高三物理光电效应1
- 格式:ppt
- 大小:371.00 KB
- 文档页数:18
量子、光的粒子性要点二、光的粒子性1.光电效应现象19世纪末赫兹用实验验证了麦克斯韦的电磁场理论,明确了光的电磁波说.但赫兹也最早发现了光电效应现象.如图所示。
用弧光灯照射锌板,与锌板相连的验电器就带正电,这说明锌板在光的照射下发射了电子.定义:住光的照射下物体发射电子的现象,叫做光电效应,发射出米的电子叫做光电子.转化为电现象.要点诠释:(1)光电效应的实质:光现象−−−→(2)定义中光包括不可见光和可见光.(3)使锌板发射出电子的光是弧光灯发出的紫外线.2.光电效应的规律可以用图研究光电效应中光电流与照射光的强弱、光的颜色(频率)等物理量间的关系.阴极K和阳极A是密封在真空玻璃管中的两个电极,阴极K在光照时能够发射光电子.电源加在K与A之间的电压大小可以调整,正、负极也可以对调.当电源按图示极性连接时,阳极A吸收阴极K发出的电子,在电路中形成光电流.(1)光电效应的实验结果.首先在入射光的强度与频率不变的情况下,I U-的实验曲线如图甲所示.I.这是因为单位时间内从阴极曲线表明,当加速电压U增加到一定值时,光电流达到饱和值mK射出的光电子全部到达阳极A.若单位时间内从阴极K上逸出的光电子数目为n,则饱和电流m I ne =.式中e 为电子电荷量,另一方面。
当电压U 减小到零,并开始反向时,光电流并没降为零,这就表明从阴极K 逸出的光电子具有初动能.所以尽管有电场阻碍它们运动,仍有部分光电子到达阳极A .但是当反向电压等于c U -时,就能阻止所有的光电子飞向阳极A ,使光电流降为零,这个电压叫遏止电压,它使具有最大初速度的电子也不能到达阳极A .如果不考虑在测量遏止电压时回路中的接触电势差,那么我们就能根据遏止电压c U -来确定电子的最大速度m v 和最大动能,即212km m c E mv eU ==. 在用相同频率不同强度的光去照射阴极K 时,得到的I U -曲线如图乙所示.它显示出对于不同强度的光,c U 是相同的.这说明同频率、不同强度的光所产生的光电子的最大初动能是相同的.此外,用不同频率的光去照射阴极K 时,实验结果是:频率愈高,c U 愈大,如图丙,并且ν与c U 呈线性关系,如图丁.频率低于νc 的光,不论强度多大,都不能产生光电子,因此,νc 称为截止频率.对于不同的材料,截止频率不同.(2)光电效应的实验规律. ①饱和电流m I 的大小与入射光的强度成正比,也就是单位时间内逸出的光电子数目与入射光的强度成正比.②光电子的最大初动能(或遏止电压)与入射光线的强度无关(如图乙,图中010203I I I 、、表示入射光强度),而只与入射光的频率有关.频率越高,光电子的初动能就越大(见图丁). ③频率低于c ν的入射光,无论光的强度多大,照射时间多长,都不能使光电子逸出.④光的照射和光电子的逸出几乎是同时的,在测量的精度范围内(910s -<)观察不出这两者间存在滞后现象.3.经典电磁理论解释光电效应到的困难(1)波动理论认为:光的能量是由光的强度决定的,而光的强度又是由光波的振幅所决定的,跟频率无关.(1)光子说:爱因斯坦于1905年提出,在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子,光子的能量跟它的频率成正比,即E h ν=,式中h 叫普朗克常量.(346.6310J s h =⨯⋅-)(2)光电效应方程:km E h W ν=-.其中212km c m E m v =为光电子的最大初动能,W 为金属的逸出功.注意要正确理解光电效应方程. ①式中km E 是光电子的最大初动能,就某个光电子而言,其离开金属时的动能大小可以是0km E ~范围内的任何数值.②光电效应方程表明,光电子的最大初动能与入射光的频率ν呈线性关系(注意不是正比关系),与光强无关.③光电效应方程包含了产生光电效应的条件,即0km E h W ν=->,亦即h W ν>,c W hνν>=,而c W hν=就是金属的极限频率. ④光电效应方程实质上是能量守恒方程.⑤逸出功W :电子从金属中逸出所需要的克服束缚而消耗的能量的最小值,叫做金属的逸出功.光电效应中,从金属表面逸出的电子消耗能量最少.5.光子说对光电效应规律的解释(1)由于光的能量是一份一份的,那么金属中的电子也只能一份一份地吸收光子的能量.而且这个传递能量的过程只能是一个光子对一个电子的行为.如果光的频率低于极限频率,则光子提供给电子的能量不足以克服原子的束缚,就不能发生光电效应.(2)而当光的频率高于极限频率时,能量传递给电子以后,电子摆脱束缚要消耗一部分能量,剩余的能量以光电子的动能形式存在,这样光电子的最大初动能212km c m E m v h W ν==-,其中W 为金属的逸出功,因此光的频率越高,电子的初动能越大.(3)电子接收能量的过程极其短暂,接收能量后的瞬间即挣脱束缚,所以光电效应的发生也几乎是瞬间的.(4)发生光电效应时,单位时间内逸出的光电子数与光强度成正比,光强度越大意味着单位时间内打在金属上的光子数越多,那么逸出的光电子数目也就越多.6.知识归纳(2)光电效应现象说明光具有粒子性.(3)光电效应方程212km c m E m v h W ν==-,W 为逸出功. 7.光电效应曲线(1)km E ν-曲线:如图(a )所示的是光电子最大初动能km E 随入射光频率ν的变化曲线.这里,横轴上的截距是阴极金属的极限频率;纵轴上的截距是阴极金属的逸出功负值;斜率为普朗克常量.(km E h W ν=-,km E 是ν的一次函数,不是正比例函数)(2)I U -曲线:如图(b )所示的是光电流强度I 随光电管两极板间电压U 的变化曲线,图中m I 为饱和光电流,c U 为遏止电压.