高炉炼铁简介
- 格式:doc
- 大小:49.00 KB
- 文档页数:4
本次将高炉炼铁工艺流程分为以下几部分:一、高炉炼铁工艺流程详解二、高炉炼铁原理三、高炉冶炼主要工艺设备简介四、高炉炼铁用的原料附:高炉炉本体主要组成部分介绍以及高炉操作知识工艺设备相见文库文档:一、高炉炼铁工艺流程详解高炉炼铁工艺流程详图如下图所示:二、高炉炼铁原理炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。
炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。
生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。
高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。
这种方法是由古代竖炉炼铁发展、改进而成的。
尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。
炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。
原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。
同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
炼铁工艺流程和主要排污节点见上图。
三、高炉冶炼主要工艺设备简介高护炼铁设备组成有:①高炉本体;②供料设备;③送风设备;④喷吹设备;⑤煤气处理设备;⑥渣铁处理设备。
本次将高炉炼铁工艺流程分为以下几部分: 一、 高炉炼铁工艺流程详解二、 高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料、高炉炼铁工艺流程详解高炉炼铁工艺流程详图如下图所示:附:高炉炉本体主要组成部分介绍以及高炉操作知识料钾调控阙,-20 0V炉身V-E001C■-14001C炉腹,-leoor £小料牛 小料钟出铁口 , 900-1000V" 京铁加利面铁炉炉爆气首工艺设备相见文库文档:料风咀注,各类校珀均产生暖声:、高炉炼铁原理炼铁过程实质上是将铁从其白然形态一一矿石等含铁化合物中还原出来的过程。
铁矿石、焦炭、石炎石炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。
生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。
高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。
这种方法是由古代竖炉炼铁发展、展了改进而成的。
尽管世界各国研究发很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单, 生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。
炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锭矿等)按一定比例白高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。
原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。
同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,白渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
高炉炼铁的原理及工艺流程
高炉炼铁是钢铁生产中最常见的一种方式,其原理主要在于利用高炉内部燃烧的煤气在高温下和铁矿石发生反应,最终得到铁和炉渣两种产物,从而实现炼铁的目的。
