直角坐标系经典综合练习题
- 格式:doc
- 大小:344.00 KB
- 文档页数:4
初二独立练习满分 100 分第一卷( 60 分)一、选择题:(每题 2 分,共 20 分)1.若点 P(a,b)到x轴的距离是 2 ,到 y 轴的距离是 3,则这样的点P 有()A. 1个B. 2个C. 3个D.4个2.已知点 A( 2,- 2),假如点 A 对于 x 轴的对称点是B,点 B 对于原点对称点是C,那么点 C 的坐标是()A. (2,2)B. (- 2, 2)C. (- 1,- 1)D. (- 2,- 2)3.若点 P( 1m ,m )在第二象限,则以下关系正确的选项是()A. 0 m 1B.m 0C.m 0D.m 14.如图,若在象棋盘上成立直角坐标系,使“帥”位于点( -1,-2 ),“馬”位于点(2, -2 ),则“兵”位于点()A.( -1,1 )B.(-2 ,-1 )C.(-3,1 )D. ( 1,-2 )5.已知坐标平面内点M(a,b) 在第三象限,那么点N(b,- a) 在()A.第一象限B.第二象限C.第三象限D.第四象限6.若点 P( x,y )的坐标知足xy=0(x≠ y) ,则点 P()yA.原点上 B . x 轴上 C . y 轴上 D .x 轴上或 y 轴上7.如图,在平面直角坐标系中,平行四边形 OABC的极点 O、A、 C 的坐标分别是( 0, 0)、( 5, 0)、( 2,3),则极点B 的坐标是()CF BO G A E xA、( 3, 7) B 、( 5, 3) C、( 7, 3) D 、( 8, 2)8.线段 CD是由线段 AB 平移获得的 . 点 A(– 1,4)的对应点为 C( 4,7),则点 B(– 4,– 1 )的对应点 D 的坐标为()A. (2,9)B. (5,3)C. ( 1,2)D. (-9,-4)9.已知△ ABC的面积为 3,边 BC长为 2,以 B 原点, BC所在的直线为 x 轴,则点 A 的纵坐标为()A. 3B.- 3C.6 D. ±310.如图,已知直角坐标系中的点A,点 B 的坐标分别为A( 2,4),B( 4,0),且 P 为 AB的中点,若将线段 AB向右平移 3 个单位后,与点 P 对应的点为 Q,则点 Q的坐标为()A. (3,2)B. ( 6,2)C.(6,4)D.(3, 5)二、填空题:(每题 2 分,共20 分)11.已知两点P1,2、P3,6,那么 P P长为- 1 -12.点 A( 5 ,7 )到原点的距离是.点A 在第二象限,它到x轴、y轴的距离分别是 3 、2,则点A坐标是;1314.已知点 A(1,2),AC ∥ X 轴 , AC=5, 则点 C的坐标是 _____________.15.当 b=______时 , 点 B(3,|b-1|) 在第一 . 三象限角均分线上 .16.假如点 P( m+3, m+1)在直角坐标系的 x 轴上,则点 P 的坐标为 _________17.点 A (-3,4),点B在座标轴上,且AB=5,那么点B坐标为18.假如点A(0,0),B(3,0),点C在y轴上,且ABC 的面积是5,C点坐标为.19. 正方形 ABCD在平面直角坐标系中的地点如下图,已知 A 点的坐标( 0,4),B 点的坐标(- 3, 0),则 C 点的坐标是.20.如图,△ DEF是由△ ABC绕着某点旋转获得的,则这点的坐标是.第19题三、解答题:A21.对于边长为 6 的正△ ABC,成立适合的直角坐标系,并在图上注明各个极点的坐标 .B C22. 如图,方格纸中有一条漂亮可爱的小金鱼.( 1)在同一方格纸中,画出将小金鱼图案上每一个点的横坐标乘以-1 ,而纵坐标不变后获得的图案;( 4 分)( 2)在同一方格纸中,在y轴的右边,将原小金鱼图案上全部的点的坐标以同样的规律进行变化,使图案的形状不变,而且对应线段放大为本来的 2 倍,画出放大后小金鱼的图案,并简述你将点的坐标进行了如何的变化.( 6 分)x第二卷( 40 分)一、(每 4 分,共 16 分)1. 随意数x,点P( x,x22x) 必定不在()..A.第一象限B.第二象限C.第三象限D.第四象限2.如的坐平面上有一正五形ABCDE,此中C、D 两点坐分 (1,0) 、(2,0) .若在没有滑的状况下,将此正五形沿着x 向右,程中,以下会(75 , 0)的点是()A.AB.BC.CD.D3. 在一次夏令活中,小霞同学从地 A 点出,要到距离 A 点1000 m 的C地去,先沿北偏70 方向抵达B地,而后再沿北偏西20方向走了500 m抵达目的地 C ,此小霞在地 A 的()A.北偏C.北偏2040方向上 B.北偏30方向上方向上 D.北偏西30方向上4.在直角坐系中,我把横、坐都是整数的点叫做整点.且定,正方形的内部不包括界上的点.察如所示的中心在原点、一平行于 x 的正方形:1的正方形内部有 1 个整点,2 的正方形内部有 1 个整点,3的正方形内部有 9 个整点,⋯ 8的正方形内部的整点的个数()A. 64.B. 49.C.36.D. 25.二、填空(每 4 分,共 20 分)5.在直角坐平面内的机器人接受指令“, A”(≥, 0< A <180)后的行果:在原地旋 A 后,再向正前面沿直行走. 若机器人的地点在原点,正前方为 y 轴的负半轴,则它达成一次指令2,60后地点的坐标为6. 已知点P1,0 ,O为原点, POQ150 ,PQ 2,则点 Q 坐标为7.如图,在平面直角坐标系中有一矩形 ABCD,此中yE(0,0),B(8,0),C(0,4,)若将△ ABC沿 AC所在直线翻折 , 点 B 落在点D CE 处 , 则 E点的坐标是 __________.A B8. 如图,将正六边形放在直角坐标系中中心与坐标原点重合,若A点的坐标为( -1,0) ,则点 C 的坐标为 ______.9. 已知:如图, O为坐标原点,四边形OABC为矩形, A(10 , 0) ,C(0, 4) ,点 D 是 OA的中点,点P 在 BC上运动,当△ODP是腰长为 5 的等腰三角形时,则P 点的坐标为.三、解答题(24 分)1.( 12 分)已知在平面直角坐标系中点A( -3,4 ),O为坐标原点,点 P 为坐标轴上一点,且PAO 为等腰三角形,请你画出草图并在图上注明点P 的坐标(不写过程)。
《平面直角坐标系》练习题班别:___________姓名:_______________一、选择题1. 若m<0,则点P(3,2m)所在的象限是 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 点 M(3,-4)关于x轴的对称点的坐标是 ( )A. (3,4)B. (−3,−4)C. (−3,4)D. (−4,3)3.P(a,b) 是第二象限内一点,则Q(b,a) 位于 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列说法:①坐标轴上的点不属于任何象限;②y轴上点的横坐标为0;③平面直角坐标系中,(1,2) 和 (2,1) 表示两个不同的点;④点(3,0) 在x轴上,其中你认为正确的有 ( )A. 1个B. 2个C. 3个D. 4个5. 若点A(3−m,n+2)关于原点的对称点B的坐标是(−3,2),则m,n的值为 ( )A. m=−6,n=−4B. m=0,n=−4C. m=6,n=4D. m=6,n=−46. 已知点A(−3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是 ( )A. (−3,3)B. (3,−3)C. (−3,3)或(−3,−3)D. (−3,3)或(3,−3)7. 定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是 ( )A. 2B. 1C. 4D. 38. 若点P(a,b)在第四象限,则点Q(b,−a)所在的象限为 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,⋯,这样依次得到点A1,A2,A3,⋯,A n,⋯.例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),⋯;若点A1的坐标为(a,b),则点A2015的坐标为 ( )A. (−b+1,a+1)B. (−a,−b+2)C. (b−1,−a+1)D. (a,b)10. 在平面直角坐标系中,把点P(−3,2)绕原点O顺时针旋转180∘,所得到的对应点Pʹ的坐标为 ( )A. (3,2)B. (2,−3)C. (−3,−2)D. (3,−2)11. 