圆锥曲线解题十招全归纳
- 格式:doc
- 大小:3.28 MB
- 文档页数:42
1高中数学圆锥曲线解题的十个大招招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k - ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 32。
221212()()AB x x y y =-+-222141k k k -=+212k d k+=222314112k k k k -++=39k =053x =。
【涉及到弦的垂直平分线问题】2这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
圆锥曲线解题技巧归纳(9篇)化为一元二次方程,利用判别式求最值篇一如果能把圆锥曲线的最值问题转化为含有一个未知量的一元二次方程,利用,解得要求未知量的范围,然后确定其最值。
例3:直线,椭圆C:。
求以椭圆C的焦点F1、F2为焦点,且与直线l有公共点M的椭圆中长轴最短的。
分析:因为直线l与所求椭圆有公共点,可以由方程组得到一个一元二次方程,再利用判别式确定所求椭圆长轴的`最小值。
解:椭圆C的焦点。
说明:直线l与椭圆有公共点,可得方程组,消去一个未知数,得到一个一元二次方程,由一元二次方程有实根的条件得,构造参变量的不等式,确定的最小值,这种解法思路清晰、自然。
圆锥曲线的八大解题方法:篇二1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法圆锥曲线的解题方法:篇三一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2。
求动点P的轨迹方程。
解析:依题意可知,{C},由题设知{C},{C}{C}。
(2)定义法:根据圆锥曲线的定义确定曲线的形状。
上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。
(3)待定系数法:通过题设条件构造关系式,待定参数即可。
例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。
解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4。
例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。
解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。
一、化为二次函数,求二次函数的最值依据条件求出用一个参数表示的二次函数解析式,而自变量都有一定的变化范围,然后用配方法求出限制条件下函数的最值,就可得到问题的解。
圆锥曲线解题方法技巧归纳一、知识储备:1.直线方程的形式(1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。
(2 )与直线相关的重要内容(3 )弦长公式直线y kx b 与圆锥曲线两交点 A(x 1,y 1), B(x 2,y 2)间的距离:AB 1 k 2 X 1 X2I ,:(1 k 2 )[(x1 X 2)4x 1X 2]或 AB(若A 点为交点,另一点不在圆锥曲线上,上式仍然成立。
)(4)两条直线的位置关系① l 1 l 2 k 1 k 2 =-1 ② h 〃l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式(三种形式)2 2x y —1(m 0,n 0 且 m n) m n距离式方程:.(x c)2y 2 , (x c)2 y 22a参数方程:x a cos , y bsin (2)、双曲线的方程的形式有两种2 2标准方程:——1(m n 0)m n①倾斜角与斜率k tan , [0,)②点到直线的距离Ax o By 。
C .■ A 2 B 2③夹角公式:tan 1 k 2k 1④两直线距离公式I CT -C S I标准方程:参数方程:u 二atane , y = b⑶、三种圆锥曲线的通径⑹、记住焦半径公式:(1)椭圆焦点在x 轴上时为a ex o ;焦点在y 轴上时为a ey 0 ,可简记为“左加右减,上加下减”。
(2)双曲线焦点在x 轴上时为e|X o | a(3)抛物线焦点在x 轴上时为|X i | $焦点在y 轴上时为|%|(6)、椭圆和双曲线的基本量三角形 二、方法储备 1点差法(中点弦问题)2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立, 消去一个未知数,得到一个二次方程,使用判 别式 0,以及根与系数的关系,代入弦长公式,设曲线上的两点 A(x ,, y 1), B(x 2, y 2), 将这两点代入曲线方程得到 ①②两个式子,然后01 -②,整体消元•母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点椭圆:空;双曲线: a 竺;抛物线:2pa⑷、 圆锥曲线的定义 ⑸、 焦点三角形面积公式:P 在椭圆上时,S F 1PF 2P 在双曲线上时,S F 1PF 2(其中F 1PF 2,cos 卅护b 2cot —2,P F 1?P F 2|P F1设A X i , y i 、B X 2, y2 ,yi 为椭圆专+詈二L ab的弦AB 中点则有x 1 x 2 x 1X 2Vi T =1;两式相减得y 1 y 2 屮 y_K AB =,若有两个字F共线解决之。