下面将详细介绍高炉炼铁的工艺流程和部分原理。
原料准备
高炉炼铁的原料主要有三种,即铁矿石、焦炭和石灰石。
这些原料在高炉内部经过一系列的化学反应,最终生成熔融的铁和炉渣。
其中铁矿石是主要原料,焦炭用作还原剂和燃料,石灰石则用于与炉渣反应形成石灰渣。
高炉炼铁的工艺流程
1.炼铁原料的装入在炼铁过程中,将铁矿石、焦炭和石灰石按一定的
配比装入高炉中,同时通过风口进风,使炉内火焰熊熊燃烧,产生高温环境。
2.还原反应在高温下,焦炭发生还原反应,将铁矿石中的氧化铁还原
为金属铁,并释放出一定量的一氧化碳。
还原反应主要是以下几个反应:–Fe₂O₃ + 3C → 2Fe + 3CO
–Fe₃O₄ + 4C → 3Fe + 4CO
3.炉渣过程在高炉中,石灰石和炉渣发生反应,形成石灰渣,同时起
到熔化炉渣、减少粘度、保护炉壁等作用。
4.铁水的收取熔化的铁在炉底逐渐积聚形成铁水,通过铁口和排渣口
将铁水和炉渣分离,最终得到熔融的铁水。
5.炉渣处理在高炉炼铁过程中,会产生大量的炉渣,炉渣中含有较多
的有用金属成分,因此需要对炉渣进行回收和处置,以充分利用资源。
结语
高炉炼铁是钢铁生产中不可或缺的重要环节,它通过将铁矿石等原料在高温环境下进行还原反应,最终得到纯净的铁水。
虽然高炉炼铁的工艺流程复杂,但是在工程实践中已得到广泛应用,为钢铁产业的发展提供了坚实的基础。
高炉炼铁生产工艺流程简介高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。
付产品有:水渣、矿渣棉和高炉煤气等。
高炉:炼铁一般是在高炉里连续进行的。
高炉又叫鼓风炉,这是因为要把热空气吹入炉中使原料不断加热而得名的。
这些原料是铁矿石、石灰石及焦炭。
因为碳比铁的性质活泼,所以它能从铁矿石中把氧夺走,而把金属铁留下。
高炉的主要组成部分高炉炉壳:现代化高炉广泛使用焊接的钢板炉壳,只有极少数最小的土高炉才用钢箍加固的砖壳。
炉壳的作用是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷。
炉壳除承受巨大的重力外,还要承受热应力和内部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。
炉壳外形尺寸应与高炉内型、炉体各部厚度、冷却设备结构形式相适应。
炉喉:高炉本体的最上部分,呈圆筒形。
炉喉既是炉料的加入口,也是煤气的导出口。
它对炉料和煤气的上部分布起控制和调节作用。
炉喉直径应和炉缸直径、炉腰直径及大钟直径比例适当。
炉喉高度要允许装一批以上的料,以能起到控制炉料和煤气流分布为限。
炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形成料拱,并减小炉料下降阻找力。
炉身角的大小对炉料下降和煤气流分布有很大影响。
炉腰:高炉直径最大的部位。
它使炉身和炉腹得以合理过渡。
由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它和其他部位尺寸保持合适的比例关系,比值以取上限为宜。
炉腰高度对高炉冶炼过程影响不很显著,一般只在很小范围内变动。
炉腹:高炉熔化和造渣的主要区段,呈倒锥台形。
为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。
炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。
炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。
高炉炼铁:简介当今全世界几乎所有的钢材都是通过如下两种流程中的一种生产的:碱性氧气转炉炼钢(BOS) 电弧炉炼钢(EAF)"长流程" "短流程"100% 回收的废钢,固态生铁或直接还原铁75-80% 高炉铁水(生铁)20-25% 回收的废钢全球钢产量的64% (2005) 全球钢产量的33% (2005)很明显高炉炼铁仍然是为炼钢提供铁原料的主要方法。