要点诠释:①利用212c c m eU m v =可得光电子的最大初动能km E . ②利用km E ν-图线可得极限频率c ν和普朗克常量h .8.光强光的强度是指单位时间内垂直于光的传播方向上的单位面积所通过的能量,即I nh ν=,其中ν是光子的频率,n 是单位时间单位横截面积上通过的光子数.光的强度不但与n 有关,也与ν有关:(1)在入射光频率不变时,光强与光子数成正比.(2)当光强一定时,入射光的频率越高,单位时间单位横截面积上通过的光子数目就越少,因而逸出的光电子数目也越少.9.光电管的构造和工作原理(重点)要点诠释:利用光电效应可将光信号转化为电信号,而且动作迅速,在实际中用得最多的是光电管.光电管的种类很多,如图所示是有代表性的一种,玻璃泡里的空气已抽出,有时管内充有少量的惰性气体.管的内半壁涂有逸出功小的碱金属作阴极K ,管内另有一阳极A ,使用时采用如图所示的电路.要点诠释:当光照射到阴极K 上时,由于发生光电效应,就有电子从阴极K 上发射出来,在电场力作用下到达阳极A .因而电路中就有电流流过.照射光的强度不同,阴极发射的电子数不同,电路中的电流就不同.因此利用光电管可将光信号转化为电信号.光电管产生的光电流很弱,应用时可用放大器进行放大.利用光电管可以实现自动化控制,制作有声电影,实现无线电传真,自动计数等.类型二、光电效应现象及应用例4、(2015 扬州高三检测)在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图所示,这时( )A .金属内的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属B .锌板带正电,指针带正电C .锌板带负电,指针带正电D .若仅减弱照射光的强度,则可能不再有光电子飞出【答案】B 【解析】A 、每个电子吸收一个光子,只有当入射光的能量大于逸出功,才会有电子飞出,故A 错误;BC 、锌板在弧光灯照射下,发生光电效应,有光电子逸出,锌板失去电子带正电,验电器与锌板相连,导致指针带正电,故B 正确,C 错误;D 、是否有光电子飞出,与照射光的强度无关,故D 错误。
课题:光电效应 光的波粒二象性(高三物理第一轮)一、考点预测1、光子说及光子数的估算.2、光电效应现象的分析和光电效应方程的应用.3、光的波粒二象性及物质波波长的计算.二、考点归纳1、光电效应(1)光电效应现象:在光照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子.(2)光电效应的实验规律①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应.②光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.③入射光照射金属时,光电子的发射几乎是瞬时的,一般不超过10-9s.④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比.(3)爱因斯坦的光子说:空间传播的光是不连续的,是一份一份的,每一份叫一个光子.每个光子的能量E =hv(4)爱因斯坦光电效应方程:E k =hv -WE k 表示光电子的最大初动能;W 为金属的逸出功,W =hv 0(5)用光子说解释光电效应及其规律①光照射金属时,一个电子吸收一个光子(形成光电子)的能量后,动能立即增大,不需要积累能量的过程.②电子从金属表面逸出,必须克服金属正离子的引力做功(逸出功W ),要使入射光子的能量不小于W ,对应频率0W v h=为极限频率. ③电子吸收光子的能量hv 后,一部分消耗克服引力做功(即W ),一部分消耗于从金属内部向表面运动时克服其他原子阻碍做功(即W ′),剩余部分转化为初动能.即212mv hv W W '=--,只有直接从金属表面逸出的光电子才具有最大动能(W ′=0).对于确定的金属,W 是一定的,故光电子最大初动能只随入射光频率增大而增大.④入射光越强,单位时间内入射到金属表面的光子数越多,产生的光电了也越多,射出的光电子作定向移动时形成的光电流越大.2、光的波粒二象性光既具有波动性,又具有粒子性,即光具有波粒二象性,这是微观世界具有的特殊规律.(1)既不可把光当宏观观念中的波,也不可把光当成宏观观念中的粒子.(2)大量光子产生的效果往往显示出波动性,个别光子产生的效果往往显示出粒子性;频率越低的光波动性越明显,频率越高的光粒子性越明显.(3)光在传播过程中往往显示波动性,在与物质作用时往往显示粒子性.(4)光波是一种概率波.3、物质波(1)物质波的分类:物理学把物质分为两大类,一类是原子、电子等称做实物;另一类是电场、磁场等统称为场,场是没有原子结构的物质.(2)物质波:任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它对应,这种波叫物质波,也叫德布罗意波.德布罗意波的波长:hP λ=P是运动物体的动量,h是普朗克常量.宏观物体的德布罗意波长太小,所以很难观察到它们的波动性;微观粒子则不同,可找到与其波长差不多的障碍物或孔,如在金属晶体的晶格中能观察到他们的波动性.(3)物质波是一种概率波(4)牛顿力学不适用于微观粒子的运动.4、激光激光是由于受激辐射而发出的光,光源在极短时间内辐射出频率、发射方向、初相和偏振方向等所有特征完全相同的光子,这种光就称为激光.激光的特点:相干性好、亮度高、平行度好.激光的应用:精密导航、光纤通信、全息照相、激光雷达、读VCD光盘、激光炮、激光手术等.三、例题精讲例1、某单色光照射某金属不能产生光电效应,则下述措施中可能使该金属产生光电效应的是()A.延长光照时间B.增大光的强度C.换用频率低的光照射D.换用波长较短的光照射解析:能否发生光电效应由光的频率决定,而与光的强度及照射时间无关,A、B错误;当照射光的频率v达到或超过极限频率v0时,才能发生光电效应,故应换用频率较高亦即波长较短的光照射,才能发生光电效应,故C错,D对.