直流电机利用电阻调速是最简单的调速电路
- 格式:doc
- 大小:176.50 KB
- 文档页数:2
直流电动机有哪几种调速方法?各有哪些特点?答:直流电动机有三种调速方法:1)调节电枢供电电压U ;2)减弱励磁磁通Φ;3)改变电枢回路电阻R 。
特点:对于要求在一定范围内无极平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速。
晶闸管—电动机系统当电流断续时机械特性的显著特点是什么?答:电流断续时的电压、电流波形图(Ⅰ10P 、Ⅱ 12P )(三相零式为例)。
断续时,0d u 波形本身与反电势E 有关,因而就与转速n 有关,而不是像电流连续时那样只由控制角α决定的常值。
机械特性呈严重的非线性,有两个显著的特点:第一个特点是当电流略有增加时,电动机的转速会下降很多,即机械特性变软。
当晶闸管导通时,整流电压波形与相电压完全一致,是电源正弦电压的一部分。
当电流断续后,晶闸管都不导通,负载端的电压波形就是反电势波形。
电流波形是一串脉冲波,其间距为︒120,脉冲电流的底部很窄。
由于整流电流平均值d I 与电流波形包围的面积成正比,如果电流波形的底部很窄,为了产生一定的d I ,各相电流峰值必须加大,因为RE u i d d -=,而整流输出的瞬时电压d u 的大小由交流电源决定,不能改变。
也就是说应使E 下降很多即转速下降很多,才能产生一定的d I ,这就是电流断续时机械特性变软的原因。
第二个特点是理想空载转速0n 升高。
因为理想空载时0=d I ,所以2m a x 02U u E d ==,所以0n 升高。
简述直流PWM 变换器电路的基本结构。
答:直流 PWM 变换器基本结构如图所示,包括 IGBT 和续流二极管。
三相交流电经过整流滤波后送往直流 PWM 变换器,通过改变直流 PWM 变换器中 IGBT 的控制脉冲占空比来调节直流 PWM 变换器输出电压大小,二极管起续流作用。
Ug0Ton T t 直流PWM 变换器基本结构直流PWM 变换器输出电压的特征是什么?答:频率一定、宽度可调的脉动直流电压。
直流电动机的电枢回路串电阻调速的特点直流电动机的电枢回路串电阻调速是一种常见的调速方法,其特点主要体现在以下几个方面。
串电阻调速是一种简单直接的调速方法。
在直流电动机电枢回路中串联一个可调的电阻,通过改变电阻的阻值来调节电动机的转速。
这种方法不需要复杂的电路控制,只需通过手动或自动地调节电阻来实现调速,操作简便,易于掌握。
串电阻调速具有较宽的调速范围。
通过调节串联电阻的阻值,可以改变电动机的励磁电流和电动势,从而改变电机的转速。
串电阻调速的调速范围较大,一般可以实现电动机额定转速的10%~100%的调节。
串电阻调速还具有较好的稳定性和可靠性。
由于串联电阻直接影响电动机的电阻和电动势,因此调速过程中电动机的特性变化较小,系统稳定性较好。
同时,串电阻调速的电路结构简单,没有复杂的控制元件,系统可靠性较高,故障率较低。
然而,串电阻调速也存在一些不足之处。
首先,由于串联电阻会消耗一部分电能,因此串电阻调速的效率较低。
其次,串电阻调速的调速精度不高,很难实现精确的转速控制。
再次,串电阻调速的调速响应较慢,调节速度较低,无法满足某些快速调速的需求。
为了克服串电阻调速的不足,人们提出了许多其他的调速方法,如电压调制调速、电流调制调速、场励磁调速等。
这些方法通过改变电动机的供电电压、电流或励磁磁场来实现调速,具有更高的效率、更精确的控制和更快的调速响应。
直流电动机的电枢回路串电阻调速是一种简单直接、调速范围较宽、稳定可靠的调速方法。
然而,由于其效率较低、调速精度不高和调速响应较慢等问题,人们逐渐发展出了更先进的调速方法。
在实际应用中,需要根据具体的调速要求和工作环境选择合适的调速方式,以实现最佳的调速效果。
直流电动机的电枢回路串电阻调速的特点直流电动机是将直流电能转化为机械能的一种设备。
电动机的转速与输入电压成正比关系,为了实现电机的调速,可以通过改变电动机的电压来实现。
而直流电动机的电枢回路串接电阻调速是一种常见的调速方式。
直流电动机的电枢回路由电枢线圈和电刷组成。
电枢线圈是电动机的主要工作部分,通过电枢线圈中的电流和磁场相互作用产生转矩,从而驱动电动机转动。
电刷则是将外部电源的电能输入到电枢线圈中。
在直流电动机的电枢回路中串接电阻可以实现调速的目的。
当电枢回路串接电阻后,电动机的输入电压会因为电阻的存在而降低,从而导致电动机的转速降低。
