则a= 2 ,∠B= 60°,∠A= 30°.
5.如果 cos A 1 3 tan B 3 0
2
那么△ABC是( D )
A.直角三角形 C.钝角三角形
B.锐角三角形 D.等边三角形
6.直角三角形纸片的两直角边BC为6, AC为8,现将△ABC,按如图折叠,使点A 与点B重合,折痕为DE,则tan∠CBE的值
在Rt△PAD中,∵∠PAD=90°-60°=30°,
AD 3PD, 12 x 3x,
x 12 6( 3 1) 18. 3 1
∴渔船不改变航线继续向东航行,有触礁危险.
8.如图,甲船在港口P的北偏西60°方向,距港口80海里的A 处,沿AP方向以12海里/时的速度驶向港口P.乙船从港口P 出发,沿北偏东45°方向匀速驶离港口P,现两船同时出发, 2小时后乙船在甲船的正东方向.求乙船的航行速度.
谢 谢!
让我们共同进步
(2)两锐角的关系:∠A十∠B=90°
(3)边角的关系:sin A a cos A b tan A a
c
c
b
归纳:只要知道其中的2个元素(至少有一个是边),
就可以求出其余3个未知元素.
四.解直角三角形的应用
1.仰角和俯角
在进行测量时, 从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
视线
铅 直
仰角
线
俯角
水平线
视线
2.坡度、坡角
坡角:坡面与水平面的夹角叫做坡角,用字母α表示.
坡度(坡比):坡面的铅
直高度h和水平距离l的
比叫做坡度,用字母i表
示,则 i h tan
l