答案:D例2、光电效应实验的装置如图5-1所示,则下列说法中正确的是()A.用紫外光照射锌板,验电器指针会发生偏转B.用红色光照射锌板,验电器指针会发生偏转C.锌板带的是负电荷D.使验电器指针发生偏转的是正电荷解析:紫外光频率大于锌板极限频率,故锌板会发生光电效应,向外放出光电子,从而带上正电荷,使与之相连的验电器带正电而发生偏转.答案:AD例3、如图所示,一束复色光被玻璃三棱镜折射后分解为互相分离的红、黄、蓝三色光,分别照射到相同的三块金属板上,已知金属板b恰有光电子逸出,则可知()A.照射到板c上的光是蓝色光B.照射到板c上的光在棱镜中传播速度最小C.照射到板a上的光波长最长D.板a上一定能发生光电效应解析:由光路可知,玻璃对照射到a板上的光的折射率最大,此光频率最高,在棱镜中的波速最小,波长最短,照射c板的光频率最低,在棱镜中的波速最大,波长最长,而红、黄、蓝三色光中,蓝光频率最大,红光频率最小,故照射到a板的是蓝光,照射到b板的是黄光,照射到c板是红光,板a上一定能发生光电效应.答案:D例4、太阳光垂直射到地面上时,1m2地面接收到太阳光的功率为1.4kW,其中可见光部分约占45%.(1)假如认为可见光的波长约为0.55μm,日地间距离R=1.5×1011m,普朗克常量h=6.6×10-34J·s,估算太阳每秒辐射出的可见光光子为多少?(2)若已知地球的半径r=6.4×106m,估算地球接收的太阳光的总功率.解析:建立以太阳为球心,日地距离为半径的球面模型和以地球半径r为半径的圆平面模型.(1)设地面上垂直阳光的1m2面积上每秒钟接收的可见光光子数为n,则有P×45%=n·h·c/λ解得63213480.450.450.5510 1.4101.75106.610310Pnhcλ--⨯⨯⨯⨯===⨯⨯⨯⨯个个设想一个以太阳为球心,以日、地距离为半径的大球面包围着太阳,大球面接收的光子数等于太阳辐射的光子数,则所求可见光光子数N=n·4πR2=1.75×1021×4×3.14×(1.5×1011)2个=4.9×1044个.(2)地球背着阳光的半个球面没有接收太阳光,地球向阳的半个球面也不都与太阳光垂直.因此,接收太阳光辐射且与阳光垂直的有效面积是以地球半径为半径的圆平面的面积,则地球接收太阳光的总功率P地=P·πr2=1.4×3.14×(6.4×106)2kW=1.8×1017kW答案:(1)4.9×1044个(2)1.8×1017kW。
高考地位高考对本章的考查主要以选择题形式出现,经常结合经典物理理论和最新科技成果考查,难度不会太大,分值在6分左右。
考纲下载波粒二象性1.光电效应(Ⅰ)2.爱因斯坦光电效应方程(Ⅰ)考纲解读1.理解光电效应现象,掌握光电效应方程的应用。
高考中常以选择题形式呈现。
2.理解玻尔理论对氢原子光谱的解释,掌握氢原子的能级公式并能灵活应用,用氢原子能级图求解原子的能级跃迁问题是高考的热点。
3.原子核式结构的发现、原子核的组成、放射性、半衰期等仍会是高考命题的重点。
4.了解放射性同位素的应用,了解核力的特点。
5.书写核反应方程,区分核反应的种类并根据质能方程求解核能问题在高考中命题率较高。
6.裂变反应、聚变反应的应用,射线的危害和应用等知识与现代科技联系密切。
原子结构1.氢原子光谱(Ⅰ)2.氢原子的能级结构、能级公式(Ⅰ)原子核1.原子核的组成、放射性、原子核的衰变、半衰期(Ⅰ)2.放射性同位素(Ⅰ)3.核力、核反应方程(Ⅰ)4.结合能、质量亏损(Ⅰ)5.裂变反应和聚变反应、裂变反应堆(Ⅰ)6.射线的危害和防护(Ⅰ)第1讲光电效应波粒二象性主干梳理对点激活知识点光电效应及其规律Ⅰ1.定义照射到金属表面的光,能使金属中的01电子从表面逸出的现象。
2.光电子02光电效应中发射出来的电子。
3.光电效应规律(1)存在饱和光电流:光照条件不变,当正向电压增大时,光电流趋于一个饱和值,即一定的光照条件下单位时间发出的光电子数目是一定的。
实验表明,光的频率一定时,入射光越强,饱和光电流03越大,单位时间内发射的光电子数04越多。
(2)存在遏止电压:使光电流减小到0的反向电压U c称为遏止电压。
遏止电压的存在意味着光电子的初动能有最大值E km=12m e v2c=eU c,称为光电子的最大初动能。
实验表明,遏止电压(或光电子的最大初动能)与入射光的05强度无关,只随入射光频率的增大而06增大。
(3)存在截止频率:每种金属都有一个极限频率或截止频率νc,入射光的频率必须07大于等于这个极限频率才能产生光电效应,低于这个频率的光不能产生光电效应。
高三物理光电效应方程的实验推导高三物理光电效应方程的实验推导1.每一种金属在发生光电效应时都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。
相应的波长被称做极限波长(或称红限波长)。
当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。
2.光电效应中发生的光电子的速度与光的频率有关,而与光强有关。
3.光电效应的瞬时性。
实验发现,只需光的频率高于金属的极限频率,光的亮度无论强弱,光子的发生都简直是瞬时的,即简直在照到金属时立刻发生光电流。
照应时间不超越十的负九次方秒(1ns)。
4.入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。
在光颜色不变的状况下,入射光越强,饱和电流越大,即一定颜色的光,入射光越强,一定时间内发射的电子数目越多。
在光电效应中,要释放光电子显然需求有足够的能量。
依据经典电磁实际,光是电磁波,电磁波的能量决议于它的强度,即只与电磁波的振幅有关,而与电磁波的频率有关。