下图说明了高炉在整个炼钢过程中的地位。
高炉使用铁矿石作为含铁原料,焦炭和煤粉作为还原剂以及石灰或石灰石作为熔剂。
高炉炼铁的主要目的是给BOS炼钢提供质量稳定的铁水。
通常炼钢厂要求铁水的条件为含硅0.3–0.7%,锰0.2–0.4%和磷0.06–0.13%,以及尽可能高的温度(出铁温度为1480-1520°C)。
一座内容积约为4500m3的现代大型高炉的炉缸直径为14-15m,高度为35m。
这样一座高炉每天能够生产10000吨铁水。
由于高炉需要消耗大量的冶金焦,因此出现了将来可替代高炉的其它炼铁工艺:用煤粉或者其它气态还原剂替代冶金焦的直接还原和熔融还原技术。
已经进行商业化生产的例子有Midrex(直接还原)和Corex(熔融还原)工艺。
高炉过程在高炉的炉腰和炉腹,热风与焦炭和煤粉发生反应生成CO和N2的混合气体。
炉内上升的混合气体与从炉顶下降的原料发生热交换和化学反应。
最后煤气从炉顶排出并且回收作为厂内的燃料。
在冶炼过程中要控制炉顶含铁原料与焦炭层厚度比以及它们的径向分布,以得到径向分布合适的煤气流。
炉料下降过程中,在高炉上部的低温区含铁原料与CO气体发生间接还原。
在高炉下部,还未反应的铁矿石与CO发生还原反应生成CO2,CO2又立即与焦炭反应生成CO,CO又用来还原氧化铁。
高炉下部高温区的整个反应步骤可以看作是铁矿石与固态C的直接还原。
被还原出的铁熔化,滴落,最后在炉缸汇聚成铁水。
然后按固定的时间间隔(一般2-5小时)打开炉墙上的铁口和渣口,排出铁水和熔渣。
高炉炼铁的原理是用文字说
高炉炼铁是一种工业生产铁的重要方法,其原理如下:
1. 原料准备:高炉炼铁的原料通常包括铁矿石、焦炭和石灰石。
铁矿石中的主要成分是氧化铁,焦炭在高温下能提供还原剂,而石灰石则用于吸收高炉中产生的杂质。
2. 充填原料:铁矿石、焦炭和石灰石按照一定比例混合后,通过高炉顶部的料斗从高炉上方依次充填入炉中。
同时,通过高炉底部的风口喷入空气,形成燃烧所需的氧气。
3. 冶炼反应:高炉内源源不断得加热,使原料逐渐升温,并发生一系列复杂的冶炼反应。
首先,焦炭燃烧产生的热量使铁矿石中的氧化铁还原为金属铁。
同时,还发生了石灰石与含硫的杂质反应,生成石膏并吸附硫。
4. 固液分离:冶炼反应产生的金属铁和石膏以液态的形式沉入高炉底部,而其他杂质则以气体的形式从高炉顶部排出。
5. 铁水采集:金属铁在高炉底部形成的液态铁水会通过铁水口流出,并收集在铁水槽中。
6. 冶炼副产物利用:高炉废气中含有大量的煤气,经过处理可以用于燃烧或发
电;同时,从废渣中提取的石膏可以用于建筑材料等领域。
高炉炼铁是一种持续的反应过程,通常需要长时间的冶炼周期。
通过控制原料投入、炉温和风量等参数,可以实现高炉炼铁的稳定与高效。
高炉炼铁生产工艺流程简介高炉炼铁是指利用高炉设备将生铁矿石还原成铁的过程。
这是一种传统的铁矿石冶炼方法,也是目前世界上主要的铁生产方式之一。
高炉炼铁生产工艺流程非常复杂,包括原料准备、炼铁过程、冶炼渣处理等多个环节。
下面我们将对高炉炼铁生产工艺流程进行简要介绍。
首先是原料准备阶段。
在高炉炼铁生产中,主要原料包括铁矿石、焦炭和石灰石。
铁矿石是铁的主要原料,通常是以赤铁矿、磁铁矿、褐铁矿等形式存在。
焦炭是还原剂,用于将铁矿石中的氧化铁还原成金属铁。
石灰石用于吸收炉渣中的硅和磷,防止其对铁质的影响。
在原料准备阶段,这些原料需要进行破碎、磨粉、混合等处理,以便于进入高炉炼铁的生产过程。
接下来是炼铁过程。
在高炉炼铁中,炼铁过程主要包括炉料下料、还原熔化和收得铁水三个阶段。
炉料下料是指将原料从高炉的料斗中加入到高炉中。
在高炉的炉腹部,焦炭在燃烧过程中产生的热量使铁矿石还原成铁,并与焦炭中的碳发生反应生成一定量的一氧化碳和二氧化碳。
这些气体在高炉中上升,与铁矿石中的氧化铁反应生成金属铁。
同时,石灰石在高炉中发挥吸收炉渣中杂质的作用。
最终,在高炉的炉底收得液态铁水和炼铁渣。
最后是冶炼渣处理阶段。
