认知无线电中及其频谱感知技术研究_ppt
- 格式:ppt
- 大小:268.00 KB
- 文档页数:14
基于认知无线电的频谱感知与分配技术研究频谱感知与分配是认知无线电领域中的关键技术之一。
在无线通信技术不断发展的今天,频谱资源的紧张和利用效率的提高成为了一个重要的问题。
通过认知无线电的频谱感知与分配技术,可以充分利用已有的频谱资源,并实现频谱资源的高效分配。
本文将着重探讨基于认知无线电的频谱感知与分配技术的研究现状和发展方向。
首先,我们需要了解认知无线电的概念和原理。
认知无线电是一种能够感知和识别频谱环境的无线电技术。
它通过感知周围的频谱环境,了解当前频谱资源的使用情况,并根据这些信息进行频谱资源的分配和管理。
认知无线电主要包括感知模块、推理模块和决策模块三部分。
感知模块负责感知周围的频谱环境,推理模块通过推理和判断分析感知结果,决策模块根据推理结果制定相应的频谱分配策略。
频谱感知是认知无线电的核心技术之一。
它通过感知网络中不同节点使用的频谱资源,实时掌握频谱资源的使用情况。
频谱感知可以分为无感知和有感知两种模式。
无感知模式下,节点只能感知到自身使用的频谱资源情况;有感知模式下,节点不仅能感知到自身使用的频谱资源情况,还能感知到周围节点的频谱资源使用情况。
频谱感知技术的目标是实现对频谱资源的精确感知,包括频谱利用率、干扰水平、信号质量等信息。
频谱分配是认知无线电的另一个重要技术。
频谱分配的目标是根据感知到的频谱资源使用情况,合理地分配频谱资源给不同的用户和应用。
频谱分配涉及到资源的动态分配和动态共享。
主要的频谱分配策略包括频段分配、功率分配、时隙分配等。
频谱分配技术需要考虑到多种因素,包括频谱资源的利用效率优化、网络性能优化、功耗控制、干扰控制等。
基于认知无线电的频谱感知与分配技术面临着一些挑战和难题。
首先,频谱感知的准确性和实时性是一个重要的问题。
由于环境的复杂性和多样性,频谱感知往往受到多种干扰和噪声的影响。
为了提高频谱感知的准确性和实时性,需要设计先进的感知算法和信号处理方法。
其次,在频谱分配中需要考虑到多种用户和应用的需求。
无线电频谱感知技术研究无线电频谱感知技术(Radio spectrum sensing technology)是一种能够对当前环境中的无线电频谱进行实时监测和感知的技术。
在无线通信系统中,频谱是一种十分重要的资源,但是由于无线电频谱的有限性和复杂性,频谱的利用效率一直是无线通信系统的瓶颈之一。
因此,频谱感知技术的使用对于提高无线通信系统的频谱利用效率和性能至关重要。
频谱感知技术的主要目标是通过对无线电频谱进行实时监测和分析,以获得当前环境下的频谱使用情况。
通过感知到的频谱信息,无线通信系统可以根据实际情况进行频谱资源的分配和管理,避免频谱的冲突和争夺,提高系统的容量和可靠性。
频谱感知技术主要包括两个关键环节:频谱检测和频谱识别。
频谱检测是指通过对频谱信号进行实时采样和处理,来检测是否存在较强的信号传输。
一般采用能量检测和周期检测等方法来实现频谱检测。
频谱识别是指通过对检测到的信号进行分析和处理,来判断信号的类型和属性。
常用的频谱识别方法包括周期识别、功率谱密度估计和模式识别等。
频谱感知技术的研究主要集中在以下几个方面:首先,频谱感知技术需要解决的一个重要问题是如何精确地感知到当前环境中的频谱信息。
由于无线电频谱是一个动态变化的环境,有时信号非常微弱,有时信号强度很大,因此如何准确、快速地感知到频谱信号是一个挑战。
目前,有很多成熟的频谱感知算法和技术被提出来,包括基于能量检测的方法、基于周期性的方法和基于功率谱密度估计的方法等。
通过采用合适的感知算法和技术,可以使系统能够实时监测并反馈当前频谱使用情况,从而合理分配频谱资源。
其次,频谱感知技术需要解决的另一个重要问题是如何准确地识别感知到的频谱信号。
不同类型的无线电信号具有不同的特点和属性,因此准确地识别信号类型对于频谱感知至关重要。
传统的频谱识别方法主要依赖于专家经验和手动设置的规则,其性能受限。
近年来,随着机器学习和模式识别等技术的发展,基于机器学习的频谱识别方法逐渐成为研究的热点。