而实验规律中的第一、第二两点显然用经典实际无法解释。
第三条也不能解释,由于依据经典实际,对很弱的光要想使电子取得足够的能量逸出,必需有一个能量积聚的进程而不能够瞬时发生光电子。
光电效应里,电子的射出方向不是完全定向的,只是大局部都垂直于金属外表射出,与光照方向有关,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向发生影响。
一切这些实践上曾经曝显露了经典实际的缺陷,要想解释光电效应必需打破经典实际依据爱因斯坦的光量子实际,射向金属外表的光,实质上就是具有能量ε=hν的光子流。
假设照射光的频率过低,即光子流中每个光子能量较小,当他照射到金属外表时,电子吸收了这一光子,它所添加的ε=hν的能量依然小于电子脱离金属外表所需求的逸出功,电子就不能脱分开金属外表,因此不能发生光电效应。
第12章 量子论初步 原子核第一节 光电效应 氢原子光谱知识点1 光电效应和波粒二象性1.光电效应的实验规律(1)存在着饱和电流:对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多,饱和光电流越大.(2)存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应.使光电流减小到零的反向电压叫遏止电压.(3)光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s.2.光子说爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量ε=hν,其中h =6.63×10-34 J·s.3.光电效应方程(1)表达式:hν=E k +W 0或E k =hν-W 0.(2)物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =12m v 2. 4.光的波粒二象性 (1)波动性:光的干涉、衍射、偏振现象证明光具有波动性. (2)粒子性:光电效应、康普顿效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.5.物质波 (1)概率波光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.(2)物质波任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=hp,p为运动物体的动量,h为普朗克常量.易错判断(1)光子说中的光子,指的是光电子.(×)(2)只要光足够强,照射时间足够长,就一定能发生光电效应.(×)(3)极限频率越大的金属材料逸出功越大.(√)知识点2α粒子散射实验与核式结构模型1.实验现象绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子甚至被撞了回来.如图所示.α粒子散射实验的分析图2.原子的核式结构模型在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.易错判断(1)原子核集中了原子全部的正电荷和质量.(×)(2)原子中绝大部分是空的,原子核很小.(√)(3)核式结构学说是卢瑟福在α粒子散射实验的基础上提出的.(√)知识点3氢原子光谱和玻尔理论1.光谱(1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类:①线状谱光谱是一条条的亮线. ②连续谱光谱是连在一起的光带.(3)氢原子光谱的实验规律:巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数.2.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n (h 是普朗克常量,h =6.63×10-34 J·s).(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.3.氢原子的能级、能级公式(1)氢原子的能级图能级图如图所示.(2)氢原子的能级公式E n =1n 2E 1(n =1,2,3,…),其中E 1为基态能量,其数值为E 1=-13.6_eV.(3)氢原子的半径公式r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.易错判断(1)在玻尔模型中,原子的状态是不连续的.(√)(2)发射光谱可能是连续光谱,也可能是线状谱.(√)(3)玻尔理论成功地解释了氢原子光谱,也成功地解释了氦原子光谱.(×)[教材习题回访]考查点:光的波粒二象性1.(粤教版选修3-5P40T2改编)(多选)下列说法中正确的是()A.光的波粒二象性学说彻底推翻了麦克斯韦的光的电磁说B.在光的双缝干涉实验中,暗条纹的地方是光子永远不能到达的地方C.光的双缝干涉实验中,大量光子打在光屏上的落点是有规律的,暗纹处落下光子的概率小D.单个光子具有粒子性,大量光子具有波动性[答案]CD考查点:光电效应规律2.(人教版选修3-5P36T2改编)(多选)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是()A.增大入射光的强度,光电流增大B.减小入射光的强度,光电效应现象消失C.改用频率小于ν的光照射,一定不发生光电效应D.改用频率大于ν的光照射,光电子的最大初动能变大[答案]AD考查点:玻尔理论3.(粤教版选修3-5P65T2)氢原子由n=1的状态激发到n=4的状态,在它回到n=1的状态的过程中,有以下说法:①可能激发的能量不同的光子只有3种②可能发出6种不同频率的光子③可能发出的光子的最大能量为12.75 eV④可能发出光子的最小能量为0.85 eV其中正确的说法是()A.