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。
(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。
过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。
(1)求证离心率;(2)求的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。
圆锥曲线解题技巧归纳1.球面坐标系与圆锥曲线:在球面坐标系中,圆锥曲线可以看作是一个直线在球面上的投影。
通过利用球面坐标系的相关性质,可以简化圆锥曲线的解题过程。
2.圆锥曲线的标准方程:圆锥曲线的标准方程是通过平移和旋转的方式将一般方程转化成一种特殊形式的方程。
通过将一般方程转化成标准方程,可以方便地研究圆锥曲线的性质。
3.圆锥曲线的分类与特点:根据圆锥曲线的二次项和四次项的系数可以将圆锥曲线分为椭圆、双曲线和抛物线三类。
每一类圆锥曲线都有其特有的性质和特点,熟悉这些特点可以帮助我们更好地解题。
4.圆锥曲线的参数方程:圆锥曲线的参数方程是通过引入一个参数来表示曲线上的点的坐标。
通过使用参数方程,可以简化圆锥曲线的分析和解题过程。
5.圆锥曲线的对称性:圆锥曲线具有多种对称性,包括关于坐标轴、原点和直线的对称性。
利用这些对称性可以简化问题的分析和解题过程。
6.圆锥曲线的焦点与准线:焦点和准线是圆锥曲线的两个重要特点。
了解焦点和准线的性质可以帮助我们理解圆锥曲线的形状和性质,并解决相关的问题。
7.圆锥曲线的参数化方程:圆锥曲线的参数化方程是通过引入一个或多个参数来表示曲线上的点的坐标。
通过使用参数化方程,可以更灵活地处理圆锥曲线上的点和相关的问题。
8.圆锥曲线的极坐标方程:圆锥曲线的极坐标方程是通过将直角坐标系中的变量用极坐标表示来得到的。
利用极坐标方程,可以方便地研究圆锥曲线的性质,并解决相关的问题。
9.圆锥曲线的参数方程与极坐标方程的转换:圆锥曲线的参数方程和极坐标方程可以相互转换。
通过掌握参数方程和极坐标方程之间的转换关系,可以灵活地处理圆锥曲线的问题,并得到更加深入的理解。
圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容 ① 倾斜角与斜率k tan , [0,)② 点到直线的距离dA/ B y0_C tan(3) 弦长公式 直线 y kx b 上两点 A(x i , yj, B(X 2, y 2)间的距离:AB| J i k 2|x X 2J (1 k 2)[(X i X 2)2 4沁]或 AB J i *|y i y 2(4) 两条直线的位置关系 ① l 1 l 2 k 1k 2=-1② l 1 //12k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1) 、椭圆的方程的形式有几种?(三种形式)标准方程: 2 2—匚 1(m 0, n 0且 m n) m n 距离式方程:.(x c)2 y 2 . (x c)2 y 2 2a参数方程: x a cos , y bsin(2) 、双曲线的方程的形式有两种③夹角公式:k 2 12 2标准方程:—-1(m n 0)(3) 、三种圆锥曲线的通径你记得吗?椭圆:近;双曲线:玄;抛物线:2pa a(4) 、圆锥曲线的定义你记清楚了吗?b 2 tan —2P 在双曲线上时,S FP F 2 b 2 cot —,t| PF |2 | PF |2 4c 2 uur ujrn uur uimr(其中 F 1PF 2,COS 】1鳥尙,PF ?PF 2 |PF 1||PF 2|COS(6)、 记住焦 半 径公式: (1 )椭圆焦点在x 轴上时为a ex g ;焦点在y 轴上时为a ey °,可简记为“左加右减,上加下减”(2) 双曲线焦点在x 轴上时为e|x 01 a(3) 抛物线焦点在x 轴上时为| x , | 2,焦点在y 轴上时为| % | 2 (6)、椭圆和双曲线的基本量三角形你清楚吗? _ 第二、方法储备 1、点差法(中点弦问题)2B X 2,y 2,M a,b 为椭圆— 42 2 2 2 2222如: 已知F ,、 2 2F 2是椭圆勻七1的两个焦点,平面内一个动点 M足MF !MF 22则动点M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:P 在椭圆上时,S F1p F2设 A x ,, y ,2仝1的弦AB 中点则有3仝生1,空空1 ;两式相减得二竺上上04 3 4 3 4 3x i X2 捲X2 y i y2 y i y2 3a4 3 k AB一不2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及根与系数的关系,代入弦长公式,设曲线上的两点A(X!, y i), B(X2, y2),将这两点代入曲线方程得到①②两个式子,然后①-②,整体消元..................... ,若有两个字母未知数,贝S要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。
都说数学中的圆锥曲线高考难题排名第二名,大部分同学抱怨无从下手,计算能力跟不上,算错一次没有勇气从头再来,今天教大家如何学好!