这是因为电枢线圈的电阻增加,电枢线圈中的电流减小,磁场的磁通量也随之减小,进而产生的转矩也减小,从而导致电动机的转速降低。
电枢回路串接电阻调速的特点主要有以下几个方面:1. 调速范围大:通过改变电枢回路中串联的电阻大小,可以实现较大范围的调速。
电枢回路串接电阻调速可以实现电动机的连续调速,调速范围一般可以达到10:1以上。
2. 调速稳定性较差:电枢回路串接电阻调速的调速稳定性较差。
因为电枢回路串接电阻会导致电动机的输入电压降低,电动机的转矩也随之减小。
当负载变化较大时,电动机的转速会出现较大的波动,调速的稳定性较差。
3. 效率较低:电枢回路串接电阻调速会导致电动机的输入功率损失增加,从而降低电动机的效率。
因为电枢回路串接电阻会使得电动机的输入电压降低,电动机的输出功率也相应减小,这会导致电动机的效率下降。
4. 简单可靠:电枢回路串接电阻调速的原理简单,结构也较为简单,因此可靠性较高。
电枢回路串接电阻的调速方式在一些负载变化较小的场合,如风机、水泵等,仍然被广泛使用。
总结起来,直流电动机的电枢回路串接电阻调速是一种简单可靠的调速方式,具有调速范围大的优点,但调速稳定性较差,效率较低。
在一些负载变化较小的场合,仍然可以使用电枢回路串接电阻调速来实现电动机的调速需求。
2023年【电工(中级)】最新试题及解析1、【单选题】35KV以下的高压隔离开关,其三相合闸不同期性不得大于()毫米。
( C )A、1B、2C、3D、4【单选题】一个硅二极管反向击穿电压为150伏,则其最高反向工作电压为( )。
2、( D )A、大于150伏B、略小于150伏C、不得超过40伏D、等于75伏3、【单选题】一台三相异步电动机,磁极数为6,定子圆周对应的电角度为( )度。
( A )A、1080B、180C、360D、21604、【单选题】一含源二端网络测得其开路电压为10V,短路电流为5A。
若把它用一个电源来代替。
电源内阻为()。
( D )A、1ΩB、10ΩC、5ΩD、2Ω5、【单选题】一般万用表可直接测量()物理量。
( D )A、有功功率B、无功功率C、电能D、音频电平6、【单选题】三相四线制供电系统中火线与中线间的电压等于( )。
( B )A、零电压B、相电压C、线电压D、1/2线电压7、【单选题】三相对称负载三角形联接时,线电流与相应相电流的相位关系是()。
( C )A、相位差为零B、线电流超前相电流30°C、相电流超前相应线电流30°D、同相位8、【单选题】三相电动势到达最大的顺序是不同的,这种达到最大值的先后次序,称三相电源的相序,相序为U-V-W-U,称为( )。
( A )A、正序B、负序C、逆序D、相序9、【单选题】三相电路中相电流等于( )。
( A )A、U相/ZB、U相/ZC、I线D、U线/R10、【单选题】下列()阻值的电阻适用于直流双臂电桥测量。
( A )A、0.1ΩB、100ΩC、500KΩD、1MΩ11、【单选题】中、小型电力变压器投入运行后,每年应小修一次,而大修一般为( )年进行一次。
( C )A、2B、3C、5-10D、15-2012、【单选题】为了避免程序和( )丢失,可编程序控制器装有锂电池,当锂电池和电压降至相应的的信号灯亮时,要几时更换电池。
第八章直流调速系统概述调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速系统速系统的主要形式。
在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
因此,我们先着重讨8.1.1直流电机的调速方法根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:(1)调节电枢供电电压U。
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩的系统来说,这种方法最好。
变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。
(2)改变电动机主磁通。
改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。
(3)改变电枢回路电阻。
在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。
但是只能进行有级调速没什么调速作用;还会在调速电阻上消耗大量电能。