①③B.②④C.①④ D.②③[答案]D考查点:α粒子散射实验4.(沪科版选修3-5P63T2)(多选)在α粒子散射实验中,如果两个具有相同能量的α粒子以不同的角度散射出来,则散射角度大的这个α粒子() A.更接近原子核B.更远离原子核C.受到一个以上的原子核作用D.受到原子核较大的冲量作用[答案]AD1.与光电效应有关的五组概念对比(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.光子是因,光电子是果.(2)光电子的动能与光电子的最大初动能:只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能.(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量.(5)光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大,但不是简单的正比关系.2.光电效应的研究思路(1)两条线索:(2)两条对应关系:入射光强度大→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→光电子的最大初动能大.[题组通关]1.关于光电效应和康普顿效应的规律,下列说法正确的是()A.光电效应中,金属板向外发射的光电子又可以叫作光子B.康普顿效应说明光具有波动性C.对于同种金属而言,遏止电压与入射光的频率无关D.石墨对X射线散射时,部分X射线的散射光波长会变长,这个现象称为康普顿效应D[光电效应中,金属板向外发射的电子叫光电子,光子是光量子的简称,A错误;根据光电效应方程hν=W0+eU c可知,对于同种金属而言(逸出功一样),入射光的频率越大,遏止电压也越大,即遏止电压与入射光的频率有关,C错误;在石墨对X射线散射时,部分X射线的散射光波长会变长的现象称为康普顿效应,康普顿效应说明光具有粒子性,B错误,D正确.]2.(多选)光电效应的实验结论是:对某种金属()A.无论光强多强,只要光的频率小于极限频率就不能产生光电效应B.无论光的频率多低,只要光照时间足够长就能产生光电效应C.超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小D.超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大AD[每种金属都有它的极限频率ν0,只有入射光子的频率大于极限频率ν0时,才会发生光电效应,选项A正确,B错误;光电子的初动能与入射光的强度无关,随入射光频率的增加而增大,选项D正确,C错误.]爱因斯坦的光电效应方程及应用1.三个关系(1)爱因斯坦光电效应方程E k=hν-W0.(2)光电子的最大初动能E k可以利用光电管用实验的方法测得,即E k=eU c,其中U c是遏止电压.(3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc. 2.四类图象[多维探究]考向1光电效应方程的应用1.(多选)(2017·全国Ⅲ卷)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b、光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是() A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b[题眼点拨]①“照射同种金属”,说明两种情况下的逸出功相同;②用E k=hν-W0分析E k的大小,用qU=E k分析遏止电压的大小.BC[光电效应中遏止电压与最大初动能之间的关系为eU=E k,根据光电效应方程可知E k=hν-W0,若νa>νb,则E k a>E k b,U a>U b,选项A错误,选项B正确;若U a<U b,则E k a<E k b,选项C正确;由光电效应方程可得W0=hν-E k,则hνa-E k a=hνb-E k b,选项D错误.] 2.(多选)在探究光电效应现象时,某小组的同学分别用波长为λ、2λ的单色光照射某金属,逸出的光电子最大速度之比为2∶1,普朗克常量用h表示,光在真空中的速度用c表示.则()A.光电子的最大初动能之比为2∶1B .该金属的截止频率为c 3λC .该金属的截止频率为c λD .用波长为52λ的单色光照射该金属时能发生光电效应BD [由于两种单色光照射下,逸出的光电子的最大速度之比为2∶1,由E k =12m v 2可知,光电子的最大初动能之比为4∶1,A 错误;又由hν=W+E k 知,h c λ=W +12m v 21,h c 2λ=W +12m v 22,又v 1=2v 2,解得W =h c 3λ,则该金属的截止频率为c 3λ,B 正确,C 错误;光的波长小于或等于3λ时才能发生光电效应,D 正确.] 即(2017·抚州模拟)人们发现光电效应具有瞬时性和对各种金属都存在极限频率的规律.请问谁提出了何种学说很好地解释了上述规律?已知锌的逸出功为3.34 eV ,用某单色紫外线照射锌板时,逸出光电子的最大速度为106 m/s ,求该紫外线的波长λ.(电子质量M e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J·s,1 eV =1.60×10-19 J)[解析] 爱因斯坦提出的光子说很好地解释了光电效应现象.由爱因斯坦光电效应方程:E k =hν-W 0 ①光速、波长、频率之间关系:c =λν②联立①②得紫外线的波长为λ=hc W 0+12m v 2m= 6.63×10-34×3×1083.34×1.6×10-19+12×9.11×10-31×1012 m ≈2.009×10-7 m.