在平面直角坐标系中,点A(−2,1)与点B关于原点对称,则点B的坐标为 ( )A. (−2,1)B. (2,−1)C. (2,1)D. (−2,−1)12. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是A. (13,13)B. (−13,−13)C. (14,14)D. (−14,−14)二、填空题13. 平面直角坐标系中,点(−3,4)关于y轴对称的点的坐标是.14. 点P在第二象限内,P 到x 轴的距离是1,到y轴的距离是2,那么点P的坐标为.15. 在平面直角坐标系中,已知A(−1,0),B(3,0),点C在y轴上,△ABC的面积是4,则点C的坐标是.16. 点P(3−a,a−1)在y轴上,则点Q(2−a,a−6)在第象限.17. 如图,长方形ABCD中,A(−4,1),B(0,1),C(0,3),则D点坐标是,长方形的面积为.18. 如图所示,在平面直角坐标系中,横坐标、纵坐标都为整数的点为整点,观察图形中的每一个正方形(实线)四条边上的整点的个数,请你猜想由里向外第100个正方形(实线)四条边上的整点共有个.三、解答题19. 将边长为1的正方形ABCD放在直角坐标系中,使C的坐标为(12,12 ).请建立直角坐标系,并求其余各点的坐标.20. 已知点M(3a−8,a−1).(1) 若点M在第二、四象限角平分线上,则点M的坐标为.(2) 若点M在第二象限;并且a为整数,则点M的坐标为.(3) 若N点坐标为(3,−6),并且直线MN∥x轴;则点M的坐标为.21. 已知点P(a−3,2a+1),且点P到两坐标轴的距离相等,求点P的坐标.22. 四边形ABCD各顶点的位置如图所示,求四边形ABCD的面积.23. 如图,△AOB的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1) 求△AOB的面积;(2) 若O,A两点的位置不变,且P点在y轴正半轴,若S△OAP=2S△OAB,求P点的坐标;(3) 若B,O两点的位置不变,M点在x轴上,M点在什么位置时,S△OBM=2S△OAB第17题答案第一部分1. D2. A3. D4. D5. B6. C7. C8. C9. B 10. D 11. B 12. C第二部分13. (3,4)14. (−2,1)15. (0,2)或(0,−2)16. 三17. (−4,3);818. 400第三部分19. 如图,A(−12,−12),B(12,−12),D(−12,12).20. (1) (−54,54) (2) (−2,1) (3) (−23,−6)21.因为点P(a−3,2a+1)到两坐标轴的距离相等,所以a−3=2a+1或a−3=−(2a+1),所以a=−4或a=23,故P(−7,−7)或P(−73,73).22. (1) 过D分别作DE⊥OC,DF⊥OA.S四边形ABCD =S△ABO+S△AFD+S△DEC+S正方形OEDF=12×1×4+12×1×3+12×2×3+3×3 =15.5.即四边形ABCD的面积为15.5.23. (1) S△AOB=12×5×4=10.(2) S△OAP=12×5×y p=20,所以y p=8.∴P(0,8) .(3) S△OBM=12×∣x M∣×4=20,所以∣x M∣=10,所以x M=10或x M=−10.∴M(−10,0)或M(10,0) .。
坐标练习题一、单选题1. 在直角坐标系中,点A的坐标是(2, 3),点B的坐标是(1, 4),则线段AB的中点坐标是:A. (1, 0.5)B. (1, 1)C. (0.5, 1)D. (1, 1)2. 在平面直角坐标系中,点P的坐标是(3, 2),点Q的坐标是(3,2),则点P关于原点的对称点坐标是:A. (3, 2)B. (3, 2)C. (3, 2)D. (3, 2)3. 在平面直角坐标系中,点A的坐标是(5, 6),点B的坐标是(5,6),则线段AB的长度是:A. 10B. 20C. 30D. 404. 在平面直角坐标系中,点P的坐标是(4, 3),点Q的坐标是(4,3),则点P关于x轴的对称点坐标是:A. (4, 3)B. (4, 3)C. (4, 3)D. (4, 3)5. 在平面直角坐标系中,点A的坐标是(0, 5),点B的坐标是(5,0),则线段AB的斜率是:A. 1B. 1C. 0D. 无穷大二、填空题6. 在直角坐标系中,点M的坐标是(3, 2),则点M关于y轴的对称点坐标是______。
7. 在平面直角坐标系中,点P的坐标是(2, 3),点Q的坐标是(2, 3),则线段PQ的中点坐标是______。
8. 在平面直角坐标系中,点A的坐标是(7, 8),点B的坐标是(7,8),则线段AB的长度是______。
9. 在平面直角坐标系中,点P的坐标是(1, 2),点P关于x轴的对称点坐标是______。
10. 在平面直角坐标系中,点A的坐标是(3, 4),点B的坐标是(3, 4),则线段AB的斜率是______。
三、判断题11. 在平面直角坐标系中,任意一点关于x轴的对称点,其横坐标不变,纵坐标取相反数。
()12. 在平面直角坐标系中,任意一点关于y轴的对称点,其纵坐标不变,横坐标取相反数。
()13. 在平面直角坐标系中,任意一点关于原点的对称点,其坐标变为原来的相反数。
()14. 在平面直角坐标系中,两点之间的距离等于它们坐标差的平方和的平方根。
初中数学七年级下册第七章平面直角坐标系专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)2、平面直角坐标系中,属于第四象限的点是( )A .()3,4--B .()3,4C .()3,4-D .()3,4-3、如图,每个小正方形的边长为1,在阴影区域的点是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(1,﹣2)4、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为( )A.(3,2) B.(3-,2)C.(3,2-) D.(3-,2-)5、点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度,则点A的坐标为()A.(0,4)B.(4,0)C.(0,﹣4)D.(﹣4,0)6、在平面直角坐标系中,点A的坐标为(-2,3)若线段AB∥y轴,且AB的长为4,则点B的坐标为()A.(-2,-1)B.(-2,7)C.(﹣2,-1)或(-2,7)D.(2,3)7、根据下列表述,不能确定具体位置的是()A.电影院一层的3排4座B.太原市解放路85号C.南偏西30D.东经108︒,北纬53︒8、根据下列表述,能确定位置的是()A.红星电影院2排 B.北京市四环路C.北偏东30D.东经118︒,北纬40︒9、在图中,所画的平面直角坐标系正确的是()A.B.C.D .10、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--二、填空题(5小题,每小题4分,共计20分)1、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.2、将点P (2,1)沿x 轴方向向左平移3个单位,再沿y 轴方向向上平移2个单位,所得的点的坐标是_______.3、如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号 0、1、2、3、4、5、6、7、8,将不同边上的序号和为 8 的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点 A 的坐标可表示为(1,2,5),点 B 的坐标可表示为(4,3,1),按此方法,若点 C 的坐标为(2,m ,m -2),则 m =__________.4、如图,在中国象棋棋盘上建立平面直角坐标系,若“帅”位于点(﹣1,﹣2)处,则“兵”位于点__________处.5、如图,将△AOB 沿x 轴方向向右平移得到△CDE ,点B 的坐标为(3,0),DB =1,则点E 的坐标为 ___.三、解答题(5小题,每小题10分,共计50分)1、长方形的两条边长分别为8,6,建立适当的直角坐标系,并写出它的四个顶点的坐标.2、(1)在平面直角坐标系中描出点()()()()()8,7,7,3,6,7,5,3,4,7A B C D E -----,并将它们依次连接;(2)将(1)中所画图形先向右平移10个单位长度,再向下平移10个单位长度,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?3、郑州市区的许多街道习惯用“经几纬几”来表示.