第六章 高分子的粘弹性
- 格式:ppt
- 大小:2.24 MB
- 文档页数:42
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高分子材料的高弹性和粘弹性地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第二节高分子材料的高弹性和粘弹性本章第二、三节介绍高分子材料力学性能。
力学性能分强度与形变两大块,强度指材料抵抗破坏的能力,如屈服强度、拉伸或压缩强度、抗冲击强度、弯曲强度等;形变指在平衡外力或外力矩作用下,材料形状或体积发生的变化。
对于高分子材料而言,形变可按性质分为弹性形变、粘性形变、粘弹性形变来研究,其中弹性形变中包括普通弹性形变和高弹性形变两部分。
高弹性和粘弹性是高分子材料最具特色的性质。
迄今为止,所有材料中只有高分子材料具有高弹性。
处于高弹态的橡胶类材料在小外力下就能发生100-1000%的大变形,而且形变可逆,这种宝贵性质使橡胶材料成为国防和民用工业的重要战略物资。
高弹性源自于柔性大分子链因单键内旋转引起的构象熵的改变,又称熵弹性。
粘弹性是指高分子材料同时既具有弹性固体特性,又具有粘性流体特性,粘弹性结合产生了许多有趣的力学松弛现象,如应力松弛、蠕变、滞后损耗等行为。
这些现象反映高分子运动的特点,既是研究材料结构、性能关系的关键问题,又对正确而有效地加工、使用聚合物材料有重要指导意义。
一、高弹形变的特点及理论分析高弹形变的一般特点与金属材料、无机非金属材料的形变相比,高分子材料的典型高弹形变有以下几方面特点。
1、小应力作用下弹性形变很大,如拉应力作用下很容易伸长100%~1000%(对比普通金属弹性体的弹性形变不超过1%);弹性模量低,约10-1~10MPa (对比金属弹性模量,约104~105MPa)。
2、升温时,高弹形变的弹性模量与温度成正比,即温度升高,弹性应力也随之升高,而普通弹性体的弹性模量随温度升高而下降。
第二节高分子材料得高弹性与粘弹性本章第二、三节介绍高分子材料力学性能、力学性能分强度与形变两大块,强度指材料抵抗破坏得能力,如屈服强度、拉伸或压缩强度、抗冲击强度、弯曲强度等;形变指在平衡外力或外力矩作用下,材料形状或体积发生得变化、对于高分子材料而言,形变可按性质分为弹性形变、粘性形变、粘弹性形变来研究,其中弹性形变中包括普通弹性形变与高弹性形变两部分。
高弹性与粘弹性就是高分子材料最具特色得性质。
迄今为止,所有材料中只有高分子材料具有高弹性。
处于高弹态得橡胶类材料在小外力下就能发生100-1000%得大变形,而且形变可逆,这种宝贵性质使橡胶材料成为国防与民用工业得重要战略物资。
高弹性源自于柔性大分子链因单键内旋转引起得构象熵得改变,又称熵弹性。
粘弹性就是指高分子材料同时既具有弹性固体特性,又具有粘性流体特性,粘弹性结合产生了许多有趣得力学松弛现象,如应力松弛、蠕变、滞后损耗等行为。
这些现象反映高分子运动得特点,既就是研究材料结构、性能关系得关键问题,又对正确而有效地加工、使用聚合物材料有重要指导意义、一、高弹形变得特点及理论分析(一)高弹形变得一般特点与金属材料、无机非金属材料得形变相比,高分子材料得典型高弹形变有以下几方面特点。
1、小应力作用下弹性形变很大,如拉应力作用下很容易伸长100%~1000%(对比普通金属弹性体得弹性形变不超过1%);弹性模量低,约10—1~10MPa(对比金属弹性模量,约104~105MPa)、2、升温时,高弹形变得弹性模量与温度成正比,即温度升高,弹性应力也随之升高,而普通弹性体得弹性模量随温度升高而下降。
3、绝热拉伸(快速拉伸)时,材料会放热而使自身温度升高,金属材料则相反。
4、高弹形变有力学松弛现象,而金属弹性体几乎无松弛现象。
高弹形变得这些特点源自于发生高弹性形变得分子机理与普弹形变得分子机理有本质得不同。
(二)平衡态高弹形变得热力学分析取原长为l0得轻度交联橡胶试样,恒温条件下施以定力f,缓慢拉伸至l0+ d l 。