在高炉炼铁生产中,炼铁渣是不可避免的产物。
炼铁渣中含有大量的氧化铁、氧化硅、氧化铝等物质,需要进行处理。
通常情况下,炼铁渣会被输送到渣场进行堆放和冷却。
在冷却的过程中,炼铁渣中的一部分氧化铁会发生结晶,形成颗粒状的炼铁渣。
这些炼铁渣可以作为建筑材料或者水泥生产的原料,实现资源的综合利用。
总的来说,高炉炼铁生产工艺流程是一个复杂的工程系统,需要多种原料和设备协同作用。
在实际生产中,还需要考虑原料的配比、高炉的操作参数、炉渣的处理方式等多个因素。
同时,高炉炼铁生产也会产生大量的烟尘、废水和废气等污染物,对环境造成一定的影响。
因此,在高炉炼铁生产中,需要严格控制污染物排放,采取有效的治理措施,保护环境和人类健康。
总之,高炉炼铁生产工艺流程是铁矿石冶炼的重要方式,通过对原料的还原和熔化,实现了铁的生产。
高炉炼铁的基本原理与工艺流程高炉炼铁是指通过高炉设备将铁矿石转化为铁的过程。
它是现代工业生产中铁制品的主要来源之一,具有重要的经济意义。
本文将介绍高炉炼铁的基本原理与工艺流程。
一、高炉炼铁的基本原理高炉炼铁的基本原理是利用高温下的化学反应将铁矿石还原成金属铁。
在高炉中,铁矿石经过冶炼过程,通过高温和还原剂的作用,使得其中的铁氧化物被还原为金属铁,并与其他元素形成铁合金。
高炉炼铁的还原反应是一个复杂的过程,包括多个步骤。
首先,铁矿石与还原剂(一般为焦炭)在高温下发生氧化还原反应,将铁矿石中的氧气与还原剂中的碳发生反应生成一氧化碳和二氧化碳。
然后,一氧化碳与铁矿石中的铁氧化物发生反应,使其还原为金属铁。
最后,金属铁与其他元素形成铁合金。
二、高炉炼铁的工艺流程高炉炼铁的工艺流程一般包括铁矿石的预处理、炉料配制、高炉内的冶炼过程和铁水的处理等步骤。
1. 铁矿石的预处理铁矿石通常经过矿石选矿、破碎、磁选等步骤的预处理。
选矿是将原始铁矿石中的有用矿物与杂质进行分离的过程,以提高铁的品位。
破碎过程将大块的铁矿石破碎成为适合冶炼的小颗粒。
磁选则是利用磁力将磁性矿物与非磁性矿物分离。
2. 炉料配制炉料配制是将预处理后的铁矿石与还原剂(焦炭)、矿石烧结等辅助原料按照一定比例配制成为高炉的进料。
配制过程中需要根据铁矿石的品位、还原剂的质量等因素进行合理的配比,以保证炼铁过程的效果。
3. 高炉内的冶炼过程高炉内的冶炼过程是高炉炼铁的核心环节。
在高炉内,炉料由上部的料槽加入,并由炉底的鼓风口进入。
在高炉内,料层中的铁矿石与还原剂经过一系列的燃烧和还原反应,发生冶炼和还原,最终生成铁水和炉渣。
炉渣由高炉底部排出,而铁水则从高炉的铁口流出,进入下一步的处理。
4. 铁水的处理铁水是高炉炼铁的产物之一,但其中含有一定的杂质,需要进行进一步的处理。
首先,通过除渣工艺将铁水中的炉渣分离出去,得到较为纯净的铁水。
然后,将铁水进行调质处理,加入适量的合金等元素,以调整铁的成分和性能,得到所需的铁产品。
高炉炼铁的原理高炉是一种用于冶炼铁矿石的设备,其工作原理涉及多种物理和化学过程。
在高炉内,铁矿石经过一系列复杂的化学反应和物理变化,最终得到铁和炼渣。
本文将介绍高炉炼铁的原理,包括高炉的结构和工作过程,以及其中涉及的主要化学反应和物理变化。
高炉的结构。
高炉通常由筒体、鼓风装置、炉缸、炉喉、炉嘴等部分组成。
筒体是高炉的主体,通常为圆柱形,内部衬有耐火材料。
鼓风装置用于向高炉内送风,提供氧气以促进燃烧和矿石的还原。
炉缸是炼铁的主要区域,铁矿石在这里经历多种化学反应和物理变化。
炉喉和炉嘴用于排出炉内的炼铁产物和废气。
高炉的工作过程。
高炉的工作过程可以分为炉料下料、燃料燃烧、还原反应和炼铁产物的收集等阶段。
首先,铁矿石、焦炭和石灰石等炉料通过炉顶装料口加入高炉内。
随后,鼓风装置向高炉内送风,燃烧炉料中的焦炭,产生高温,使铁矿石发生还原反应,释放出铁和炼渣。
最后,炼铁产物通过炉嘴排出,并进行相应的处理和收集。
化学反应和物理变化。
在高炉内,铁矿石经历多种化学反应和物理变化。
其中,最主要的是还原反应和熔融过程。