小颖所乘的汽车从“经七纬五”出发,经过“经六纬五”到达“经五纬一”.(1)在图上标出“经五纬一”的位置;(2)在图上标出小颖所乘汽车可能行驶的一条路线图.还有其他可能吗?(3)你能说出图中“华美达广场”的位置吗?4、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.5、在平面直角坐标系中,△ABC的三个顶点的位置如图所示,将△ABC向左平移3个单位,再向下平移2个单位.(1)写出△ABC的三个顶点坐标;(2)请画出平移后的△A′B′C′,并求出△A′B′C′的面积.---------参考答案-----------一、单选题1、C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.2、D【分析】根据各象限内点的符号特征判断即可.【详解】解:A.(-3,-4)在第三象限,故本选项不合题意;B.(3,4)在第一象限,故本选项不合题意;C.(-3,4)在第二象限,故本选项不合题意;D.(3,-4)在第四象限,故本选项符合题意;故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).3、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.4、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5、D【分析】点A 在x 轴上得出纵坐标为0,点A 位于原点的左侧得出横坐标为负,点A 距离坐标原点4个单位长度得出横坐标为4-,故得出点A 的坐标.【详解】∵点A 在x 轴上,位于原点左侧,距离坐标原点4个单位长度,∴A 点的坐标为:(4,0)-.故选:D .【点睛】本题考查直角坐标系,掌握坐标的表示是解题的关键.6、C【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∵AB y ∥轴,∴A ()2,3-与点B 的横坐标相同,∴2x =-,∵4AB =, ∴34y -=,∴34y -=或34y -=-,∴1y =-或7y =,∴点B 的坐标为:()2,1--,()2,7-,故选:C .【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.7、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;故选C【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.8、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A 、红星电影院2排,具体位置不能确定,不符合题意;B 、北京市四环路,具体位置不能确定,不符合题意;C、北偏东30,具体位置不能确定,不符合题意;D、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D.【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.9、C【分析】根据平面直角坐标系的定义判断即可.【详解】解:A、原点的位置错误,坐标轴上y的字母位置错误,错误;B、两坐标轴不垂直,错误;C、符号平面直角坐标系的定义,正确;D、x轴和y轴的方向有错误,坐标系无箭头,错误.故选:C.【点睛】本题考查平面直角坐标系,在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系,解题关键是掌握平面直角坐标系坐标轴的位置.10、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:A、(2,1)-在第四象限,故本选项不合题意;B 、(2,1)-在第二象限,故本选项不合题意;C 、(2,1)在第一象限,故本选项符合题意;D 、(2,1)--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a 的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.2、(﹣1,3)【解析】根据点坐标的平移规律:左减右加,上加下减的变化规律运算即可.【详解】解:将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(2-3,1+2)即(-1,3).故答案为:(-1,3)【点睛】本题主要考查了根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的规律.3、4【解析】【分析】根据题目中定义的新坐标系中点坐标的表示方法,求出点C坐标,即可得到结果.【详解】2,4,2,解:根据题意,点C的坐标应该是()∴4m=.故答案是:4.【点睛】本题考查新定义,解题的关键是理解题目中新定义的坐标系中点坐标的表示方法.4、(-3,1)【解析】【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.如图所示:则“兵“位于点:(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了坐标位置的确定,解题的关键是正确建立平面直角坐标系.5、(5,0)【解析】【分析】先由点B坐标求得OB,进而求得OD,根据平移性质可求得点E坐标.【详解】解:∵点B的坐标为(3,0),∴OB=3,又∵DB=1,∴OD=OB-DB=3-1=2,∵△AOB沿x轴方向向右平移得到△CDE,∴BE=OD=2,∴点E坐标为(5,0),故答案为:(5,0).本题考查坐标与图形变换-平移,熟练掌握平移变换规律是解答的关键.三、解答题1、作图见解析;()4,3A -,()4,3B --,()4,3C -,()4,3D【解析】【分析】根据长方形的性质和边长建立平面直角坐标系即可得解;【详解】根据题意可设正方形ABCD 的长为8,宽为6,建立平面直角坐标系如下:∴四个顶点的坐标分别为()4,3A -,()4,3B --,()4,3C -,()4,3D ;【点睛】本题主要考查了建立平面直角坐标系和矩形的性质,准确作图计算是解题的关键.2、(1)见解析;(2)见解析;(3)将(1)中所画图形沿由A到A'的方向平移到(2)中所画图形.平移后的点与平移前的对应点相比,横坐标分别增加了10,纵坐标分别减少了10【解析】【分析】(1)利用点平移的坐标规律写出A、B、C、D、E的对应点的坐标,然后描点连接即可;(2)按照平移方式描出对应点,依次连接即可;(3)把(1)中所画图形沿A到A'方向平移2)中所画图形,利用(1)中的平移规律得到平移前后对应点的横坐标和纵坐标的关系.【详解】解:(1)(2)如图所示;(3)将(1)中所画图形沿由A到A'=2)中所画图形.平移后的点与平移前的对应点相比,横坐标分别增加了10,纵坐标分别减少了10.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.3、(1)“经五纬一”在广播大厦旁边的十字路口;(2)“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”;(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近【解析】【分析】(1)先在图中分别找出经七路和纬五路,两条路的交点位置即为“经七纬五"的位置,与上步同理可确定"经六纬五”、“经五纬一"的位置;(2)结合“市区图"即可画出路线图了;(3)根据“市区图”中“华美达广场”的位置确定其所在的“经"路与"纬"路,问题即可解答.【详解】解:(1)如图:“经五纬一”在广播大厦旁边的十字路口.(2)如图:从“经七纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”.(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.【点睛】本题旨在让学生感受平面内确定物体位置的方法,在平面内确定一个物体的位置一般需要两个数据.4、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析【解析】【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.