电路分析答案第三章演示教学
- 格式:doc
- 大小:1.35 MB
- 文档页数:13
电路分析基础答案周围版 3-2.试用节点分析法求图示电路中的电压 U解:选节点 c 为参考点,列写节点方程: a 点: b 点: 题图3-2—Ub =4 -1 =33 4 严仆厂4整理得:f 25U a-10U b Z a +10U b =90 = -12 ; 2Q I3-8.试用回路分析法求图示电路中的电流 I i 。
解得:U a =〒V ; U b 台;U ab=U a-U b=3.429V 解:列写回路方程: :(5+3+2)11 -(2+3)I2 -2I3 =10 ’ -(2+3 )1’ +(2+3+4+1 )I2 +(4+2 )I 3 =—5 10VI15Q才11Q4Q『01“ -5I 2 -2I 3 =10 整理得:{—51" +10I 2+6I 3 =—5,解得: I山=3 I 1 =0. 6k *3-11 .试用回路分析法求图示电路中的电流 解: (18+9 )11 -1812 = -42-1811+(18+3 )12 -313 = -20 卜=0.1U A [U A =-9I 1fcJ A .题图3-890 严U L 、,.:rtj 2CV 14帕I;0.1U题图3-11将问题的条件代入有: 1.6=0.3X3+0.2I S 2 — 0.1整理得:严叽二7,解得:|17I 3+21I 2 =-20*3-14 .试用叠加定理求图示电路中的电流2; +4+31; +5U x =0 U x =-2I X设电流源单独作用,电路简化成题图 3-14(2)所示(1欧姆电阻被等效去掉),选下节点为参考节点,列写节点方程:依据叠加定理有:l x =m4A0.6 * +2k 2 +k 3 0.7 評 +k 2 +k 3 0.9 =2k 1+2k 2+k 3k^ -0.1,故:l 3 =0.31 S1 +0.2I S 2-0.1,2QU x题图3-14X5U x3Q1Q-2A题图 3-14 (2)题图3-14解:设电压源单独作用,电路简化成题图 3-14( 1)所示,列写方程:「(2+少=2+晋U x =2(2-ix )解得:I X*3-17 . N 为线性网络,IS1=1A , IS2=2A 时,I 3 =0.6A ; IS1=2A , IS2=1A时,I 3=0.7A ; IS1=2A ,IS2=2A 时, I 3=0.9A ; I S1 =3A ,IS2=?A 时, l 3=1.6A ?题图3-17解:设 I 3为响应,有:I 3 =kJ S18A解得:将已知条件代入以上方程有:解得:K =0.3, k 2 =0.2 ,由此可得:I S2 = 4 A3-21 .电路如图示,用戴维南定理求图中电流 I 。
相量图形:1、下图中,R 1=6Ω,L=0.3H ,R 2=6.25Ω,C=0.012F,u (t)=)10cos(210t ,求稳态电流i 1、i 2和i 3,并画出电路的相量图。
解:V U0010∠= R 2和C 的并联阻抗Z 1= R 2//(1/j ωC )=(4-j3)Ω, 输入阻抗 Z = R 1+j ωL +Z 1 =10Ω,则:A Z U I 0010110010∠=∠== A R Z I I 0211287.368.0-∠== A U C j I 02313.536.0∠== ω 所以:A t i )10cos(21=A t i )87.3610cos(28.02ο-= A t i )13.5310cos(26.02ο+=相量图见上右图2、下图所示电路,A 、B 间的阻抗模值Z 为5k Ω,电源角频率ω=1000rad/s ,为使1U 超前2U 300,求R 和C 的值。
解:从AB 端看进去的阻抗为Cj R Z ω1+=, I213其模值为:Ω=+=k CR Z 5)1(22ω (1) 而2U /1U =)arctan()(112CR CR ωω-∠+由于1U 超前2U 300,所以ωCR =tan300=31 (2)联列(1)、(2)两式得R =2.5k Ω,C =0.231μF3、测量阻抗Z 的电路如下图所示。
已知R=20Ω,R 2=6.5Ω,在工频(f =50Hz)下,当调节触点c 使R ac =5Ω时,电压表的读数最小,其值为30V ,此时电源电压为100V 。
试求Z 及其组成的元件的参数值。
(注意:调节触点c ,只能改变cd U 的实部,电压表读数最小,也就是使实部为零,cd U 为纯虚数,即cdU =±j30V)解:UZR R U R R U ac cd++-=22调节触点c ,只能改变cd U 的实部,其值最小,也就是使实部为零,cd U 为纯虚数,即cdU =±j30V , 因此上式可表示为:±j 30=-25+(100⨯6.5)/(6.5+Z ) 解得:Z=(4.15±j 12.79)Ω 故:R Z =4.15ΩL =40.7mHC =249μF4、电路如下图所示,已知f =1kHz ,U =10V ,U 1=4V ,U 2=8V 。
电路分析基础习题第三章答案(史健芳)第3章3.1 选择题1.必须设立电路参考点后才能求解电路的方法是( C )。
A.支路电流法B.回路电流法C.节点电压法D.2b法2.对于一个具有n个结点、b条支路的电路,他的KVL独立方程数为( B )个。
A.n-1 B.b-n+1 C.b-nD.b-n-13.对于一个具有n个结点、b条支路的电路列写结点电压方程,需要列写( C )。
A.(n-1)个KVL方程B.(b-n+1)个KCL方程C.(n-1)个KCL方程D.(b-n-1)个KCL方程4.对于结点电压法中的无伴电压源,下列叙述中,( A )是错误的。