第六章高聚物的力学性能(1)6.1 概述6.1.1 高聚物力学性能的特点(形变性能、断裂性能)高弹形变:平衡高弹形变:瞬时、平衡、可逆的高弹形变;非平衡高弹形变:瞬时粘弹性,与时间有关高弹性:准平衡态高弹形变,由高分子构象熵的改变引起,处于链段无规自由热运动橡胶(弹性体)→外力作用(拉伸力)→ 链段运动对外响应→可逆的弹性形变(伸长数倍)普弹性:内能的改变引起粘弹性:呈粘性流体的性质、弹性和粘性同时出现。
表现在力学松弛现象(蠕变、应力松弛)及动态力学行为。
高聚物的力学行为:依赖于时间、温度。
必须同时考虑应力、应变、时间和温度来描述。
研究目的:(1)力学性能宏观描述和测试合理化;(2)宏观力学性能与微观各个层次的结构因素的关系。
6.1.2 形变类型和描述力学行为的基本物理量(1)简单剪切(形状改变,体积不变)剪切应力:σ = F/A,剪切应变:γ= tgθ,剪切模量(刚度):G = σ/γ,剪切柔量:J = 1/G = γ/σ(2)本体(体积)压缩(形状不变,体积改变)本体应变:Δ= ΔV / V,本体模量:K = P/Δ = P / (- ΔV / V),本体柔量(可压缩度):B = 1 / K(3)单向拉伸(形状和体积同时改变)拉伸应力:σ = F/A0(张应力,工程应力),拉伸应变:ε1 = (l-10)/10=Δl/10(张应力,工程应变,习用应变),杨氏模量:E = σ / ε1 (高聚物 E = 0.1MPa~500MPa),拉伸柔量:D = 1 / E横向应变:ε2 =(b - b0)/ b0,ε3 =(d - d0)/ d0)泊松比:γ = -ε2 / ε1= -ε3 / ε1 (拉伸试验中横向应变与纵向应变的比值的负数)对于大多数高聚物:橡胶,γ = 0.5,体积几乎不变,没有横向收缩。
塑料,γ = 0.2~0.4。
对各向同性的理想材料:G = E /(1+γ),K = E(1 - 2γ),E = 9KG /(3K + G),若体积几乎不变,即γ = 1/2, 则 E = 3G;对于各向异性材料情况比较复杂,不止有两个的独立弹性模量,通常至少有5或6个。
高分子材料的黏弹性与流变行为分析高分子材料的黏弹性和流变行为是研究材料性能和应用的重要方面。
黏弹性是指材料在受力作用下既有黏性(固体的弹性和液体的粘性)又有弹性(恢复力)的特性。
而流变行为则是指材料在外界施加剪切应力下的变形特性。
本文将通过分析高分子材料的黏弹性和流变行为,探讨其对材料性能和应用的影响。
一、黏弹性的基本概念黏弹性是高分子材料独有的特性,是其与传统材料的重要区别之一。
黏弹性指材料在受力作用下,在一定的应力和应变条件下既具有固体的弹性特性,又具有液体的粘性特性。
黏弹性是由高分子链的内聚力和外聚力共同作用引起的。
高分子链的内聚力使得材料具有弹性,能够在受力后恢复原始形状;而外聚力则会导致材料的黏性,使材料随时间推移而发生流动。
黏弹性具有时间依赖性和应力依赖性,即材料的黏弹性特性会随着时间和应力的变化而变化。
二、黏弹性的测试和分析方法为了研究和评估高分子材料的黏弹性,常用的测试和分析方法包括动态力学分析(DMA)、旋转粘度测量、流变学等。
1. 动态力学分析(DMA)DMA是一种常用的测试黏弹性的方法,通过在一定频率范围内施加小振幅的力,测量材料的应力应变响应,以及通过应力松弛测试得到的弛豫模量和弛豫时间。
DMA可以提供材料的弹性模量、损耗模量、内摩擦角等重要参数,从而评估材料的黏弹性特性。
2. 旋转粘度测量旋转粘度测量是通过在材料中施加旋转剪切力,测量材料对流动的阻力来评估黏滞性能。
旋转粘度是描述材料黏滞特性的重要参数,可用于判断材料流动性能的好坏。
3. 流变学流变学是研究材料在剪切应力下的变形特性的学科,主要包括剪切应力-剪切速率曲线的测定、黏度与切变速率的关系等。
通过流变学的研究,可以分析材料的流变行为及其对黏弹性的影响。
三、高分子材料的黏弹性与应用高分子材料广泛应用于各个领域,其黏弹性特性对材料的性能和应用有着重要的影响。
1. 弹性体高分子材料的黏弹性使其成为理想的弹性体,可用于制造弹簧、悬挂系统等需要回弹力的产品。