高锂电池组的整体性能和寿命。
首先,均衡充电可以避免电池单体之间的过充和过放现象,减少电池的损耗和老化。
其次,均衡充电可以提高电池组的能量密度和输出功率,提高电池组的运行效率和使用时间。
此外,均衡充电还可以提高电池组的安全性能,减少因电池单体电压差异引起的潜在安全问题。
锂电池组主动均衡控制策略随着电动汽车的快速发展和智能电网的建设,锂电池作为一种重要的能量储存装置,其安全性、可靠性和寿命等方面的要求也越来越高。
而锂电池组主动均衡控制策略正是为了解决锂电池组在使用过程中容易出现的不均衡问题而提出的一种控制方法。
锂电池组是由多个单体电池串联组成的,每个单体电池在容量、内阻、电压等方面都有一定的差异。
在使用过程中,由于充放电不均衡、内阻差异、温度不一致等原因,锂电池组中的单体电池之间会出现电压差异,进而影响整个电池组的性能和寿命。
因此,锂电池组主动均衡控制策略的出现可以有效解决这个问题。
锂电池组主动均衡控制策略的核心思想是通过控制电流的流动,将电池组中电荷不均衡的部分转移到电荷较低的单体电池上,以达到均衡电池组电荷的目的。
具体而言,锂电池组主动均衡控制策略可以分为两种方式:有源均衡和无源均衡。
有源均衡是指通过外部电路和控制器来主动调节电池组中的电流分布。
其中一种常用的有源均衡方法是采用电流源控制电池组中的电流流动,通过调整电流源的输出,使电流在电池组中均匀分布,从而实现电池组的均衡。
这种方法具有均衡效果好、控制精度高等优点,但同时也存在成本高、能量利用率低等缺点。
与有源均衡相对应的是无源均衡,无源均衡是通过改变电池组内部的电路结构,使电流在电池组中自然地流动,以实现电池组的均衡。
无源均衡方法包括串联阻容、串联变流等技术,通过改变电池组内的电路参数,使电流在电池组中自动分布,达到均衡的效果。
相比于有源均衡,无源均衡的成本较低,但均衡效果和控制精度可能会有所降低。
除了有源均衡和无源均衡,还有一种常见的锂电池组主动均衡控制策略是基于电压调整的方法。
该方法通过调整电池组中每个单体电池的充电和放电电压,使电池组中的电压保持在一个较小的范围内,从而达到均衡电池组电荷的目的。
这种方法的优点是控制简单、成本低,但均衡效果相对较差。
在实际应用中,锂电池组主动均衡控制策略可以根据具体的应用场景和要求进行选择和调整。
锂电均衡电路
锂电均衡电路是用于锂电池组中的单体电池均衡和保护的电路。
由于锂电池组中的单体电池容量和内阻存在差异,如果不进行均衡处理,就会出现电池之间充放电不均衡的现象,影响整个电池组的性能和寿命。
锂电均衡电路通过对电池组中的每个单体电池进行监测,当电池电压超过设定的阈值时,将电流引导到电池电压较低的单体电池上,以实现电池之间的均衡。
主要有主动均衡和被动均衡两种方式。
主动均衡是通过控制电流流向和大小来实现均衡,可以对每个单体电池进行精确控制。
被动均衡是通过放电来实现均衡,当某个单体电池电压超过阈值时,通过连接电阻将多余的电能转化为热能来进行均衡。
锂电均衡电路除了对电池进行均衡,还可以实现对电池的保护。
当电池温度过高、电流过大或电压异常时,均衡电路会自动断开电池组与负载的连接,以保护电池和使用设备的安全。
总之,锂电均衡电路是一种用于保护和均衡锂电池组的关键组成部分,能够提高电池的性能和使用寿命,保证锂电池组的安全可靠运行。
锂电池组保护板平衡充电解决方案文章摘自:凌力尔特技术论坛-与非网本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池平衡充电的问题,介绍了一种采用单节锂电池保护芯片对任意串联数的成组锂电池进展保护的含平衡充电功能的电池组保护板的设计方案。
经过仿真结果和工业消费应用证明,该保护板的保护功能完善,工作稳定,性价比高。
常用的平衡充电技术包括恒定分流电阻平衡充电、通断分流电阻平衡充电、平均电池电压平衡充电、开关电容均衡充电、降压型变换器平衡充电、电感平衡充电等。
成组的锂电池串联充电时,应保证每节电池平衡充电,否那么使用过程中会影响整组电池的性能和寿命。
而现有的单节锂电池保护芯片均不含平衡充电控制功能,多节锂电池保护芯片平衡充电控制功能需要外接CPU;通过和保护芯片的串行通讯〔如I2C总线〕来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。
1 锂电池组保护板平衡充电原理构造采用单节锂电池保护芯片设计的具备平衡充电才能的锂电池组保护板构造框图如下列图1所示。