A.可利用电源等效变换转化为电流源后,再列写结点电压方程B.可选择该无伴电压源的负极性端为参考结点,则该无伴电压源正极性端对应的结点电压为已知,可少列一个方程C.可添加流过该无伴电压源电流这一新的未知量,只需多列一个该无伴电压源电压与结点电压之间关系的辅助方程即可D.无伴受控电压源可先当作独立电压源处理,列写结点电压方程,再添加用结点电压表示控制量的补充方程5.对于回路电流法中的电流源,下列叙述中,( D )是错误的。
A.对于有伴电流源,可利用电源等效变换转化为电压源后,再列写回路电流方程B.对于无伴电流源,可选择合适的回路,使只有一个回路电流流过该无伴电流源,则该回路电流为已知,可少列一个方程C.对于无伴电流源,可添加该无伴电流源两端电压这一新的未知量,只需多列一个无伴电流源电流与回路电流之间关系的辅助方程即可D.电流源两端的电压通常为零6.对于含有受控源的电路,下列叙述中,( D )是错误的。
A.受控源可先当作独立电源处理,列写电路方程B.在结点电压法中,当受控源的控制量不是结点电压时,需要添加用结点电压表示控制量的补充方程C.在回路电流法中,当受控源的控制量不是回路电流时,需要添加用回路电流表示控制量的补充方程D.若采用回路电流法,对列写的方程进行化简,在最终的表达式中互阻始终是相等的,即:R ij=R ji3.2 填空题1.对于具有n个结点b条支路的电路,可列出 n-1 个独立的KCL方程,可列出 b-n+1 个独立的KVL方程。
第3章 正弦稳态电路的分析习题解答3.1 已知正弦电压,当时,。
求出有效值、频率、()V 314sin 10θ-=t u 0=t V 5=u 周期和初相,并画波形图。
解 有效值为 V07.7210==U ;Hz 502314==πf s 02.01==f T 将 , 代入,有 ,求得初相。
波形图如下0=t V 5=u )sin(105θ-=︒-=30θ3.2 正弦电流的波形如图3.1所示,写出瞬时值表达式。
i图3.1 习题3.2波形图解 从波形见,电流的最大值是,设的瞬时值表达式为i A 20i A π2sin 20⎪⎭⎫ ⎝⎛+=θt T i 当 时,,所以 ,求得或 。
0=t A =10i θsin 2010=︒=30θ6π=θ当 时,,所以 ,求得 。
s 2=t A =20i ⎪⎭⎫ ⎝⎛+⨯=6π2π2sin 2020Ts 12=T 所以 。
A ⎪⎭⎫ ⎝⎛︒+=306πsin 20t i 3.3正弦电流,。
求相位差,说明超前滞()A 120 3cos 51︒-=t i A )45 3sin(2︒+=t i 后关系。
解 若令参考正弦量初相位为零,则的初相位,而初相位1i ︒-=︒-︒=30120901θ2i,其相位差 , 所以滞后于 角,或︒=452θ︒-=︒-︒-=-=75453021θθϕ1i 2i ︒75超前 角。
2i 1i ︒753.4 正弦电流和电压分别为(1)V)60 4sin(23o 1+=t u (2)V)75 4cos(52︒-=t u (3)A)90 4sin(2o 1+-=t i (4) V)45 4cos(252︒+-=t i 写出有效值相量,画出相量图。
解 (1) ,相量图如图(1)V 6031︒∠=∙U (2) V)15 4sin(5)75 4cos(52︒+=︒-=t t u 有效值相量为 ,相量图如图(2)V 15252︒∠=∙U (3) ()()A90 4sin 290 4sin 21︒-=︒+-=t t i 有效值相量为 ,相量图如图(3)A 9021︒-∠=∙I (4) ()()A45 4sin 2545 4cos 252︒-=︒+-=t t i 有效值相量为 ,相量图如图(4)A 4552︒-∠=∙I3.5 图3.2中,已知,,求。
第3章电路等效及电路定理P3-2 电路如图P3-2所示,应用叠加定理计算电流x i ,并计算Ω10电阻吸收的功率。
图P3-2 图1 图2解:1)15V 单独作用,如图1示 2)4A 单独作用,如图2示A i x 6.0401040401040101215'=+⨯+⨯+= A i x 92.14401101121101''-=⨯++-= 3)共同作用 A i i i x xx 32.1)92.1(6.0'''-=-+=+= 4)10Ω电阻的功率:W R i p x4.1710)32.1(22=⨯-==P3-5 用叠加定理求如图P3-5所示电路的电压x u 。
4Ω4Ω4Ω图P3-5 图1 图2解:1)10V 单独作用,如图1示由KVL 得:04)5(21010''''=++⨯++-x x x xi i i i ,得:A i x 38.0135'==,V i u xx 8.310''== 2)2A 单独作用,如图2示由KVL 得:0)2(4)52(210''''''''=++++⨯+x x x xi i i i ,得:A i x 46.0136''-=-=,V i u xx 6.410''''-== 3)共同作用 V u u u x x 2.1)6.4(8.3'''-=-+=+=P3-9 求图P3-9所示电路的输入电阻in R 。
(分别用电源法和伏安法)图P3-9 图1 图2解:1)电源法:设端口处电压和电流如图1所示:由25Ω电阻VCR得:)5.1(25IIiu-+⨯= 1)控制量:50uI= 2)联立两个方程:iu3100=,因此输入电阻:Ω===3.333100iuRin2)伏安法:端口处电压和电流如图2所示,设控制量AI1=,则:VIu5050==,AIIui5.15.125=-+=,因此输入电阻:Ω===3.335.150iuRinP3-11电路如图P3-11所示,利用电源变换求i。