学好圆锥曲线的几个关键点
1、牢记核心知识点
核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2、计算能力与速度
计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
3、思维套路
拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容①倾斜角与斜率 k tan , [0, )② 点 到 直 线 的 距 离 d Ax 0 By 0 CA 2B 2tan3)弦长公式直线 y kx b 上两点 A(x 1, y 1), B( x 2 , y 2 )间的距离: AB 1 k 2 x 1 x 2(1 k 2 )[( x 1 x 2)2 4x 1x 2] 或 AB 1 k 12 y 1 y 2 (4)两条直线的位置关系①l 1 l 2 k 1k 2=-1 ② l 1 //l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:22x y1(m 0,n 0且 m n) mn 距离式方程:(x c)2 y 2 (x c)2 y 22a 参数方程:x acos ,y bsin(2)、双曲线的方程的形式有两种③夹角公式:k21222标准方程:x y1(m n 0)mn距离式方| (x c)2 y 2 (x c) 2 y 2 | 2a(3) 、三种圆锥曲线的通径你记得吗?椭圆:2b;双曲线:2b;抛物线:2 p aa(4) 、圆锥曲线的定义你记清楚了吗?b 2tan2 P 在双曲线上时, S F PF b cot| PF |2 | PF |2 4c 2 uuur uuuur uuur uuuur 其中 F 1PF 2,cos |PF 1||PF 1||P |F P 2F |2 | 4c ,u P u F ur1?u P u Fuur 2|u P uu F r 1 ||uu P u Fur2|cos(6) 、 记 住 焦 半 径 公 式 : ( 1 )椭圆焦点在 x 轴上时为 a ex 0 ;焦点在 y 轴上时为 a ey 0,可简记为“左加右减,上加下减”(2)双曲线焦点在 x 轴上时为 e|x 0 | a(3) 抛物线焦点在 x 轴上时为 | x 1 | 2p ,焦点在 y 轴上时为 | y 1 | 2p(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)2y1的弦 AB 中点则有3如: 已知 F 1、 22F2是椭圆 x4 y3 1的两个焦点, 平面内一个动点 M 足 MF 1MF 2 2 则动点 M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式: P 在椭圆上时, S F 1PF 2设 A x 1, y 1B x 2,y 2 , M a,b 为椭圆 x42 2 2 2 2 2 2 2 x 1 y 1 1, x 2 y 2 1;两式相减得 x 1 x 2y 1 y 24 3 4 3 4 3x 1 x 2 x 1 x 2y 1 y 2 y 1 y 23a4 3kAB =4b2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到 一个二次方程, 使用判别式 0,以及根与系数的关系, 代入弦 长公式,设曲线上的两点 A( x 1, y 1), B(x 2 , y 2 ) ,将这两点代入曲线方 程得到 ○1 ○2 两个式子,然后 ○1-○2 ,整体消元······,若有两个 字母未知数, 则要找到它们的联系, 消去一个,比如直线过焦点, 则可以利用三点 A 、B 、 F 共线解决之。
圆锥曲线解题的万能套路圆锥曲线是数学中研究的一类曲线,包括椭圆、双曲线和抛物线。
这三种曲线都有着各自独特的性质和特点,解题时可以根据这些特点来进行分析和求解。
下面将介绍一些圆锥曲线解题的常用套路。
1.椭圆的解题套路:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别表示椭圆的长半轴和短半轴。
-根据方程的形式,可以判断椭圆的方向(水平或垂直)和长短半轴的比例关系。
-判断椭圆是否关于x轴或关于y轴对称,可以使用对称性质简化计算。
-利用椭圆的性质,可以求解椭圆的焦点、准线和主轴方程。
-在给定椭圆上求点的距离、坐标或方程时,可以利用椭圆的定义方程与给定条件相互联立求解。
2.双曲线的解题套路:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别表示双曲线的长半轴和短半轴。
-根据方程的形式,可以判断双曲线的方向(水平或垂直)和长短半轴的比例关系。
-判断双曲线是否关于x轴或关于y轴对称,可以使用对称性质简化计算。
-利用双曲线的性质,可以求解双曲线的焦点、准线和中心点坐标。
-在给定双曲线上求点的距离、坐标或方程时,可以利用双曲线的定义方程与给定条件相互联立求解。
3.抛物线的解题套路:抛物线的标准方程为y^2 = 2px,其中p为焦距的一半,表示抛物线的焦点到顶点的距离。