还原反应是指铁矿石中的氧化铁在高温下与焦炭发生化学反应,生成金属铁和一氧化碳。
熔融过程则是指金属铁和炼渣在高温下熔化,并分层排出。
此外,高炉内还伴随着多种气相和固相的物质传递和转化,如煤气的生成和石灰石的分解等。
总结。
高炉炼铁的原理涉及多种物理和化学过程,包括炉料的加入、燃料的燃烧、还原反应和炼铁产物的收集等阶段。
在高炉内,铁矿石经历多种化学反应和物理变化,最终得到铁和炼渣。
通过深入了解高炉炼铁的原理,可以更好地指导高炉的操作和优化,提高炼铁效率和质量。
高炉炼铁的主要成分高炉炼铁是一种常见的冶炼工艺,用于将铁矿石转化为纯净的铁。
其主要成分包括铁矿石、焦炭和石灰石。
铁矿石是高炉炼铁的主要原料,它是一种含有铁元素的矿石。
常见的铁矿石有赤铁矿、磁铁矿和褐铁矿等。
铁矿石中的铁元素占据了主要成分,通常含有60%以上的铁。
不同种类的铁矿石含有不同的杂质,如硅、铝、锰等。
焦炭是高炉炼铁的还原剂,它是由煤炭经过高温煅烧得到的一种炭质材料。
焦炭中的碳含量较高,能够与铁矿石中的氧发生化学反应,将铁矿石中的铁元素还原出来。
焦炭的主要成分是碳,含有少量的氢、氧、氮等元素。
焦炭的质量和炭素含量对高炉冶炼的效果有重要影响。
石灰石是高炉炼铁中的一种熔剂,它能够降低铁矿石的熔点,促进铁的析出。
石灰石主要成分是氧化钙(CaO),它在高温下能够与铁矿石中的硅和铝发生反应,生成容易熔化的矽酸钙和铝酸钙等化合物。
石灰石还能够吸收一部分硫和磷等有害元素,净化冶炼过程中的金属。
除了上述主要成分外,高炉炼铁还需要一些辅助剂和助剂。
辅助剂主要用于改善铁矿石的还原性能和熔化性能,如助熔剂、还原剂等。
助剂主要用于调节高炉内的气氛和温度,如风口、鼓风机等。
高炉炼铁的工艺过程包括矿石预处理、炉料配制、还原熔化和铁水处理等步骤。
首先,铁矿石经过破碎、筛分等处理,得到适合高炉冶炼的矿石块。
然后,将铁矿石、焦炭和石灰石按一定比例混合成炉料。
炉料经过炉顶装料口进入高炉的上部,通过鼓风机吹入空气,使焦炭燃烧产生高温燃烧气。
高温燃烧气从炉底进入高炉,与炉料中的铁矿石发生还原反应和熔化反应,生成液态铁和矿渣。
最后,液态铁从高炉底部的铁口流出,经过一系列处理,得到纯净的铁产品。
高炉炼铁是一种高温、高压的冶炼过程,需要一定的工艺控制和设备支持。
通过合理控制炉料配比、炉内气氛和温度等参数,可以提高高炉的冶炼效率和产品质量。
同时,高炉炼铁还会产生大量的炉渣、煤气等副产品,需要进行综合利用和环境保护。
高炉炼铁的主要成分包括铁矿石、焦炭和石灰石。
高炉炼铁简介高炉炉前出铁高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。
在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。
炼出的铁水从铁口放出。
铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。
产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
简史和近况早期高炉使用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改冷风为热风(见冶金史)。
20世纪初高炉使用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速发展。
20世纪初美国的大型高炉日产生铁量达450吨,焦比1000公斤/吨生铁左右。
70年代初,日本建成4197立方米高炉,日产生铁超过1万吨,燃料比低于500公斤/吨生铁。
中国在清朝末年开始发展现代钢铁工业。
1890年开始筹建汉阳铁厂,1号高炉(248米,日产铁100吨)于1894年5月投产。
1908年组成包括大冶铁矿和萍乡煤矿的汉冶萍公司。
1980年,中国高炉总容积约8万米,其中1000米以上的26座。
1980年全国产铁3802万吨,居世界第四位。