改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传压调速配合使用,在额定转速以上作小范围的升速。
因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和直流电动机电枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。
直流电动机的调速方法
直流电动机是一种常见的电动机类型,可通过多种方法进行调速。
下面将介绍几种常用的直流电动机调速方法。
1. 电阻调速法:
通过改变外接电阻来改变电动机的终端电压,进而控制其转速。
调速范围相对较小,不适用于大功率电机。
2. 变磁调速法:
通过改变电动机的磁场强度来改变转矩和转速。
涉及到控制
电动机的励磁电流和电枢电流,调速范围较大。
3. 反电动势调速法:
利用电动机内部产生的反电动势,通过控制电源电压或电动
机的励磁电流来调节电机转速。
调速范围较大,但需要使用复杂的控制装置。
4. PWM调速法:
利用脉冲宽度调制技术,通过改变电源给电动机的占空比来
调节电机转速。
调速范围广,控制简单,效果较好。
5. 使用可变频率变电压供电系统:
通过改变电源的频率和电压来改变电机的转速。
调速范围广,但需要较复杂的电力电子设备。
以上是几种常见的直流电动机调速方法,不同的方法适用于不
同的场景和需求。
在实际应用中,需要根据具体情况选择合适的调速方法。
第一章直流电机调速系统实验实验一单闭环不可逆直流调速系统实验一、实验目的(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试过程。
(3)认识闭环反馈控制系统的基本特性。
二、实验所需挂件及附件三、实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。
电机的最高转速也由电流调节器的输出限幅所决定。
同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。
当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。
直流电动机的电枢回路串电阻调速特点的简要解析序号一:引言直流电动机是一种常见的电动机,它以其调速性能优良而受到广泛应用。
其中,电枢回路串电阻调速是一种简单而有效的调速方法。
本文将对直流电动机的电枢回路串电阻调速特点进行简要解析,旨在帮助读者更好地理解这一调速方式的工作原理和应用场景。
序号二:电枢回路串电阻调速的基本原理电枢回路串电阻调速是通过改变直流电机电枢回路中串联的电阻来调整电枢电流和电机转速的一种方法。
当驱动电源的电压固定不变时,增加回路中的串联电阻会导致电机电流减小,进而降低电机转速。
相反,减小串联电阻会增加电机电流,使转速增加。
序号三:电枢回路串电阻调速的特点3.1 简单可靠电枢回路串电阻调速方法简单可靠,只需要在电枢回路中串联一个可变电阻即可实现调速。
相比其他复杂的调速方法,这种方式的设计和安装成本较低,且操作简便。
3.2 调试方便通过改变电枢回路中的串联电阻,可以灵活地调整电机的转速。
只需调节电阻大小,即可实现转速的微调。
这种调试过程相对容易,即使对于没有太多电机调试经验的操作员来说也较为友好。
3.3 调速范围有限电枢回路串电阻调速的一个显著特点是其调速范围有限。
由于电枢回路串电阻的变化范围较小,因此只能在某一范围内微调电机的转速。
对于那些需要大范围转速调节的应用场景来说,该调速方法可能无法满足要求。
序号四:电枢回路串电阻调速的应用场景4.1 低要求转速调节对于一些不需要频繁转速调节的应用场景,如一些带有固定负载的机械设备,电枢回路串电阻调速是一个理想的选择。
由于其简单可靠的特点,适用于需要稳定转速且转速调节幅度较小的应用场合。
4.2 初期运行调速在一些需要电机在启动初期进行调速的场景中,电枢回路串电阻调速同样具备一定的优势。
在电机刚启动时,由于转矩大、转速低,电枢回路串电阻调速可以帮助实现电机平稳启动,并将转速逐渐调整至设定值。
序号五:总结与回顾通过本文的简要解析,我们对直流电动机的电枢回路串电阻调速特点有了更深入的理解。
电阻调速原理
电阻调速是一种常见的电机调速方式,通过改变电机的供电电压,来实现电机的调速。
电阻调速原理主要是通过改变电路中的电
阻来改变电机的供电电压,从而改变电机的转速。
在实际应用中,
电阻调速广泛应用于风机、水泵、输送机、压缩机等设备的调速控