-根据方程的形式,可以判断抛物线的开口方向(上下)和焦点的位置。
-判断抛物线是否关于x轴或关于y轴对称,可以使用对称性质简化计算。
-利用抛物线的性质,可以求解抛物线的焦点坐标、准线方程和顶点坐标。
-在给定抛物线上求点的距离、坐标或方程时,可以利用抛物线的定义方程与给定条件相互联立求解。
以上是圆锥曲线解题的一些常用套路。
对于不同类型的圆锥曲线,需要根据其方程的形式和曲线的特点来确定解题的具体方法。
熟练掌握这些套路,并在实际问题中灵活运用,可以更加高效地解决圆锥曲线相关的问题。
圆锥曲线题型归纳及解题技巧学好圆锥曲线的几个关键点1、牢记核心知识点核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2、计算能力与速度计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
3、思维套路拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
4、题型总结圆锥曲线中常见题型总结1、直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
2、圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
3、圆锥曲线弦长问题弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B (x2,y2)两点,则:4、定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.5、最值、参数范围问题这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.6、轨迹问题轨迹问题一般方法有三种:定义法,相关点法和参数法。
圆锥曲线大题解题技巧圆锥曲线是数学中一个重要的几何分支,它包括椭圆、双曲线和抛物线等曲线。
在解决圆锥曲线相关的大题时,掌握一些解题技巧是非常有帮助的。
以下是一些常见的解题技巧:1. 熟悉基本定义和性质:-掌握圆锥曲线的标准方程形式,了解它们的焦点、准线、偏心率等基本性质。
-理解直线与圆锥曲线的位置关系,包括相切、相交和相离。
2. 利用坐标法:-将圆锥曲线问题转化为代数问题,通过建立坐标系,将曲线方程转化为标准形式。
-利用坐标法求解直线与圆锥曲线的交点、弦长、面积等。
3.应用韦达定理:-韦达定理在解决圆锥曲线问题时非常有用,特别是在求解直线与圆锥曲线的交点问题时。
-利用韦达定理可以快速找到交点的坐标。
4. 利用参数方程:-对于某些复杂的圆锥曲线问题,可以尝试使用参数方程来简化问题。
-参数方程可以帮助我们更好地理解曲线的形状和性质。
5. 利用极坐标:-在处理与极点和极线相关的问题时,极坐标方法可以提供简洁的解决方案。
-极坐标方法特别适用于求解与焦点、准线相关的问题。
6. 利用图形工具:-利用几何画板等图形工具可以帮助我们直观地理解圆锥曲线的性质和问题。
-图形工具可以帮助我们验证答案的正确性。
7. 注意特殊情况:-在解决圆锥曲线问题时,要注意特殊点的存在,如顶点、焦点、准线等。
-特殊点的性质往往在解题中起到关键作用。
8. 练习和总结:-定期练习圆锥曲线相关的题目,总结解题方法和技巧。
-学习并掌握常见的解题模式和思路。
通过以上技巧的运用,可以大大提高解决圆锥曲线大题的效率和准确性。
重要的是要理解每个技巧背后的数学原理,这样才能在遇到不同问题时灵活运用。
高中数学圆锥曲线解题方法归纳圆锥曲线是高中数学中的一个重要部分,包括椭圆、双曲线和抛物线。
这些曲线通常通过平面截取圆锥的不同部分来形成。
为了更好地理解和解决这类问题,我们需要掌握一些基本的解题方法。
1. 定义法:根据圆锥曲线的定义来解题。
例如,椭圆和双曲线的定义是两个焦点到曲线上任一点的距离之和或差为一个常数。
抛物线的定义是一个点到固定点(焦点)和固定直线(准线)的距离相等。
2. 参数方程法:对于一些复杂的圆锥曲线问题,我们可以使用参数方程来表示曲线上点的坐标。
这样可以将几何问题转化为代数问题,便于计算。
3. 切线法:对于一些与圆锥曲线切线相关的问题,我们可以使用切线性质来解题。
例如,切线到曲线上任一点的距离在切点处达到最小值。
4. 极坐标法:将问题转化为极坐标形式,利用极坐标的性质来解题。
例如,在极坐标下,距离和角度的关系可以简化为数学表达式。
5. 几何法:利用圆锥曲线的几何性质来解题。
例如,椭圆的焦点到椭圆中心的距离等于椭圆上任一点到椭圆中心的距离减去椭圆半径。
6. 代数法:通过代数运算来解题。
例如,解联立方程来找到满足多个条件的点的坐标。
7. 数形结合法:结合图形和数学表达式来解题。
通过观察图形,可以更好地理解问题的本质,从而找到合适的解题方法。
以上是高中数学中圆锥曲线解题的一些基本方法。
需要注意的是,每种方法都有其适用的范围和局限性,需要根据具体问题选择合适的方法。
同时,这些方法也不是孤立的,有时需要综合运用多种方法来解决一个复杂的问题。
通过大量的练习和总结,我们可以提高解决圆锥曲线问题的能力。
圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d =③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S122cot 2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
圆锥曲线解题的万能套路可以归纳为以下步骤:
1. 确定焦点位置:根据题目给定的条件,确定圆锥曲线的焦点位置,是位于X 轴上还是Y轴上。
2. 设而不求:设定圆锥曲线上的两点坐标,然后根据点在曲线上的性质,列出方程,但不求解。
3. 点差法:如果题目涉及弦的中点问题,可以使用点差法。
将两个点在曲线上的坐标分别带入方程,然后作差,化简后可以求得中点的坐标。
4. 联立方程:将题目给定的图形方程与圆锥曲线方程联立,形成一元二次方程组。
5. 使用韦达定理:利用韦达定理,将方程组的解用函数的k表示出来。
6. 求切线方程:如果需要求切线方程,可以通过图形的一个切点代入,求得切线斜率,进而得到切线方程。
7. 弦长公式:如果需要求弦长,可以使用弦长公式,将直线方程与图形方程联立,化简后得到一元二次不等式,通过韦达定理求解。
8. 求最值:根据题目给定的条件,利用函数关系或几何关系求出最值。
9. 求轨迹方程:根据题目给定的条件,利用待定系数法或定义法求出轨迹方程。
以上步骤可以作为圆锥曲线解题的万能套路,但具体解题过程中还需根据题目的具体情况进行灵活应用。
《圆锥曲线解题十招全归纳》 招式一:弦的垂直平分线问题 ............................................................................. 2 招式二:动弦过定点的问题 ................................................................................. 4 招式四:共线向量问题 ......................................................................................... 6 招式五:面积问题 ............................................................................................... 12 招式六:弦或弦长为定值、最值问题 ............................................................... 15 招式七:直线问题 ............................................................................................... 18 招式八:轨迹问题 ............................................................................................... 22 招式九:对称问题 ............................................................................................... 29 招式十、存在性问题 ........................................................................................... 32 招式一:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l与曲线N :2yx交于A、B两点,在x轴上是否存在一点E(0x,0),使得ABE是等边三角形,若存在,求出0x;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)lykx,0k,11(,)Axy,22(,)Bxy。
由2(1)ykxyx消y整理,得2222(21)0kxkxk ① 由直线和抛物线交于两点,得2242(21)4410kkk 即2104k ②
由韦达定理,得:212221,kxxk121xx。则线段AB的中点为22211(,)22kkk。 线段的垂直平分线方程为: 221112()22kyxkkk
令y=0,得021122xk,则211(,0)22Ek
ABE为正三角形,211(,0)22Ek到直线AB的距离d为32AB。
221212()()ABxxyy
22
2
141kkk212kdk
222
2
3141122kkkkk解得3913k满足②式此时053x。
【涉及到弦的垂直平分线问题】 这种问题主要是需要用到弦AB的垂直平分线L的方程,往往是利用点差或者韦达定理........产生弦AB