(2)根据点的坐标的意义描出点E.【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C 的坐标为(4,3)、文化宫D的坐标为(2,﹣3).(2)如图,点E即为所求.【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.5、(1)A(2,4),B(1,1),C(3,0);(2)图见解析,3.5【解析】【分析】(1)根据图形即可写出三点的坐标;(2)把三个顶点A、B、C分别向左平移3个单位,再向下平移2个单位得到三个点A′、B′、C′,然后依次连接这三个点,即可得到平移后的△A′B′C′;由于平移不改变图形的面积,所以只要计算出△ABC的面积即可,用割补法即可计算出△ABC的面积.【详解】(1)A(2,4),B(1,1),C(3,0),(2)如图△A′B′C′为所求;由平移性质得,△A′B′C′的面积等于△ABC的面积即,11124-12-14-13222A B C ABCS S∆∆'''==⨯⨯⨯⨯⨯⨯⨯=3.5.【点睛】本题考查了点的坐标、平面直角坐标系中图形的平移及求图形的面积,掌握平移的性质是关键.。
一、坐标系基础1. 坐标系中,点A的坐标为(2, 3),点B的坐标为(1, 5),求线段AB的长度。
2. 在直角坐标系中,点P的坐标为(3, 4),点Q的坐标为(1, 2),求线段PQ的中点坐标。
3. 已知点M的坐标为(0, 0),点N的坐标为(6, 8),求直线MN的斜率。
4. 在平面直角坐标系中,点A的坐标为(4, 6),点B的坐标为(8, 2),求直线AB的方程。
5. 已知点C的坐标为(3, 2),直线y=2x+1,求点C到直线的距离。
二、平面几何6. 在平面直角坐标系中,三角形ABC的三个顶点坐标分别为A(1, 2),B(4, 6),C(7, 1),求三角形ABC的面积。
7. 已知点D的坐标为(2, 3),点E的坐标为(5, 7),求线段DE的中垂线方程。
8. 在平面直角坐标系中,点F的坐标为(1, 3),点G的坐标为(3, 1),求线段FG的长度。
9. 已知点H的坐标为(0, 0),点I的坐标为(4, 0),点J的坐标为(0, 4),求三角形HIJ的周长。
10. 在平面直角坐标系中,点K的坐标为(2, 1),点L的坐标为(1, 3),求线段KL的长度。
三、解析几何11. 已知直线y=3x+2,求该直线与x轴和y轴的交点坐标。
12. 在平面直角坐标系中,直线l的方程为y=2x+5,求直线l与直线y=4的交点坐标。
13. 已知点M的坐标为(2, 3),直线l的方程为y=x+1,求点M到直线l的距离。
14. 在平面直角坐标系中,直线l的方程为2x+3y6=0,求直线l与x轴和y轴的交点坐标。
15. 已知直线l的方程为y=2x1,求直线l与直线y=x+3的交点坐标。
四、坐标系变换16. 将点P(3, 4)绕原点逆时针旋转90度,求旋转后点P'的坐标。
17. 将点Q(2, 3)绕点A(1, 1)顺时针旋转180度,求旋转后点Q'的坐标。
18. 将点R(5, 2)沿x轴方向平移3个单位,求平移后点R'的坐标。
2021-2022学年人教版数学七年级下册《第七章平面直角坐标系》综合复习(练习、考试专用——带答案解析)一、选择题(本大题共10小题,共30分)1.(2019·浙江省台州市·期末考试)若点P在第四象限内,P到x轴的距离是1,到y轴的距离是3,则点P的坐标为()A. (3,−1)B. (−3,−1)C. (−3,1)D. (−1,−3)2.(2022·江西省·模拟题)已知AB//y轴,且点A的坐标为(m,2m-1),点B的坐标为(2,4),则点A的坐标为(),4) C. (−2,−4) D. (2,−4)A. (2,3)B. (523.(2022·湖北省·期中考试)如图,在平面直角坐标系xOy中,点P的坐标为(1,1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是()A. (1,−1)B. (−1,1)C. (3,1)D. (1,2)4.(2022·广东省·单元测试)如图,长方形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边做环绕运动,物体甲按逆时针方向以1个单位长度/秒的速度匀速运动,物体乙按顺时针方向以2个单位长度/秒的速度匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A. (1,−1)B. (2,0)C. (−1,1)D. (−1,−1)5.(2022·全国·同步练习)某电影院里5排2号可以用数对(5,2)表示,小明买了7排4号的电影票,用数对可表示为( )A. (4,7)B. (2,5)C. (7,4)D. (5,2)6.(2021·重庆市·期中考试)如果点A(a,b)在第三象限,则点B(-a+1,3b-5)关于原点的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.(2021·北京市·月考试卷)已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A. (−2,2),(3,4),(1,7)B. (−2,2),(4,3),(1,7)C. (2,2),(3,4),(1,7)D. (2,−2),(3,3),(1,7)8.(2021·安徽省·单元测试)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:9.①f(m,n)=(m,-n),如f(2,1)=(2,-1);10.②g(m,n)=(-m,-n),如g(2,1)=(-2,-1).11.按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]等于()A. (3,2)B. (3,−2)C. (−3,2)D. (−3,−2)12.(2021·黑龙江省牡丹江市·历年真题)如图,在平面直角坐标系中A(-1,1),B(-1,-2),C(3,-2),D(3,1),一只瓢虫从点A出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2021秒瓢虫在()处.A. (3,1)B. (−1,−2)C. (1,−2)D. (3,−2)13.(2021·安徽省·单元测试)如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是()A. (1,1)B. (1,2)C. (−1,2)D. (−1,−2)二、填空题(本大题共6小题,共18分)14.(2021·安徽省·期中考试)已知点A(0,-3),点B在x轴上,且三角形OAB的面积为6,则点B的坐标为________.15.(2021·辽宁省沈阳市·同步练习)已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是____________________.16.(2018·山东省泰安市·月考试卷)已知:点P的坐标是(m,-1),且点P关于x轴对称的点的坐标是(-3,2n),则m= ______ ,n= ______ .17.(2020·安徽省芜湖市·单元测试)已知点N的坐标为(a,a-1),则点N一定不在第象限.18.(2020·安徽省芜湖市·单元测试)如图,长方形OABC的边OA,OC分别在x轴、,轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B'处,则点B'的坐标为 .19.(2021·江苏省南通市·单元测试)在平面直角坐标系中,O为坐标原点,点A(−a,a)(a>0),点B(−a−4,a+3),点C为平面直角坐标系内的一点,连接AB,OC,若AB //OC且AB=OC,则点C的坐标为.三、解答题(本大题共6小题,共52.0分)20.(2019·吉林省白山市·期末考试)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.21.(2021·重庆市市辖区·单元测试)在平面直角坐标系中,点A(0,a),B(b,0),C(c,c)的坐标满足(a−5)2+|b+2|+√c−3=0,四边形ABCD是平行四边形,点D在第一象限.直线AC交x轴于点F.(1)求点D的坐标(2)求三角形BCF的面积.22.