制中。
电阻调速原理的基本思想是通过改变电路中的电阻,来改变电
机的供电电压,从而改变电机的转速。
在直流电机中,可以通过串
联电阻或并联电阻的方式来实现电机的调速。
在交流电机中,可以
通过改变电路中的电阻来改变电机的供电电压,从而实现调速控制。
电阻调速原理的关键是根据电机的特性曲线来选择合适的电阻
数值,从而实现所需的转速调节。
在实际应用中,需要根据电机的
负载特性和工作要求来确定电路中的电阻数值,以实现精确的调速
控制。
电阻调速原理的优点是结构简单,成本低廉,调速范围广,调
速平稳,调速精度高。
但是也存在一些缺点,如调速过程中会产生
较大的能量损耗,效率较低,对电机的寿命影响较大,不适合长时
间大负载运行。
在实际应用中,需要根据具体的工况和要求来选择合适的调速方式,综合考虑成本、效率、稳定性等因素,从而选择最合适的调速方式。
总的来说,电阻调速原理是一种简单有效的电机调速方式,通过改变电路中的电阻来改变电机的供电电压,从而实现精确的调速控制。
在实际应用中,需要根据具体的工况和要求来选择合适的调速方式,从而实现最佳的调速效果。
直流电机串电阻调速原理以直流电机串电阻调速原理为标题,我们来探讨一下直流电机串电阻调速的工作原理和特点。
直流电机是广泛应用于工业和家庭中的一种电动机,其转速的调节对于电机的正常运行和工作效率至关重要。
直流电机的转速调节可以通过串联电阻实现,这种调速方式被称为串电阻调速。
下面我们将详细介绍串电阻调速的原理和工作过程。
串电阻调速的原理是通过改变电机的电动势来调节电机的转速。
在直流电机中,转速与电机的电动势成反比,即电动势越大,转速越低;电动势越小,转速越高。
因此,通过串联电阻来改变电机的电动势,就可以实现电机的转速调节。
具体来说,串电阻调速是通过在电机的电源电路中串联一定阻值的电阻来改变电机的电动势。
当电机工作时,电流经过串联电阻,电阻会消耗一部分电能,降低电机的电源电压,从而降低电机的电动势。
电动势降低后,电机的转速也会相应增加。
反之,如果减小串联电阻,电机的电源电压会增加,电机的电动势也会增加,从而降低电机的转速。
串电阻调速的特点是结构简单、调节范围广。
由于直流电机的转速与电动势成反比,因此通过串联电阻调节电动势,可以实现较大范围的转速调节。
同时,串电阻调速的结构简单,成本低廉,适用于一些对转速要求不是很高的场合。
然而,串电阻调速也存在一些问题。
首先,由于串联电阻会消耗一部分电能,因此会降低电机的效率,引起能源的浪费。
其次,串电阻调速只能实现电机转速的降低,无法实现转速的提高。
此外,在转速调节范围较大时,由于串联电阻的阻值变化较大,可能会导致电机的电流过大,增加了电机的损耗和发热,影响电机的寿命。
串电阻调速是一种简单、经济的直流电机调速方法,通过串联电阻来改变电机的电动势,从而实现转速的调节。
虽然存在一些问题,但在一些对转速要求不高的场合,串电阻调速仍然是一种有效的调速方式。
未来,随着科技的发展,调速技术将不断进步和创新,为电机的高效运行提供更多选择和可能性。
第八章直流调速系统8.1 概述调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速系统。
但是主要形式。
在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
因此,我们先着重讨论直流调速8.1.1直流电机的调速方法根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:(1)调节电枢供电电压U。
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩系统来说,这种方法最好。
变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。
(2)改变电动机主磁通。
改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。
(3)改变电枢回路电阻。
在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。
但是只能进行有级调速么调速作用;还会在调速电阻上消耗大量电能。
改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动速配合使用,在额定转速以上作小范围的升速。