高炉炼铁面临淘汰中国钢铁业急需升级换代高炉炼铁技术,适合于那些工业化初步发展的国家,生产大路货、初级钢材,但在发达国家,高炉技术正面临淘汰。
电炉技术炼钢是当今世界趋势。
电炉炼铁可以提升钢材质量和特殊性能,减少原材料和电力等的浪费。
在订单经济时代,生产要根据市场需求变化,但高炉炼铁技术周期长,生产产品低级,且生产的产品还需要一道甚至更长的加工链条。
电炉炼钢则可缩短钢材冶炼周期,可根据订单安排生产,原材料和动力资源浪费少,不再如高炉炼铁那样存在大量的产品积压情况。
当今社会进入材料时代后,市场需要的钢材不再是传统的材料,高炉炼铁生存空间更大为缩小,且附加值很低,以中国钢铁业为例,全国钢铁产业利润还不如开采铁矿的赚钱,原因就是因为高炉炼铁技术低级落后,不能生产高附加值产品。
我们固然赞美中国钢铁业对国家的贡献,但不能躺在功劳薄上睡大觉,高炉炼铁技术已经进入死胡同。
作为世界上第一钢铁生产大国,世界铁矿第一进口大国,世界钢铁业初级钢材第一出口大国,世界钢铁第一进口大国,世界钢铁产业人数最多的国家,世界钢铁厂最多的国家,中国必须认真思考中国钢铁业的下一步发展战略。
不能以推动就业为借口,把钢铁业的发展寄托在国家的巨型投资拉动钢铁业的繁荣,而要认真的思考减少污染,提高产品附加值和适应市场的实际需求,实现钢铁业的产业升级,效益升级。
编辑本段主要产铁国家产量和技术经济指标70年代末全世界2000立方以上高炉已超过120座,其中日本占1/3,中国有四座。
全世界4000立方以上高炉已超过20座,其中日本15座,中国有1座在建设中。
50年代以来,中国钢铁工业发展较快,高炉炼铁技术也有很大发展,主要表现在:①综合采用精料、上下部调剂、高压炉顶、高风温、富氧鼓风、喷吹辅助燃料(煤粉和重油等)等强化冶炼和节约能耗新技术,特别在喷吹煤粉上有独到之处。
1980年中国重点企业高炉平均利用系数为1.56吨/(米·日),焦比为539公斤/吨生铁;②综合利用含钒钛的铁矿石取得了突破性进展,含稀土的铁矿石的利用也取得了较大的进展。
高炉冶炼主要技术经济指标,分述如下:高炉利用系数每立方米高炉有效容积一昼夜生产生铁的吨数,是衡量高炉生产效率的指标。
比如1000立方高炉,日产2000吨生铁,则利用系数为2吨/(米·日)。
焦比每炼一吨生铁所消耗的焦炭量,用公斤/吨生铁表示。
高炉焦比在80年代初一般为450~550公斤/吨生铁,先进的为380~400公斤/吨生铁。
焦炭价格昂贵,降低焦比可降低高炉炼铁生铁成本。
燃料比高炉采用喷吹煤粉、重油或天然气后,折合每炼一吨生铁所消耗的燃料总量。
每吨生铁的喷煤量和喷油量分别称为煤比和油比。
此时燃料比等于焦比加煤比加油比。
根据喷吹的煤和油置换比的不同,分别折合成焦炭(公斤),再和焦比相加称为综合焦比。
燃料比和综合焦比是判别冶炼一吨生铁总燃料消耗量的一个重要指标。
冶炼强度每昼夜高炉燃烧的焦炭量与高炉容积的比值,是表示高炉强化程度的指标,单位为吨/(米·日)。
休风率休风时间占全年日历时间的百分数。
降低休风率是高炉增产的重要途径一般高炉休风率低于2%。
生铁合格率化学成分符合规定要求的生铁量占全部生铁产量的百分数,是评价高炉优质生产的主要指标。
生铁成本是从经济方面衡量高炉作业的指标。
编辑本段主要工艺设备简介高炉横断面为圆形的炼铁竖炉。
用钢板作炉壳,壳内砌耐火砖内衬。
高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸5部分。
由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产效率高,能耗低等优点,故这种方法生产的铁占世界铁总产量的绝大部分。
高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。
在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳,在炉内上升过程中除去铁矿石中的氧、硫、磷,还原得到铁。
炼出的铁水从铁口放出。