(2020·浙江省台州市·期末考试)三角形ABC在平面直角坐标系中的位置如图所示(图中每个小方格的边长均为1个单位长度).将三角形ABC先向左平移4个单位长度,再向下平移3个单位长度得到三角形A1B1C1.(1)在图中画出三角形A1B1C1;(2)求三角形ABC的面积.23.(2022·安徽省·模拟题)如图1,在平面直角坐标系中,C是第二象限内一点,CB⊥y轴于点B,且B(0,b)是y轴正半轴上一点,A(a,0)是x轴负半轴上一点,且|a+2|+|b-3|=0,S四边形AOBC=9.(1)求点C的坐标;(2)如图2,点D为线段OB上一动点,且,求点D的坐标.24.(2022·江苏省南通市·同步练习)如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为____,A n的坐标(用n的代数式表示)为____.(2)2022米长的护栏,需要两种正方形各多少个?25.(2020·全国·期中考试)如图,在平面直角坐标系中有一点A(4,-1),将点A向左平移5个单位再向上平移5个单位得到点B,直线l过点A、B,交x轴于点C,交y轴于点D,P是直线上的一个动点,通过研究发现直线l上所有点的横坐标x与纵坐标y都是二元一次方程x+y=3的解.①直接写出点B,C,D的坐标;B______,C______,D______;②求S△AOB;③当S△OBP:S△OPA=1:2时,求点P的坐标.1.【答案】A【知识点】平面直角坐标系中点的坐标【解析】解:∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为3,∴点P的横坐标为3,纵坐标为-1.故点P的坐标为(3,-1).故选:A.根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.本题考查了点的坐标,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一、二、三、四象限内各点的符号分别为(+,+)、(-,+)、(-,-)、(+,-).2.【答案】A【知识点】坐标与图形性质、平面直角坐标系中点的坐标【解析】【分析】本题考查了坐标与图形性质:利用点的坐标得到相应的线段的长和判断线段与坐标轴的位置关系.在平面直角坐标系中与y轴平行,则它上面的点横坐标相同,可求A点的坐标.【解答】解:∵AB∥y轴,点A的坐标为(m,2m-1),点B的坐标为(2,4),∴m=2,∴2m-1=3,∴点A的坐标为(2,3).故选A.3.【答案】A【知识点】平移中的坐标变化【解析】【分析】本题考查了坐标与图形变化一平移,熟记左加右减,上加下减的规律是解题的关键.将坐标系中的x轴向上平移2个单位,即相当于将点P向下平移2个单位,根据左加右减,上加下减的规律求解即可.【解答】解:如果将x轴向上平移2个单位长度,则其纵坐标减少2,∴点P在新坐标系中的坐标是(1,-1),4.【答案】D【解析】解:长方形BCDE的长与宽分别为4和2,因为物体乙的速度是物体甲的2倍,二者的运动时间相同,所以物体甲与物体乙走的路程比为1:2.由题意可知, ①第一次相遇时,物体甲与物体乙走的路程之和为12×1,物体甲走的路程为12×1=4,物3=8,相遇在BC边上点(-1,1)处;体乙走的路程为12×23 ②第二次相遇时,物体甲与物体乙走的路程之和为12×2,物体甲走的路程为12×2×1=8,3=16,相遇在DE边上的点(-1,-1)处;物体乙走的路程为12×2×23 ③第三次相遇时,物体甲与物体乙走的路程之和为12×3,物体甲走的路程为12×3×1=12,3=24,相遇在出发点A点.物体乙走的路程为12×3×23此时,甲、乙回到原出发点,故每相遇三次,甲、乙两物体就回到出发点.因为2021÷3=673⋯⋯2,所以两个物体运动后的第2021次相遇地点是DE边上的点(-1,-1)处.故选D.5.【答案】C【知识点】有序数对【解析】由5排2号可以表示为(5,2)可知,7排4号可用数对(7,4)表示.6.【答案】B【知识点】中心对称中的坐标变化、平面直角坐标系中点的坐标【解析】略7.【答案】A【知识点】平移中的坐标变化【解析】略8.【答案】A【知识点】平面直角坐标系中点的坐标【解析】【分析】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(-3,2)=(-3,-2),∴g[f(-3,2)]=g(-3,-2)=(3,2),故选A.9.【答案】A【知识点】平面直角坐标系中点的坐标、图形规律问题【解析】解:∵A(-1,1),B(-1,-2),C(3,-2),D(3,1),∴AB=CD=3,AD=BC=4,∴C矩形ABCD=2(AB+AD)=14.∵2021=288×(14÷2)+1.5+2+1.5,∴当t=2021秒时,瓢虫在点D处,∴此时瓢虫的坐标为(3,1).故选:A.根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由2021=288×(14÷2)+1.5+2+1.5,可得出当t=2021秒时瓢虫在点D处,再结合点D的坐标即可得出结论.本题考查了规律型中点的坐标,根据瓢虫的运动规律找出当t=2021秒时瓢虫在点D处是解题的关键.10.【答案】A【知识点】坐标与图形性质、图形规律问题【解析】【分析】本题主要考查平面直角坐标系中点的坐标的变化规律,理解题意,求出“凸”形的周长是解题关键.先根据已知点的坐标,求出凸形ABCDEGHP的周长为20,根据2019÷20的余数为19,即可得出答案.【解答】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),∴“凸”形ABCDEGHP的周长为:AB+BC+CD+DE+EG+GH+HP+PA=2+2+2+2+6+2+2+2=20,∵2019÷20=100······19,余数为19,∴细线另一端所在位置的点在P处上面1个单位的位置,坐标为(1,1).故选A.11.【答案】(-4,0)或(4,0)【知识点】三角形的面积、分类讨论思想【解析】【分析】本题考查了坐标与图形性质,三角形的面积,难点在于要分情况讨论.【解答】解:∵点B在x轴上∴设B点的坐标为:(m,0),∴OB=|m|,又∵A(0,-3),根据△OAB的面积是6得:×OB×36=12×3×|m|6=12m=±4,故答案为(-4,0)或(4,0).12.【答案】(3,3)或(6,-6)【知识点】平面直角坐标系中点的坐标【解析】略13.【答案】-3;12【知识点】轴对称中的坐标变化【解析】解:∵点P的坐标是(m,-1),且点P关于x轴对称的点的坐标是(-3,2n),∴m=-3;2n=1,即n=1.2平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.【答案】二【解析】略15.【答案】(2,1)【解析】解:由题意知四边形BEB'D是正方形,∴点B'的横坐标与点E的横坐标相同,点B'的纵坐标与点D的纵坐标相同,∴点B'的坐标为(2,1).16.【答案】(-4,3)或(4,-3)【知识点】两点间的距离公式*、平行线的性质【解析】解:依照题意画出图形,如图所示.设点C 的坐标为(x ,y ),∵AB ∥OC 且AB =OC ,∴{x −0=(−a −4)−(−a)y −0=a +3−a或{0−x =(−a −4)−(−a)0−y =a +3−a, 解得:{x =−4y =3或{x =4y =−3, ∴点C 的坐标为(-4,3)或(4,-3).故答案为:(-4,3)或(4,-3).设点C 的坐标为(x ,y ),由AB ∥OC 、AB =OC 以及点A 、B 的坐标,即可求出点C 的坐标.本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.17.【答案】解:(1)∵点P (2m +4,m -1)在y 轴上,∴2m +4=0,解得m =-2,所以,m -1=-2-1=-3,所以,点P 的坐标为(0,-3);(2)∵点P 的纵坐标比横坐标大3,∴(m -1)-(2m +4)=3,解得m =-8,m -1=-8-1=-9,2m +4=2×(-8)+4=-12,所以,点P 的坐标为(-12,-9);(3)∵点P 到x 轴的距离为2,解得m=-1或m=3,当m=-1时,2m+4=2×(-1)+4=2,m-1=-1-1=-2,此时,点P(2,-2),当m=3时,2m+4=2×3+4=10,m-1=3-1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,-2).