[答案] 爱因斯坦的光子说很好地解释了光电效应2.009×10-7 m考向2 与光电效应有关的图象问题3.(2018·南昌模拟)如图甲所示是研究光电效应的电路图.某同学利用该装置在不同实验条件下得到了三条光电流I 与A 、K 两极之间的电压U AK 的关系曲线(甲光、乙光、丙光),如图乙所示.则下列说法正确的是( )甲 乙A .甲光照射光电管发出光电子的初动能一定小于丙光照射光电管发出光电子的初动能B .单位时间内甲光照射光电管发出光电子比乙光的少C .用强度相同的甲、丙光照射该光电管,则单位时间内逸出的光电子数相等D .对于不同种金属,若照射光频率不变,则逸出光电子的最大初动能与金属的逸出功为线性关系【自主思考】(1)在题图乙中,U c1和U c2的意义是什么?由此能否得出,甲、乙、丙三种光的频率关系?[提示]U c表示光电流为零时的反向电压,也就是遏止电压.此时eU c=1 2m e v2c,又因12m ev2c=hν-W.由以上两式得U c大的光的ν大,所以甲、乙、丙三种光的频率关系为ν丙>ν甲=ν乙(2)光强相同的两种色光,如何比较单位时间内照射到单位面积上的光子数的多少?[提示]频率大的光子能量大,在光强相同时,单位时间内照射到单位面积上的光子数就少.D[当光照射到K极时,如果入射光的频率足够大(大于K极金属的极限频率),就会从K极发出光电子.当反向电压增加到某一值时,电流表A中电流就会变为零,此时12m ev2c=eU c,式中v c表示光电子的最大初速度,e为电子的电荷量,U c为遏止电压,根据爱因斯坦光电效应方程可知丙光的最大初动能较大,故丙光的频率较大,但丙光照射光电管发出光电子的初动能不一定比甲光照射光电管发出光电子的初动能大,所以A错误.对于甲、乙两束频率相同的光来说,入射光越强,单位时间内发射的光电子数越多,所以B错误.对甲、丙两束不同频率的光来说,光强相同是单位时间内照射到光电管单位面积上的光子的总能量相等,由于丙光的光子频率较高,每个光子的能量较大,所以单位时间内照射到光电管单位面积上的光子数就较少,所以单位时间内发出的光电子数就较少,因此C错误.对于不同金属,若照射光频率不变,根据爱因斯坦光电效应方程E k =hν-W,知E k与金属的逸出功为线性关系,D正确.]在T3中,(1)若仅增大电源的电动势则电流表的示数一定增大吗?提示:不一定.当电流达到饱和电流时,电流表的示数就不再增大.(2)若仅将电源的正、负极对调,则电流表的示数一定为零吗?提示:不一定.正负极对调后,光电子做减速运动,电子若不能到达A 极,则电流表的示数为零,否则就不为零.4. 研究光电效应规律的实验装置如图12-1-4所示,用频率为ν的光照射光电管阴极K时,有光电子产生.由于光电管K、A间加的是反向电压,光电子从阴极K发射后将向阳极A做减速运动.光电流i由图中电流计G测出,反向电压U由电压表V测出.当电流计的示数恰好为零时,电压表的示数称为反向截止电压U c,在下列表示光电效应实验规律的图象中,错误的是()图12-1-4B[由光电效应规律可知,光电流的强度与光强成正比,光射到金属上时,光电子的发射是瞬时的,不需要时间积累,故A、D图象正确;从金属中发出的光电子,在反向电压作用下做减速运动,随着反向电压的增大,到达阳极的光电子数减少,故C图象正确;由光电效应方程可知:hν=hν0+E km,而eU c=E km,所以有hν=hν0+eU c,由此可知,B图象错误.](多选)(2017·武威模拟)如图是某金属在光的照射下产生的光电子的最大初动能E k与入射光频率ν的关系图象.由图象可知()A.该金属的逸出功等于EB.该金属的逸出功等于hν0C.入射光的频率为2ν0时,产生的光电子的最大初动能为ED.入射光的频率为ν02时,产生的光电子的最大初动能为E2ABC[由爱因斯坦的光电效应方程:E k=hν-W0,对应图线可得,该金属的逸出功W0=E=hν0,A、B均正确;若入射光的频率为2ν0,则产生的光电子的最大初动能E k=2hν0-W0=hν0=E,故C正确;入射光的频率为ν02时,该金属不发生光电效应,D错误.]1.(1)大量光子易显示出波动性,而少量光子易显示出粒子性.(2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强.(3)光子说并未否定波动说,E=hν=hcλ中,ν和λ就是波的概念.(4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的.[题组通关]3.(2018·济南模拟)关于波粒二象性,下列说法中正确的是()甲乙丙丁图12-1-5A.图甲中紫光照射到锌板上可以发生光电效应,则其他可见光照射到锌板上也一定可以发生光电效应B.图乙中入射光的强度越大,则在阴极板上产生的光电子的最大初动能越大C.图丙说明光子既有粒子性也有波动性D.戴维孙和汤姆孙利用图丁证明了电子具有波动性D[在可见光中,紫光的频率最大,故紫光光子的能量最大,紫光照射到锌板上可以发生光电效应,但其他可见光照射到锌板上不一定发生光电效应,A错误;入射光的强度只能改变单位时间内逸出光电子的数量,但不能增大逸出光电子的最大初动能,B错误;光的散射揭示了光的粒子性,没有揭示光的波动性,C错误;衍射是波特有的现象,故电子束衍射实验证明了电子具有波动性,D正确.]4.(2017·北京高考)2017年年初,我国研制的“大连光源”——极紫外自由电子激光装置,发出了波长在100 nm(1 nm=10-9 m)附近连续可调的世界上最强的极紫外激光脉冲,“大连光源”因其光子的能量大、密度高,可在能源利用、光刻技术、雾霾治理等领域的研究中发挥重要作用.一个处于极紫外波段的光子所具有的能量可以电离一个分子,但又不会把分子打碎.