的中点坐标M,结合弦AB与它的垂直平分线L的斜率互为负倒数,写出弦的垂直平分线L的方程,然后解决相关问题,比如:求L在x轴y轴上的截距的取值范围,求L过某定点等等。有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB的中点问题,比如:弦与某定点D构成以D为顶点的等腰三角形(即D在AB的垂直平分线上)、曲线上存在两点AB关于直线m对称等等。 例题分析1:已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于
解:设直线AB的方程为yxb,由22123301yxxxbxxyxb,进而可求出AB 的中点11(,)22Mb,又由11(,)22Mb在直线0xy上可求出1b,∴220xx,由弦长公式可求出221114(2)32AB. 招式二:动弦过定点的问题
例题2、已知椭圆C:22221(0)xyabab的离心率为32,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。 (I)求椭圆的方程;
(II)若直线:(2)lxtt与x轴交于点T,点P为直线l上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论
解:(I)由已知椭圆C的离心率32cea,2a,则得3,1cb。从而椭圆的方程为2214xy (II)设11(,)Mxy,22(,)Nxy,直线1AM的斜率为1k,则直线1AM的方程为1(2)ykx,由122
(2)44ykxxy
消y整理得222121(14)161640kxkxk12x和是方程的两个根,
21121164214kxk则211212814kxk,1121414kyk,即点M的坐标为2112211
284(,)1414kkkk,
同理,设直线A2N的斜率为k2,则得点N的坐标为2222222824(,)1414kkkk 12(2),(2)ppyktykt12122kkkkt,直线MN的方程为:121121
yyyyxxxx
,
令y=0,得211212xyxyxyy,将点M、N的坐标代入,化简后得:4xt
又2t,402t椭圆的焦点为(3,0)43t,即433t 故当433t时,MN过椭圆的焦点。 招式三:过已知曲线上定点的弦的问题 例题4、已知点A、B、C是椭圆E:22221xyab (0)ab上的三点,其中点A(23,0)是椭圆的右顶点,直线BC过椭圆的中心O,且0ACBC,2BCAC,如图。(I)求点C的坐标及椭圆E的方程;(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线3x对称,求直线PQ的斜率。 解:(I) 2BCAC,且BC过椭圆的中心O OCAC0ACBC2ACO
又A (23,0)点C的坐标为(3,3)。
A(23,0)是椭圆的右顶点,23a,则椭圆方程为:222112xyb
将点C(3,3)代入方程,得24b,椭圆E的方程为221124xy
(II) 直线PC与直线QC关于直线3x对称, 设直线PC的斜率为k,则直线QC的斜率为k,从而直线PC的方程为:
3(3)ykx,即3(1)ykxk,由223(1)3120ykxkxy消y,整理得:
222(13)63(1)91830kxkkxkk3x
是方程的一个根,
229183313Pkkxk
即2291833(13)Pkkxk同理可得:2291833(13)Qkkxk
3(1)3(1)PQPQyykxkkxk=()23PQkxxk=2123(13)kk
2222918391833(13)3(13)PQkkkkxxkk
=2363(13)kk13PQPQPQyykxx
则直线PQ的斜率为定值13。 招式四:共线向量问题 1:如图所示,已知圆MAyxC),0,1(,8)1(:22定点为圆上一动点,点P在AM上,点N在CM上,且满足NAMNPAPAM点,0,2的轨迹为曲线E. (I)求曲线E的方程;(II)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足FHFG,求的取值范围. 解:(1).0,2AMNPAPAM∴NP为AM的垂直平分线,∴|NA|=|NM| 又.222||||,22||||ANCNNMCN∴动点N的轨迹是以点 C(-1,0),A(1,0)为焦点的椭圆.且椭圆长轴长为,222a
焦距2c=2. .1,1,22bca∴曲线E的方程为.1222yx (2)当直线GH斜率存在时,设直线GH方程为,12,222yxkxy代入椭圆方程 得.230.034)21(222kkxxk得由设),,(),,(2211yxHyxG )2(216213),1(21821422212221kkxxkkkkxx则
)2,()2,(,2211yxyxFHFG又,,2121xxxx,
)21(332)21(33221)2()1(2222kk
k
.331.316214.316)21(3324,2322解得kk.131,10又 又当直线GH斜率不存在,方程为.31,31,0FHFGx)1,31[,131的取值范围是即所求 2:已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线214yx的焦点,离心率
为255.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l交椭圆C于A、B两点,交y轴于