【知识点】平面直角坐标系中点的坐标【解析】(1)根据y轴上点的横坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标比横坐标大3列方程求解m的值,再求解即可;(3)根据点P到x轴的距离列出绝对值方程求解m的值,再根据第四象限内点的横坐标是正数,纵坐标是负数求解.本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征是解题的关键,(3)要注意点在第四象限.18.【答案】解:(1)∵(a-5)2+|b+2|+√c−3=0,∴a=5,b=-2,c=3,则A (0,5),В (-2,0) ,C(3, 3),如图:过D作DN⊥y轴,过C作CM⊥x轴,垂足分别为N、M,延长BA交DN于G,延长DC交BM于H,则BM=5,CM=3,OA=5,∵四边形ABCD为平行四边形,又DN //BH .∴四边形BHDG 为平行四边形,∴∠ABM =∠CDN .∵四边形ABCD 为平行四边形,∴∠ABC =∠ADC ,∴∠CBM =∠ADN ,且AD =BC .在△BCM 和△DAN 中,∠CBM =∠ADN ,∠BMC =∠DNA =90°,BC =AD , ∴△BCM ≌△DAN ,∴DN =BM =5,AN =CM =3,∴ON =OA +AN =5+3=8,∴D 点的坐标为(5,8);(2)设F (m ,0),过点C 作CM ⊥x 轴于点M ,∴S △AOF =S △CMF +S 四边形AOMC ,∴12×m ×5=12×(m -3)×3+12×(3+5)×3, 解得m =152,∴F (152,0),∴S △BCF =574.【知识点】坐标与图形性质、平行四边形的判定与性质、非负数的性质:绝对值、三角形的面积、非负数的性质:偶次方、非负数的性质:算术平方根、全等三角形的判定与性质【解析】本题考查了坐标与图形性质,平行四边形的性质与判定,全等三角形的性质与判定等知识,解题时要正确作出辅助线,并且根据利用这些性质进行解题.(1)首先由已知确定A (0,5),B (-2,0),C (3,3),过D 作DN ⊥y 轴,过C 作CM ⊥x 轴,垂足分别为N 、M ,延长BA 交DN 于G ,延长DC 交BM 于H ,根据AAS 判定△BCM ≌△DAN ,进而求出DN 、BM 、AN 、CM 、ON ,OA 的值,解答即可; (2)设F (m ,O ),过点C 作CM ⊥x 轴于点M ,根据S △AOF =S △CMF +S 四边形AOMC 列式进而求得m 值,则可确定F 的坐标,再根据S △BCF =12·BF ・CN 解答即可. 19.【答案】解:(1)如图所示,三角形A 1B 1C 1即为所求;(2)如图所示,取格点D ,E ,则S △ABC =S 梯形CDEB -S △ADC -S △ABE=12×(1+3)×3-12×1×3-12×1×2 =6-32-1=72.【知识点】作图-平移变换、三角形的面积【解析】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.(1)依据三角形ABC 先向左平移4个单位长度,再向下平移3个单位长度,即可得到三角形A 1B 1C 1.(2)依据割补法进行计算,即可得到三角形ABC 的面积.20.【答案】解:(1)∵ |a +2|+|b -3|=0,∴a =-2,b =3,∵ S 四边形AOBC =9.×(2+BC)×3=9∴12∴BC=4,∵CB⊥y轴于点B,∴C(-4,3),(2)设D(0,m),则S四边形ADBC=9-m,S△ADC=S△AOC+S△ODC-S△AOD=3+2m-m=m+3,(9−m),∴m+3=23,解得m=95).∴D(0,95【知识点】四边形综合、平面直角坐标系中点的坐标【解析】本题属于四边形综合题,考查了四边形的面积,三角形的面积等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考常考题型.(1)利用非负数的性质求出a,b的值,可得结论.(2)设D(0,m).根据,构建方程求解即可.21.【答案】解:(1)(8,2);(3n﹣1,2);(2)∵2022÷(1+2)=674,∴需要大小正方形各674.【知识点】平面直角坐标系中点的坐标【解析】【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A2,A3,…,A n各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)根据一个小正方形与一个大正方形所构成的护栏长度,计算出2022米包含多少这样的长度,即可得出结果.解:(1)根据已知条件与图形可知,大正方形的对角线长为2,∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2,横坐标依次大3,∴A 3的坐标为(8,2),A n 的坐标为(3n ﹣1,2);(2)见答案.22.【答案】(-1,4) (3,0) (0,3)【知识点】平移与全等、平移中的坐标变化【解析】解:(1)∵点A (4,-1),将点A 向左平移5个单位再向上平移5个单位得到点B ,∴点B (-1,4)∵直线l 上所有点的横坐标x 与纵坐标y 都是二元一次方程x +y =3的解.∴直线l 的解析式为:y =-x +3,∴当x =0时,y =3,当y =0时,x =3,∴点C (3,0),点D (0,3)故答案为:(-1,4),(3,0),(0,3)(2)如图1,连接AO ,BO ,∵S △AOB =S △BOC +S △AOC ,∴S △AOB =12×3×4+12×3×1=152, (3)设点P (a ,-a +3)当点P 在线段AB 上时,∵S △OBP :S △OPA =1:2,且S △AOB =152∴S △OPA =5,∵S △OPA =S △OPC +S △OCA ,∴5=12×3×(3-a )+32,∴a =23,∴点P (23,73),当点P 在点B 的左侧时,∵S △OBP :S △OPA =1:2,且S △AOB =152,∴S △OPA =15,∵S △OPA =S △OPC +S △OCA ,∴15=12×3×(3-a )+32,∴a =-6,∴点P (-6,9)(1)由平移的性质可求点B 坐标,由题意可得直线l 的解析式,即可求点C ,点D 坐标;(2)由三角形面积公式可求解;(3)分两种情况讨论,由三角形的面积公式可求解.本题是几何变换综合题,考查了平移的性质,一次函数的性质,三角形的面积公式,利用分类讨论思想解决问题是本题的关键.。
中考数学《平面直角坐标系》专项练习题及答案一、单选题1.对于任意实数m,点P(m﹣1,9﹣3m)不可能...在()A.第一象限B.第二象限C.第三象限D.第四象限A.(2,−2)B.(−2,0)C.(0,2)D.(0,0)3.CD是⊙O的一条弦,作直径AB,使AB⊙CD,垂足为E,若AB=10,CD=8,则BE的长是()A.8B.2C.2或8D.3或74.下列数据不能确定物体位置的是()A.4行5列B.东北方向C.青年东路25号D.东经118°,北纬40°5.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.(100,99)6.对于以下四个命题:①若直角三角形的两条边长与3与4,则第三边的长是5;②(√a)2=a;③若点P(a,b)在第三象限,则点Q(−a,−b)在第一象限;④两边及其第三边上的中线对应相等的两个三角形全等,正确的说法是()A.只有①错误,其他正确B.①②错误,③④正确C.①④错误,②③正确D.只有④错误,其他正确7.已知平面内有一点P,它的横坐标与纵坐标互为相反数,且与原点的距离是2,则P点的坐标为()A.(-1,1)或(1,-1)B.(1,-1)C.(−√2,√2)或(√2,−√2)D.(√2,−√2)8.如图,A的坐标是(2,2),若点P在x轴上,且⊙APO是等腰三角形,则点P的坐标不可能是()A.(2,0)B.(4,0)C.(-2√2,0)D.(3,0)9.如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C的坐标是()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)10.如图,若車的位置是(5,1),那么兵的位置可以记作()A .(1,5)B .(4,3)C .(3,4)D .(3,3)11.