铁矿石中未还原的杂质(主要为脉石SiO2)和石灰石等熔剂结合生成炉渣(主要为CaSiO3等),从渣口排出。
产生的煤气从炉顶排出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
高炉冶炼的主要产品是生铁,还有副产高炉渣和高炉煤气。
高炉热风炉热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。
提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。
理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。
铁水罐车铁水罐车用于运送铁水,实现铁水在脱硫跨与加料跨之间的转移或放置在混铁炉下,用于高炉或混铁炉等出铁。
编辑本段相关知识炼铁的原理(怎样从铁矿石中炼出铁)用还原剂将铁矿石中的铁氧化物还原成金属铁。
铁氧化物(Fe2O3、Fe3O4、FeO)+还原剂(C、CO、H2)铁(Fe)反应的化学方程式分别为Fe2O3+3CO=2Fe+3CO2,Fe3O4+4CO=3Fe+4CO2等炼铁的方法(1)直接还原法(非高炉炼铁法)(2)高炉炼铁法(主要方法)编辑本段原料及其作用(1)铁矿石:(一般为赤铁矿、磁铁矿)提供铁元素。
冶炼一吨铁大约需要1.5—2吨矿石。
(2)焦炭:提供热量;提供还原剂;作料柱的骨架。
冶炼一吨铁大约需要500Kg焦炭。
反应方程式C(焦炭)+O2=CO2 C焦炭+CO2=2CO (3)熔剂:(石灰石、白云石、萤石)使炉渣熔化为液体;去除有害元素硫(S)、除去杂质(4)空气:为焦碳燃烧提供氧、提供热量编辑本段安全操作规程1 高炉内衬耐火材料、填料、泥浆等,应符合设计要求,且不得低于国家标准的有关规定。
2 风口平台应有一定的坡度,并考虑排水要求,宽度应满足生产和检修的需要,上面应铺设耐火材料。
3 炉基周围应保持清洁干燥,不应积水和堆积废料。
炉基水槽应保持畅通。
4 风口、渣口及水套,应牢固、严密,不应泄漏煤气;进出水管,应有固定支撑;风口二套,渣口二、三套,也应有各自的固定支撑。
5 高炉应安装环绕炉身的检修平台,平台与炉壳之间应留有间隙,检修平台之间宜设两个走梯。
走梯不应设在渣口、铁口上方。
6 为防止停电时断水,高炉应有事故供水设施。
7 冷却件安装之前,应用直径为水管内径0.75~0.8倍的球进行通球试验,然后按设计要求进行水压试验,同时以0.75kg的木锤敲击。
经10min的水压试验无渗漏现象,压力降不大于3%,方可使用。
8 炉体冷却系统,应按长寿、安全的要求设计,保证各部位冷却强度足够,分部位按不同水压供水,冷却器管道或空腔的流速及流量适宜。
并应满足下列要求:——冷却水压力比热风压力至少大0.05MPa;——总管测压点的水压,比该点到最上一层冷却器的水压应至少大0.1MPa;——高炉风口、渣口水压油设计确定;——供水分配管应保留足够的备用水头,供高炉后期生产及冷却器由双联(多联)改为单联时使用;——应制定因冷却水压降低,高炉减风或休风后的具体操作规程。
9 热电偶应对整个炉底进行自动、连续测温,其结果应正确显示于中控室(值班室)。
采用强制通风冷却炉底时,炉基温度不宜高于250℃;应有备用鼓风机,鼓风机运转情况应显示于高炉中控室。
采用水冷却炉底时,炉基温度不宜高于200℃。
10 采用汽化冷却时,汽包应安装在冷却器以上足够高的位置,以利循环。
汽包的容量,应能在最大热负荷下1h内保证正常生产,而不必另外供水。
11 汽包的设计、制作及使用,应遵守下列规定:——每个汽包应有至少两个安全阀和两个放散管,放散管出口应指向安全区;——汽包的液位、压力等参数应准确显示在值班室,额定蒸发量大于4t/h时,应装水位自动调节器;蒸发量大于2t/h时,应装高、低水位警报器,其信号应引至值班室;——汽化冷却水管的连接不应直角拐弯,焊缝应严密,不应逆向使用水管(进、出水管不能反向使用);——汽化冷却应使用软水,水质应符合GB1576的规定。