图1锂电池组保护板构造框图其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接局部;6为单节锂电池保护芯片〔一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等〕;7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。
单节锂电池保护芯片数目根据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进展保护。
锂离子电池组的主动充电平衡法
关键字:锂离子电池主动充电平衡法变压器
位于慕尼黑的英飞凌科技公司汽车系统工程部门最近接到一项开发
E-Cart的任务。
E-Cart是一种可驾驶的车辆,主要用于演示混合动力汽车的电气性能。
该车将采用一组庞大的锂离子电池组提供动力,当时开发人员就意识到对其进行带充电平衡的电池管理是绝对必要的。
这种情况下必须采用在各节电池之间进行主动能量转移的方式来代替传统的简单充电平衡方案。
他们开发的主动充电平衡系统在材料成本与被动方案相当的情况下能提供更优秀的性能(见图1)。
图1:E-Cart原型。
电池系统架构
镍镉电池与随后出现的镍氢电池多年来一直主宰着电池市场。
锂离子电池是最近才进入市场的,但由于其性能有极大提高,因此其市场份额增长非常迅速。
锂离子电池的储能容量非常惊人,但即便如此,单个电池单元的容量不论从电压还是从电流方面仍都太低,不能满足一个混合动力发动机的需要。
并联多个电池单元可以增大电池所提供的电流,串联多个电池单元则可以增大电池提供的电压。
电池组装商通常利用一些缩略短语来描述其电池产品,例如“3P50S”代表该电池组中有3个并联的电池单元、50个串联的电池单元。
模块化结构在对包含多个串联电池单元的电池进行管理时是很理想的结构。
例如,在一个3P12S的电池阵列中,每12个电池单元串联之后就组成了一个模块(block)。
然后,这些电池单元就可通过一块以微控制器为核心的电子电路对其进行管理和平衡。
这样一个电池模块的输出电压取决于串联电池单元的个数和每个电池单元的电压。
锂离子电池单元的电压通常在3.3V到3.6V之间,因此一个电池模块的电压约在30V到45V之间。
混合动力车的驱动需要450V左右的直流电源电压。
为了根据充电状态来补偿电池单元电压的变化,比较合适的做法是在电池组和发动机之间连接一个DC-DC转换器。
这个转换器还可以限制电池组输出的电流。
为确保DC-DC转换器工作在最佳状态,要求电池组电压在150V到300V 之间。
因此,需要串联5到8个电池模块。
平衡的必要性
如果电压超出允许的范围,锂离子电池单元就很容易损坏(见图2)。
如果电压超出了上、下限(以纳米磷酸盐型锂离子电池为例,下限电压为2V,上限电压为3.6V),电池就可能出现不可逆转的损坏。
其结果至少是加快电池的自放电速度。
电池输出电压在一个很宽的充电状态(SOC)范围内都是稳定的,电压偏离安全范围的风险很小。
但在安全范围的两端,充电曲线的起伏相对比较陡峭。
因此,为预防起见,必须严密监控电压。
图2:锂离子电池的放电特性(钠米磷酸盐型)。
如果电压达到一个临界值,就必需立即停止放电或充电过程。
在一个强大的平衡电路的帮助下,相关电池单元的电压可以返回安全范围内。
但为达到这一目的,该电路必需能在电池组中任何一个单元的电压开始与其他单元出现差异时马上在各单元之间转移能量。
充电平衡法
1.传统的被动方法:在一般的电池管理系统中,每个电池单元都通过一个开关连接到一个负载电阻。
这种被动电路可以对个别被选中的单元放电。
但该方法只适用于在充电模式下抑制最强电池单元的电压攀升。
为限制功耗,此类电路一般只允许以100mA左右的小电流放电,从而导致充电平衡耗时可高达几小时。
2.主动平衡法:相关资料中有很多种主动平衡法,均需要一个用于转移能量的存储元件。
如果用电容来做存储元件,将其与所有电池单元相连就需要庞大的开关阵列。
更有效的方法是将能量存储在一个磁场中。
该电路中的关键元件是一个变压器。
电路原型是由英飞凌的开发小组与VOGT电子元件GmbH公司共同开发的。
其作用是:
a. 在电池单元之间转移能量
b. 将多个单独的电池单元电压复接至一个基于地电压的模数转换器(ADC)输入端
该电路是按照回扫变压器原理构造的。
这类变压器能够将能量存储在磁场中。
其铁氧体磁心中的气隙增大了磁阻,因此可以避免磁心材料出现磁饱和。
该变压器两侧的电路是不同的:
a. 初级线圈与整个电池组相连
b. 次级线圈与每个电池单元相连
该变压器的一种实用模型支持多达12个电池单元。
变压器的可能连接数量限制了电池单元的个数。
上述原型变压器有28个引脚。
其中的开关采用OptiMOS3系列的MOSFET,它们的导通电阻极低,因此其传导损耗可以忽略不计(见图3)。
图3:电池管理模块的原理图。
图中的每个模块都受英飞凌公司的8位先进微控制器XC886CLM控制。
这种微控制器自带闪存程序和一个32KB的数据存储器。
此外,它还有两个基于硬件的CAN接口,支持通过公共汽车控制器局域网(CAN)总线协议
与下面的处理器负载通信。
它还包含一个基于硬件的乘除法单元,可用于加快计算过程。
平衡方法
由于变压器可以双向工作,因此我们可以根据情况采取两种不同的平衡方法。
在对所有电池单元进行电压扫描之后(电压扫描的细节将在后面介绍),计算平均值,然后检查电压偏离平均值最大的电池单元。
如果其电压低于平均值,就采用底部平衡法(bottom-balancing),如果其电压高于平均值,就采用顶部平衡法(top-balancing)。
1.底部平衡法:图4所示例子就是采用的底部平衡法。
扫描发现电池单元2是最弱的单元,必须对其进行增强。
图4:锂离子电池的底部充电平衡原理。
此时闭合主开关(“prim”),电池组开始对变压器充电。
主开关断开后,变压器存储的能量就可以转移至选定的电池单元。
相应的次级(“sec”)开关——在本例中是开关sec2——闭合后,就开始能量转移。
每个周期均包含两个主动脉冲和一个暂停。
在本例中,40毫秒的周期转换为频率就是25kHz。
在设计变压器时,其工作频段应在20kHz以上,以避免出现人类听觉频率范围内可感知的啸叫噪音。
这种声音是由变压器铁氧体磁心的磁致伸缩导致的。
尤其是当某个电池单元的电压已经达到SoC的下限时,底部平衡法能够帮助延长整个电池组的工作时间。
只要电池组提供的电流低于平均平衡电流,车辆就能继续工作,直到最后一块电池单元也被耗尽。
2.顶部平衡法:如果某个电池单元的电压高于其他单元,那么就需要将其中的能量导出,这在充电模式下尤其必要。
如果不进行平衡,充电过程在第一块电池单元充满之后就不得不立即停止。
采用平衡之后则可以通过保持所有电池单元的电压相等而避免发生过早停止充电的情况。
图5:锂离子电池的顶部充电平衡原理。
图5给出了顶部平衡模式下的能量流动情况。
在电压扫描之后,发现电池单元5是整个电池组中电压最高的单元。
此时闭合开关sec5,电流从电池流向变压器。
由于自感的存在,电流随时间线性增大。
而由于自感是变压器的一个固有特性,因此开关的导通时间就决定了能够达到的最大电流值。
电池单元中转移出的能量以磁场的形式得到存储。
在开关sec5断开后,必须闭合主开关。
此时,变压器就从储能模式进入了能量输出模式。
能量通过巨大的初级线圈送入整个电池组。
顶部平衡法中的电流和时序条件与底部平衡法非常类似,只是顺序和电流的方向与底部平衡法相反。
平衡功率和电压扫描
按照英飞凌E-Cart中的原型配置,平均平衡电流可达5A,比被动平衡法的电流高50倍。
在5A的平衡电流下,整个模块的功耗仅2W,因此无需专门的冷却措施,并且进一步改善了系统的能量平衡。
为了管理每个电池单元的充电状态,必须测量它们各自的电压。
由于只有单元1在微控制器的ADC范围内,因此模块中其他单元的电压无法直接测量。
一种可能的方案是采用一组差分放大器阵列,而且它们必须支持整个电池模块的电压。
下文中描述的方法只需增加很少量的额外硬件就能测量所有电池单元的电压。
在该方法中,主要任务是进行充电平衡的变压器同时也被用做一个复用器。
在电压扫描模式中没有使用变压器的回扫模式。
当S1到Sn这些开关中有一个闭合时,与其相连的电池单元的电压就转换到变压器的所有绕组中。
在经过一个离散滤波器的简单预处理之后,被测信号就被送入微控制器的ADC输入端口。
开关S1到Sn中的某个开关闭合时所产生的测量脉冲持续时间可能非常短,实际导通时间为4us。
因此,通过这个脉冲存储至变压器中的能量很少。
而且无论如何在开关断开之后,存储在磁场中的能量都会通过初级晶体管流回整个电池模块。
因此电池模块的能量多少并不受
影响。
在对所有电池单元进行完一个周期的扫描之后,系统又回到初始状态。
本文小结
只有拥有一套优秀的电池管理系统才能充分发挥新型锂离子电池所具备的优势。
主动充电平衡系统的性能远远优于传统的被动方法,而相对简单的变压器则有助于保持较低的材料成本。