已知点P(m ,n),且mn >0,m+n <0,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限12.在平面直角坐标系中,下面的点在第一象限的是( )A .(1,2)B .(﹣2,3)C .(0,0)D .(﹣3,﹣2)二、填空题13.如图,在平面直角坐标系中,矩形纸片OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,将纸片沿过点C 的直线翻折,使点B 恰好落在x 轴上的点B ′处,折痕交AB 于点D .若OC =9, OC BC=35,则折痕CD 所在直线的解析式为 .14.如图,点A 、B 在反比例函数y =k x的图象上,AC ⊥y 轴,垂足为D ,BC ⊥AC .若四边形AOBC 间面积为6,AD AC =12,则k 的值为 .15.如图,平行四边形OABC 的顶点A ,C 的坐标分别为(5,0),(2,3),则顶点B 的坐标为 .16.剧院里5排2号可用(5,2)表示,则(7,4)表示.17.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=√5,BCOC=12,求点A′的坐标为.18.已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a=。
平面直角坐标系练习题训练1. 在平面直角坐标系中,点()一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 若点P()在第二象限,则点Q()在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 点P()关于轴的对称点的坐标是()A.(2,3)B.()C.()D.()4. 点P()关于原点对称的点的坐标是()A.()B.()C.()D.()5. 点P()关于原点对称的点的坐标是()A. B. C.(3,4) D .6. 若点A()在第二象限,则点B()在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若点P(m,2)与点Q(3,n)关于原点对称,则的值分别是()A. B. C. D.8. 已知点P坐标为(),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,)C. (6,)D.(3,3)或(6,)9. 点P()不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 点M()在第二象限,且,,则点M的坐标是()A. B. C. D.二. 填空题(每小题2分,共24分)1. 在平面直角坐标系中,若点()在轴上,则。
2. 如果点M()在第二象限,那么点N()在第象限。
3. 在平面直角坐标系内,已知点在第四象限,且为偶数,那么的值为。
4. 点M()关于轴对称的点的坐标是。
15. 在直角坐标系中,已知点P(),则点P关于轴对称点的坐标为。
6. 直角坐标系中,第四象限内点M到横轴的距离为28,到纵轴的距离为6,则M点坐标为。
7. 如图,在矩形ABCD中,A(),B(0,1),C(0,3),则D点坐标是8. 已知,那么点关于轴的对称点P在第象限。
9. 已知点P()在轴上,那么。
10. 点P(1,2)关于轴对称的点的坐标是,点P(1,2)关于原点对称的点的坐标是。
11. 若点M()在第二象限,则点N()在第象限。
12. 已知点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标是1、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位2、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)3、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)4、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同5.点E(a,b)到x轴的距离是4,到y轴距离是3,则有()A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±36.已知点P(a,b),ab>0,a+b<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限7、点P(m+3, m+1)在直角坐标系得x轴上,则点P坐标为A.(0,-2)B.( 2,0)C.( 4,0)D.(0,-4)238.已知点P (x,x ),则点P 一定()A .在第一象限B .在第一或第四象限C .在x 轴上方D .不在x 轴下方9.点A (0,-3),以A 为圆心,5为半径画圆交y 轴负半轴的坐标是()A .(8,0)B .( 0,-8)C .(0,8)D .(-8,0)10.若4,5ba,且点M (a ,b )在第三象限,则点M 的坐标是()A 、(5,4)B 、(-5,C 、(-5,-4)D 、(5,-4)11.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位12.已知点A 2,2,如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C点的坐标是()A 、2,2B 、2,2C 、1,1D 、2,2二、填空题1.已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是________________2.如果用(7,8)表示七年级八班,那么八年级七班可表示成 .3.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________.4.如果p (a+b,ab )在第二象限,那么点Q (a,-b)在第象限.5、已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为 . 6.点A (-3,5)在第_____象限,到x 轴的距离为______,到y 轴的距离为_______。
平面直角坐标系【诊断自测】1、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.2、在直角坐标系中,点(2,﹣3)在第象限.3、若点A(x,2)在第二象限,则x的取值范围是.4.在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第象限.【考点突破】类型一: 点的坐标特征例1、在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限例2、若点A(﹣3,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限类型二:点到坐标轴的距离例3、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.类型三:平行或垂直于坐标轴直线上的点坐标特征例4、经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C..经过原点D.无法确定类型四:点坐标的规律性例5、如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A.(14,44)B.(15,44)C.(44,14)D.(44,15)例6、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.类型五:坐标与面积例7、已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定例8、如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.类型六:坐标与几何变换例9、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.例10、已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1) B.B(1,7)C.(1,1) D.(2,1)例11、如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是.类型七:坐标确定位置例12、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)例13.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2) C.(0,3) D.(1,3)【易错精选】1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()2、定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1 B.2 C.3 D.43、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.4.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.【精华提炼】1、常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