因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和弱磁直流电动机电枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。
一、直流调速直流调速是一种较为常见的机床调速形式,它通过改变直流电动机的电压或电流来实现机床的调速。
在直流调速中,常用的调速方法包括电阻调速、励磁调速和变极调速。
1. 电阻调速电阻调速是通过改变直流电动机的电阻来调节电机的转速。
在电路中串联或并联不同的电阻来改变电动机的电压和电流,从而实现不同速度下的工作。
2. 励磁调速励磁调速是通过改变电动机的励磁电流或电压来调节电机的转速。
通过改变励磁电流的大小和方向,达到调速的目的。
3. 变极调速变极调速是通过改变电动机的极数来调节电机的转速。
通过改变电动机的励磁电流和电压,使电动机在不同的工作情况下具有不同的极数,从而实现调速。
直流调速的应用范围较广,适用于需要频繁调速和对速度精度要求较高的场合,如机床加工、风机、泵类设备等。
二、交流调速交流调速是指通过改变交流电动机的电压、频率或相数来实现机床的调速。
常用的交流调速方法包括变频调速、多极调速和串联/并联运行调速。
1. 变频调速变频调速是通过改变电动机的供电频率和电压来实现调速。
将交流电源转换为直流电源后再通过变频器对直流电源进行调节,使电动机的转速随之改变。
2. 多极调速多极调速是通过改变电动机的极数来实现调速。
在不同的工作情况下,通过改变电动机的极数以达到调速的目的。
3. 串联/并联运行调速串联/并联运行调速是通过改变电动机的接线方式来实现调速。
通过改变电动机绕组的串联或并联方式来改变电机的转速。
交流调速适用于对转速要求不是特别高,且频繁启停、节能及运行平稳的设备,如输送机、提升机、通风设备等。
三、伺服调速伺服调速是一种较为精密的调速形式,它通过改变伺服电机的控制信号来实现机床的调速。
伺服调速是通过伺服系统对电动机进行高精度控制,具有速度响应快、位置精度高等特点。
伺服调速适用于对转速、位置精度要求高的设备,如数控机床、印刷设备、包装设备等。
机床调速的三种形式各有特点,在不同的应用场合有着各自的优势和适用范围。
直流电动机的调速方法直流电动机分为有换向器和无换向器两大类。
直流电动机调速系统较早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。
这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。
该法只适用在一些小功率且调速范围要求不大的场合。
30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。
这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。
但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。
近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。
特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。
电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。
直流电动机的转速n和其他参量的关系可表示为(1)式中Ua——电枢供电电压(V);Ia ——电枢电流(A);Ф——励磁磁通(Wb);Ra——电枢回路总电阻(Ω);CE——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。
由式1可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。
1. 改变电枢回路电阻调速各种直流电动机都可以通过改变电枢回路电阻来调速,如图1(a)所示。
此时转速特性公式为(2)式中Rw为电枢回路中的外接电阻(Ω)。
{{分页}}图1(a) 改变电枢电阻调速电路图1(b) 改变电枢电阻调速时的机械特性当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R=(Ra+Rw)增大,电动机转速就降低。
直流电动机调速原理教学案一、教学目标1.了解直流电动机调速的概念和原理。
2.掌握直流电动机控制电路的基本结构和原理,实现对电机的调速。