1 引言美国联邦通信委员会以及其他国家的大量研究表明,传统的固定频谱分配方式导致了大部分现有频段的低利用率[1]。
作为可充分利用但未被完全使用的频谱技术,认知无线电有着巨大的吸引力,被广泛认为是下一代无线通信的重大变革。
近几年,大量专家学者在认知无线电领域进行了广泛的学术和应用方案研究。
认知无线电的基本思路是进行频谱再利用和频谱共享,当授权用户未完全使用授权频段时,使认知用户(网络)可以利用授权用户频段进行通信。
为了达到这个目的,认知用户必须持续进行频谱感知来检测授权用户的存在状态,以合理充分地使用授权频段。
检测感兴趣频段是否处于空闲状态是应用认知无线电技术的重要前提,只有高效准确地进行频谱检测,才能进一步有效利用频谱资源,因此频谱资源检测决定着其他环节的实施。
频谱检测主要有两个任务:第一,检测感兴趣的频段是否存在授权用户信号,判断频段是否处于空闲状态,从而决定该频段是否可用,这个任务的完成必须具备较高的可靠性;第二,认知用户的频谱接入权比授权用户低,因此要在使用该授权频段的同时持续检测外部环境,一旦发现授权用户再次出现,认知用户必须在最短时间内检测到其出现并腾出信道,因此检测的速度非常重要。
2 基本检测方法目前,最基本的检测方法包括:匹配滤波器检测法,能量检测法,循环平稳特征检测法等。
认知无线电频谱感知技术研究*朱 辉 刘仕奇 胡斌杰 华南理工大学电子与信息学院【摘 要】认知无线电是一种可以提高频谱利用率的智能技术,高效而准确的频谱检测是其实施的关键。
文章在充分调研国内外研究进展的基础上,介绍了认知无线电的概念、基本的信号检测方法以及多天线与协作检测方法,并对各种检测方案进行比较和分析,最后指出现实中频谱检测的难点和面临的挑战。
【关键词】认知无线电 频谱检测 认知用户 授权用户收稿日期:2011-04-23*本项目得到NSFC-广东省联合基金重点项目(U1035002)、NSFC-NSAF联合基金(10976010)、国家科技重大专项(2009ZX03006-003)的资助2.1 匹配滤波器检测匹配滤波器是一种比较常用的信号检测方法,能最大化接收信号的信噪比,可以在短时间内完成同步提高信号的处理增益。
认知无线电网络中的频谱感知与共享技术研究认知无线电网络(CRN)是一种新兴的无线通信技术,其核心思想是能够对无线频谱进行感知和共享,以提高频谱利用效率。
频谱感知是CRN中非常重要的技术,它使设备能够实时监测和分析周围的频谱使用情况。
本文将探讨在CRN中频谱感知与共享技术的研究进展及挑战。
首先,频谱感知的关键是设备能够准确地识别可用的频谱资源。
通过感知技术,设备能够获取频率、时间和空间等信息,并分析现有频谱的利用情况。
常见的感知方法包括能量感知、周期感知、特征感知等。
其中,能量感知是最广泛应用的一种方法,其通过测量接收信号的能量强度来判断频谱是否被占用。
周期感知则是利用周期性的信号特征,如脉冲、载波等,判断频谱是否被占用。
特征感知则是利用频谱的一些特征,如频谱特性、时频权利等,来识别频谱的占用情况。
这些感知方法可以单独应用,也可以结合使用,以提高感知的准确性和可靠性。
在CRN中,频谱感知的关键挑战之一是信号的干扰和噪声。
由于无线环境的复杂性,设备在感知频谱时往往会受到其他设备的干扰,以及附近信道的噪声干扰。
为了应对这种挑战,研究者们提出了一些解决方案。
例如,自适应感知算法可以根据环境的变化自动调整感知参数,以适应不同的干扰和噪声条件。
此外,多传感器融合技术也可以利用多个感知设备的观测结果,提高感知的精度和鲁棒性。
频谱共享是CRN中另一个重要的技术,它允许设备共享已经被感知到的未被使用的频谱资源。
在频谱共享中,设备需要遵循一定的共享规则和约束,以避免互相干扰和冲突。
常见的频谱共享方式包括时分共享、频分共享、码分共享等。
在时分共享中,不同设备在时间上交替使用频谱资源。
在频分共享中,不同设备在频率上分割使用频谱资源。
在码分共享中,不同设备通过使用不同的码字来区分自己的信号。
这些共享方式旨在提高频谱利用效率和系统容量,同时降低设备之间的干扰。
然而,频谱共享也面临一些挑战。