平面直角坐标系精选练习题
满分100分
第一卷(60分)
一、选择题:(每题2分,共20分)
1.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有( )
A.1个 B.2个 C.3个 D.4个
2.已知点A (2,-2),如果点A 关于x 轴的对称点是B ,点B 关于原点对称点是C ,
那么点C 的坐标是( )
A.(2,2)
B.(-2,2)
C.(-1,-1)
D.(-2,-2)
3.若点P(m -1, m )在第二象限,则下列关系正确的是( )
A.10<<m
B.0<m
C.0>m
D.1>m
4.如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,
-2),“馬”位于点(2,-2),则“兵”位于点( )
A.(-1,1)
B.(-2,-1)
C.(-3,1)
D.(1,-2)
5. 已知坐标平面内点M(a,b)在第三象限,那么点N(b, -a)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6. 若点P (x,y )的坐标满足xy=0(x ≠y),则点P ( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上
7. 如图,在平面直角坐标系中,平行四边形OABC 的顶点O 、A 、C 的坐标分别是(0,0)、(5,0)、(2,3),则顶点B 的坐标是( )
A 、(3,7)
B 、(5,3)
C 、(7,3)
D 、(8,2)
8. 线段CD 是由线段AB 平移得到的.点A (–1,4)的对应点为C (4,7),则点B (–
4,– 1)的对应点D 的坐标为( )
A.(2,9)
B.(5,3)
C.(1,2)
D.(-9,-4)
9. 已知△ABC 的面积为3,边BC 长为2,以B 原点,BC 所在的直线为x 轴,则点A 的纵
坐标为( )
A. 3
B. - 3
C.
6 D. ±3
10.如图,已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),
B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位后,
与点P 对应的点为Q ,则点Q 的坐标为 ( )
A.(3,2)
B.(6,2)
C.(6,4)
D.(3,5)
二、填空题:(每题2分,共20分)
11.已知两点(
)()632121,、,P P ,那么21P P 长为 ; 12.点A(5,7-
)到原点的距离是 y
C F B
O G A E x
13.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则点 A 坐标是 ;
14.已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.
15.当b=______时,点B(3,|b-1|)在第一.三象限角平分线上.
16. 如果点P (m+3,m+1)在直角坐标系的x 轴上,则点P 的坐标为_________
17.点A (-3,4),点B 在坐标轴上,且AB=5,那么点B 坐标为
18. 如果点A (0,0),B (3,0),点C 在y 轴上,且ABC 的面积是5,C 点坐标为 .
19.正方形ABCD 在平面直角坐标系中的位置如图所示,已知A 点的坐标(0,4),B 点的坐标(-3,0),则C 点的坐标是 .
20. 如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是 .
三、解答题: 21.对于边长为6的正△ABC ,建立适当的直角坐标系,并在图
上标明各个顶点的坐标.
22.如图,方格纸中有一条美丽可爱的小金鱼.
(1)在同一方格纸中,画出将小金鱼图案上每一个点的横坐标乘以-1,而纵坐标不变后得到的图案;(4分)
(2)在同一方格纸中,在y 轴的右侧,将原
小金鱼图案上所有的点的坐标以相同的规律
进行变化,使图案的形状不变,并且对应线
段放大为原来的2倍,画出放大后小金鱼的
图案,并简述你将点的坐标进行了怎样的变
化.(6分)
B C
A x (第22题图)
第19题
第二卷(40分)
一、选择题(每题4分,共16分)
1.对任意实数x ,点2
(2)P x x x -,一定不在..
( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.如图的坐标平面上有一正
五边形ABCDE ,其中C 、D 两点
坐标分别为(1,0)、(2,0) .若在没有滑动的情况下,将此正
五边形沿着x 轴向右滚动,则滚动过程中,下列会经过(75 , 0)的点是( )
A . A
B . B
C . C
D . D
3.在一次夏令营活动中,小霞同学从营地A 点出发,要到距离A 点1000m 的C 地去,先沿北偏东70︒方向到达B 地,然后再沿北偏西20︒方向走了
500m 到达目的地C ,此时小霞在营地A 的( )
A. 北偏东20︒方向上
B.北偏东30︒方向上
C. 北偏东40︒方向上
D. 北偏西30︒方向上
4. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整
点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形
内部有1个整点,边长为2的正方形内部有1个整点,边长为3
的正方形内部有9个整点,…则边长为8的正方形内部的整点
的个数为( )
A .64.
B .49.
C .36.
D .25.
二、填空题(每题4分,共20分)
5. 在直角坐标平面内的机器人接受指令“[],A α”(α≥0,0︒<A <180︒)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令
[]2,60︒后位置的坐标为
6. 已知点()01
,-P ,O 为原点,︒=∠150POQ ,2=PQ ,则点Q 坐标为 7.如图,在平面直角坐标系中有一矩形ABCD,其中
(0,0),B(8,0),C(0,4,) 若将△ABC 沿AC 所在直线翻折,点B 落在点
E 处,则E 点的坐标是__________.
8. 如图,将正六边形放在直角坐标系中中心与坐标原点重合,若A
点的坐标为(-1,0),则点C 的坐标为______.
9.已知:如图,O 为坐标原点,四边形OABC 为矩形,A(10,0),
C(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰
长为5的等腰三角形时,则P 点的坐标为 .
三、解答题(24分) 1.(12分)已知在平面直角坐标系中点A (-3,4),O 为坐标原点,点P 为坐标轴上一点,且PAO ∆为等腰三角形,请你画出草图并在图上标明点P 的坐标(不写过程)。
2. (12分)如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发。
(1)汽车行驶到什么位置时离A 村最近?请画出图形,并直接在图上标明此点的坐标。
(2)汽车行驶到什么位置时离B 村最近?请画出图形,并直接在图上标明此点的坐标。
(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?请求出这个最短距离。
A B
C D E y。