3.能够分析控制电路并了解其型号和应用。
4.能够亲自进行试验,启动和调节直流电动机。
二、教学内容1.直流电动机调速的概念和原理。
直流电动机调速是通过改变电机的电压、电流和转矩大小,来达到改变电机转速的目的。
直流电动机的调速方法有多种,比如电阻调速、电流调速、电势调速和脉宽调制(PWM)等。
其中,最常见的是电阻调速和PWM调速。
2.直流电动机控制电路的基本结构和原理。
直流电动机控制电路的基本结构包括电源、电机和控制电路。
控制电路是控制电机转速和方向的一种电路,它的核心部分是功率管。
功率管是一种具有高通电能力的电子元器件,能够在不同的状态下切换电机的转矩和速度。
控制电路中的功率管可以是晶体管、场效应管或二极管。
3.掌握控制电路的工作原理和型号。
控制电路可以通过不同的控制模式实现电机调速。
比如,电阻调速和PWM调速。
电阻调速是通过改变电路中电阻的大小来实现电机转速调整的。
而PWM调速则是通过改变控制电路中电子元器件的导通时间和关断时间来实现控制电机转速和电流的大小。
常见的控制电路型号有NE555、LM358、TDA7294和MCU单片机等。
4.亲自进行试验,启动和调节直流电动机。
在教学板上组装好控制电路和直流电动机的连接,可以进行试验。
首先启动电机,然后用万用表测量电机的转速。
根据测量结果调整控制电路,可以实现电机速度的不同设定。
根据需要可以更改控制电路的参数来实现电机转速和电流的精确控制。
三、教学方法本教学案采用讲授、教学演示和实验操作相结合的教学方法。
讲授要点详细讲解、重难点着重强调,语言要通俗易懂,重点突出,注重实际应用。
让学生分组自己操作控制电路,实现电机的启动和不同转速的设定。
教师在实验过程中指导学生自主思考和探究,尝试改变电路的参数来实现电机转速和电流的控制。
直流电机的调速方法有哪些直流电机的调速方法有许多种,以下是一些常见的调速方法:1. 电压调速方法:通过改变电源电压的大小来调整电机的转速。
这种方法简单可行,但对电机的负载能力影响较大,不适用于需要大范围调速的场合。
2. 变极调速方法:利用电枢绕组和磁场绕组之间的电磁耦合原理,通过调节电枢绕组的绕组连接方式,改变电机的磁通量,从而实现调速。
这种调速方法的优点是结构简单,速度调节范围较大,但调速性能较差。
3. 变频调速方法:利用频率变换器将交流电源转换为不同频率的交流电源供给直流电机,通过改变频率来控制电机的转速。
这种调速方法具有调速范围广、调速性能好等优点,但设备价格较高。
4. 串电阻调速方法:通过在电枢电路中串联电阻,降低电枢电压,从而调速。
这种调速方法简单易行,适用于轻载和小功率的直流电机调速。
5. 并电阻调速方法:通过在电枢电路中并联电阻,降低电枢回路的电阻,从而调节电枢电流和转速。
这种调速方法比串电阻调速方法具有调速范围广、对电机性能影响较小等优点。
6. 脉宽调制(PWM)调速方法:利用脉冲宽度调制技术,调节电机的平均电压值,控制电机的转速。
这种调速方法具有调速范围广、调速稳定等优点,被广泛应用于直流电机调速控制系统中。
7. 电流反馈调速方法:通过测量电机的电流信号,对电机控制系统进行反馈控制,使得输出速度与设定速度保持一致。
这种调速方法具有调速精度高、控制稳定等优点,适用于对速度要求较高的场合。
8. 矢量控制调速方法:利用矢量控制技术,对电机的磁场和电压进行分别控制,使电机既能调速,又能提供较大的转矩。
这种调速方法具有快速响应、控制精度高等优点,被广泛应用于高性能调速系统中。
总之,直流电机的调速方法有电压调速、变极调速、变频调速、串电阻调速、并电阻调速、脉宽调制调速、电流反馈调速和矢量控制调速等多种。
不同的调速方法适用于不同的场合,根据实际需要选择合适的调速方案。
直流电机利用电阻调速是最简单的调速电路。
就是利用直流电机与电阻串联,改变电阻的阻值也就改变了电路中的电流,达到调速的目的。
向左转|向右转
电梯电阻门机怎么接?
配的是莫纳克3000 不知道要怎么接可以正常开关门但是不减速
电梯直流门机系统工作原理是连杆推动弹簧,弹簧再推动电梯门,连杆与门之间并非刚性连接,而是通过弹簧连接,当门之间有物体时,门受物体的阻碍会停止移动,而连杆会在电机的驱动下继续移动,此时弹簧被压缩,当压缩到一定距离,连杆触动反向开关,电机反转,门又会被拉开,所以弹簧给门和连杆之间提供了缓冲距离,使人和物体得到保护,最好加双重保护,即当反向开关失灵时连杆继续移动,触动保护开关,电机停止工作并报警,提示反向开关失灵,确保万无一失。