其中之一是频谱资源的不均衡分布。
在现实环境中,不同区域和时间段的频谱资源分布不均匀,存在一些频谱空洞和利用率较低的区域。
认知无线电的频谱感知技术研究认知无线电的频谱感知技术研究类别:通信网络0 引言随着无线通信业务的增长,可利用的频带日趋紧张,频谱资源匾乏的问题日益严重。
世界各国现行的频率使用政策除分配极少的ISM频段之外,大多采用许可证制度。
而获得许可的用户,并非全部都是全天候占用许可频段,一些频带部分时间内并没有用户使用,另有一些偶尔才被占用,即使系统频谱使用率低,仍无法将空间的频谱分配给其他系统使用,即无法实现频谱共享。
怎样才能提高频谱利用率,在不同区域和不同时间段里有效地利用不同的空闲频道,成为人们非常关注的技术问题。
为了解决该问题,Joseph Mito1a于1999年在软件无线电的基础上提出了认知无线电(Cognitive Radio,简称CR)的概念,要实现动态频谱接入,首先要解决的问题就是如何检测频谱空穴,避免对主用户的干扰,也就是频谱感知技术。
CR用户通过频谱感知检测主用户是否存在,从而利用频谱空穴。
1 匹配滤波器检测(Matched Filtering) 匹配滤波器是一种最优的信号检测法,因为在输出端它能够使信号的信噪比达到最大。
匹配滤波器最大的优点就是能够在短时间里获得高处理增益。
但是使用匹配滤波器进行信号检测必须知道被检测的主用户信号的先验知识,比如调制方式、脉冲波形、数据包格式等,如果这些信息不准确就会严重影响其性能,同时匹配滤波器计算量也较大。
因此它可以用来检测一些特定的信号,但是每类主用户认知无线电都要有一个专门的接收器,这就增加了系统的资源耗费量和复杂度。
2 能量检测(Energy Detector—Based Sensing) 能量检测是一种较简单的信号非相干检测方法。
根据基本假设模型,在高斯加性白噪声(AWGN)信道情况下,采用能量检测法进行主用户信号检测的性能。
在AWGN信道非衰落的环境中,可知信道增益h是确定的。
在H1下,当接收到的信号超过判决门限入时,判断主用户信号存在。
认知无线电中频谱感知技术的研究进展无线通信发展所面临的瓶颈之一就是频谱资源的不足,造成这一问题的主要原因是:一方面,当前普遍采用的静态频谱管理体制留给新系统、新业务的可用资源非常少;另一方面,据美国联邦通信委员会(FCC)研究表明,频谱的使用情况是动态变化的,大部分时段和空间的频谱利用率非常低。
构建以认知无线电技术为核心的动态频谱管理体制,可以从根本上缓解频谱资源紧张的局面。
认知无线电(CR)概念由Joseph Mitola博士提出,其主导思想是实现伺机的动态频谱接入,即非授权用户(也称次用户或认知用户)通过检测,机会性地接入已分配给授权用户(或主用户)但暂时很少使用甚至未被使用的空闲频段,一旦主用户重新接入该频段,次用户迅速腾出信道。
这种技术需解决的首要问题就是如何快速准确地获取授权频谱的使用情况,目前主要有3类解决方案:建立数据库档案、传送信标信号和频谱感知。
表1从多个方面对3种方案进行了比较,其中频谱感知方案因具有建设成本低、与现有主系统的兼容性强等突出优点,得到了大多数研究学者的认同;另外两种由于受到政治、经济等因素的制约而很难实现,对其研究相对较少。
频谱感知技术是指认知用户通过各种信号检测和处理手段来获取无线网络中的频谱使用信息。
从无线网络的功能分层角度看,频谱感知技术主要涉及物理层和链路层,其中物理层主要关注各种具体的本地检测算法,而链路层主要关注用户间的协作以及对感知机制的控制与优化。
因此,目前频谱感知技术的研究大多数集中在本地感知、协作感知和感知机制优化3个方面。
文章正是从这3个方面对频谱感知技术的最新研究进展情况进行了总结归纳,分析了主要难点,并在此基础上讨论了下一步的研究方向。
1 本地感知技术1.1 主要检测算法本地频谱感知是指单个认知用户独立执行某种检测算法来感知频谱使用情况,其检测性能通常由虚警概率以及漏检概率进行衡量。
比较典型的感知算法包括:能量检测算法,其主要原理是在特定频段上,测量某段观测时间内接收信号的总能量,然后与某一设定门限比较来判决主信号是否存在。