据此判断,能够电离一个分子的能量约为(取普朗克常量h =6.6×10-34 J·s ,真空光速c =3×108 m/s)( )A .10-21 JB .10-18 JC .10-15 JD .10-12 JB [一个处于极紫外波段的光子所具有的能量E =hν=h c λ=6.6×10-34×3×10810-7J ≈10-18 J ,选项B 正确.]1.两类能级跃迁(1)自发跃迁:高能级→低能级,释放能量,发出光子.光子的频率ν=ΔE h =E 高-E 低h .(2)受激跃迁:低能级→高能级,吸收能量.①光照(吸收光子):光子的能量必须恰等于能级差hν=ΔE .②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E 外≥ΔE .③大于电离能的光子被吸收,将原子电离.2.电离电离态与电离能电离态:n =∞,E =0基态→电离态:E 吸=0-(-13.6 eV)=13.6 eV 电离能.n =2→电离态:E 吸=0-E 2=3.4 eV如吸收能量足够大,克服电离能后,获得自由的电子还携带动能.3.谱线条数的确定方法(1)一个氢原子跃迁发出可能的光谱线条数最多为(n -1).(2)一群氢原子跃迁发出可能的光谱线条数的两种求解方法.①用数学中的组合知识求解:.②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加.[题组通关]5.(多选)氢原子光谱在可见光部分只有四条谱线,它们分别是从n为3、4、5、6的能级直接向n=2能级跃迁时产生的.四条谱线中,一条红色、一条蓝色、两条紫色,则下列说法正确的是()A.红色光谱是氢原子从n=3能级向n=2能级跃迁时产生的B.蓝色光谱是氢原子从n=6能级或n=5能级直接向n=2能级跃迁时产生的C.若氢原子从n=6能级直接向n=1能级跃迁,则能够产生红外线D.若氢原子从n=6能级直接向n=3能级跃迁时辐射的光子不能使某金属发生光电效应,则氢原子从n=6能级直接向n=2能级跃迁时辐射的光子将可能使该金属发生光电效应AD[从n为3、4、5、6的能级直接向n=2能级跃迁时,从n=3跃迁到n=2能级辐射的光子频率最小,波长最大,可知为红色光谱,A正确;蓝光光子频率大于红光光子频率,小于紫光光子频率,可知是从n=4跃迁到n=2能级辐射的光子,B错误;氢原子从n=6能级直接向n=1能级跃迁,辐射的光子频率大于从n=6跃迁到n=2能级时辐射的紫光光子频率,即产生紫外线,C错误;从n=6跃迁到n=2能级辐射的光子频率大于从n=6跃迁到n=3能级辐射的光子频率,由氢原子从n=6能级直接向n=3能级跃迁时辐射的光子不能使某金属发生光电效应,但从n=6跃迁到n =2能级跃迁时辐射的光子可能使该金属发生光电效应,D正确.]6. (2018·海口模拟)如图12-1-6所示为氢原子能级图,氢原子中的电子从n=4能级跃迁到n=1能级可产生a光;从n=3能级跃迁到n=1能级可产生b光,a光和b光的波长分别为λa和λb,a、b两光照射逸出功为4.5 eV的金属钨表面均可产生光电效应,遏止电压分别为U a和U b,则()图12-1-6A.λa>λb B.U a<U bC.a光的光子能量为12.55 eVD.b光照射金属钨产生的光电子的最大初动能E k b=7.59 eVD[氢原子中的电子从n=4能级跃迁到n=1能级产生a光,a光的光子能量hνa=E a=E4-E1=12.75 eV,氢原子中的电子从n=3能级跃迁到n =1能级产生b光,b光的光子能量hνb=E b=E3-E1=12.09 eV,a光的光子能量高,则a光的频率大,波长小,即λa<λb,A、C项错误;由光电效应方程E k=hν-W0和E k=eU c可知,频率越大,对应遏止电压U c越大,即U a>U b,B项错误;E k b=hνb-W0=7.59 eV,D项正确.]。
高三物理光电效应试题答案及解析1.以下有关近代物理内容的若干叙述正确的是()A.紫外线照射到金属锌板表面时能够发生光电效应,则当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能也随之增大。
B.在关于物质波的表达式和中,能量和动量p是描述物质的粒子性的重要物理量,波长λ或频率v是描述物质的波动性的典型物理量C.重核的裂变过程质量增大,轻核的聚变过程有质量亏损D.根据玻尔理论,氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小。
E.自然界中含有少量的14C,14C具有放射性,能够自发地进行β衰变,因此在考古中可利用14C来测定年代。
【答案】BDE【解析】紫外线照射到金属锌板表面时能够发生光电效应,则当增大紫外线的照射强度时,从锌板表面逸出的光电子的数目也随之增大,最大初动能不变,选项A 错误;在关于物质波的表达式和中,能量和动量p是描述物质的粒子性的重要物理量,波长λ或频率v是描述物质的波动性的典型物理量,选项B正确;重核的裂变过程和轻核的聚变过程都有质量亏损,选项C 错误;根据玻尔理论,氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小,选项D正确;自然界中含有少量的14C,14C具有放射性,能够自发地进行β衰变,因此在考古中可利用14C来测定年代,选项E 正确。
【考点】光电效应;质量亏损;玻尔理论;放射性衰变.2.(6分)在光电效应实验中,两个实验小组分别在各自的实验室,约定用相同频率的单色光,分别照射锌和银的表面,结果都能发生光电效应,如下左图,并记录相关数据。
对于这两组实验,下列判断正确的是不同A.因为材料不同逸出功不同,所以遏止电压UcB.饱和光电流一定不同C.光电子的最大初动能不同D.因为光强不确定,所以单位时间逸出的光电子数可能相同~υ图像(υ为照射光频率,下右图为其中一小组绘制E.分别用不同频率的光照射之后绘制Uc的图像),图像的斜率可能不同【答案】ACD【解析】根据光电效应方程,,可知因为材料不同逸出功不同,所以最大初动能不同,选项A C正确;饱和光电流与入射光的强度有关,不同,由,可知遏止电压Uc因为光强不确定,所以单位时间逸出的光电子数可能相同,饱和光电流不一定不同,选项B错误,D正确;根据光电效应方程,以及,可得,即,因为为定值,所以U~图像的斜率一定相同,选项E错误。
高三物理光电效应试题答案及解析1.某次光电效应实验中,测得某金属的入射光的频率(和反向遏制电压Uc的值如下表所示。
(已知电子的电量为e =1.6×10-19C)根据表格中的数据,作出了Uc-(图像,如图所示,则根据图像求出:①这种金属的截止频率为Hz;(保留三位有效数字)②普朗克常量Js。
(保留两位有效数字)【答案】①4.27±0.01×1014Hz②h=6.3±0.1×10-34Js【解析】①由图像读得:4.27±0.01×1014Hz;(2分)②由图线斜率,解得:h=6.3±0.1×10-34Js(2分)【考点】考查了光电效应2.已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1011Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的。
A.波长B.频率C.能量D.动量【答案】 A【解析】设入射光的频率为υ,根据爱因斯坦光电效应方程可知Ek =hυ-W,W=hυ,由题意可知,钙的截止频率比钾的大,因此钙表面逸出的光电子的最大初动能比钾的小,其动量也小,故选项C、D错误;根据德布罗意波长公式可知:λ=,又有:c=λf,故选项A正确;选项B错误。
【考点】本题主要考查了对爱因斯坦光电效应方程、德布罗意波长公式的理解与应用问题,属于中档偏低题。
3.以下有关近代物理内容的若干叙述正确的是(填正确答案标号。
选对1个得3分,选对2个得4分,选对3个得6分。
每选错1个扣3分,最低得分为0分)()A.卢瑟福用实验得出原子核具有复杂的结构B.比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定C.重核的裂变过程质量增大,轻核的聚变过程有质量亏损D.自然界中含有少量的14C,14C具有放射性,能够自发地进行β衰变,因此在考古中可利用14C 测定年代E.光电效应实验中,遏止电压与入射光的频率有关【答案】BDE【解析】卢瑟福用实验得出原子的核式结构理论,选项A 错误;比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定,选项B正确;重核的裂变过程和轻核的聚变过程都有质量亏损选项C 错误;自然界中含有少量的14C,14C具有放射性,能够自发地进行β衰变,因此在考古中可利用14C测定年代,选项D 正确;光电效应实验中,遏止电压与入射光的频率有关;入射光的频率越大,则射出的光电子的最大初动能越大,根据可知,遏止电压越大,选项E 正确。
高三物理教案光电效应教学设计(最新2篇)光电效应光子教案篇一教学目标知识目标(1)知道光电效应现象(2)知道光子说的内容,会计算光子频率与能量间的关系(3)会简单地用光子说解释光电效应现象(4)知道光电效应现象的一些简单应用能力目标培养学生分析问题的能力教学建议教材分析分析一:课本中先介绍光电效应现象,再学习光子说,最后用光子说解释光电效应现象产生的原因。
本节内容说明光具有粒子性,从而引出量子论的基本知识。
分析二:光电效应有如下特点:①光电效应在极短的时间内完成;②入射光的频率大于金属的极限频率才会发生光电效应现象;③在已经发生光电效应的条件下,逸出的光电子的数量跟入射光的强度成正比;④在已经发生光电效应的条件下,光电子的最大初动能随入射光频率的增大而增大。
教法建议建议一:对于光电效应现象先要求学生记住光电效应的实验现象,然后运用光子说去解释它,这样可以加深学生的理解。
建议二:学生应该会根据逸出功求发生光电效应的极限频率,但可以不要求运用爱因斯坦光电效应方程进行计算。
教学设计示例光电效应、光子教学重点:光电效应现象教学难点:运用光子说解释光电效应现象示例:一、光电效应1、演示光电效应实验,观察实验现象2、在光的照射下物体发射光子的现象叫光电效应3、现象:(1)光电效应在极短的时间内完成;(2)入射光的频率大于金属的极限频率才会发生光电效应现象;(3)在已经发生光电效应的条件下,逸出光电子的数量跟入射光的强度成正比;(4)在已经发生光电效应的条件下,光电子最大初动能随入射光频率的增大而增大。
4、学生看书上表格常见金属发生光电效应的极限频率5、提出问题:为什么会发生3中的现象二、光子说1、普朗克的量子说2、爱因斯坦的光子说在空间传播的光不是连续的,而是一份份的,每一份叫做光量子,简称光子。
三、用光子说解释光电效应现象先由学生阅读课本上的解释过程,然后教师提出问题,由学生解释。
四、光电效应方程1、逸出功2、爱因斯坦光电效应方程对一般学生只需简单介绍对层次较好的学生可以练习简单计算,深入理解方程的意义例题:用波长200nm的紫外线照射钨的表面,释放出的光电子中最大的动能是2.94eV. 用波长为160nm的紫外线照射钨的表面,释放出来的光电子的最大动能是多少?五、光电效应的简单应用六、作业探究活动题目:光电效应的应用组织:分组方案:分组利用光电二极管的特性制作小发明评价:可操作性、创新性、实用性光电效应光子教案篇二光量子(光子):E=h实验结论光子说的解释1、每种金属都有一个极限频率入射光的频率必须大于这个频率才能产生光电效应电子从金属表面逸出,首先须克服金属原子核的引力做功(逸出功W),要使入射光子的能量不小于W,对应频率即是极限频率。
光电效应波粒二象性1.知道什么是光电效应,理解光电效应的实验规律.2.会利用光电效应方程计算逸出功、截止频率、最大初动能等物理量.3.知道光的波粒二象性,知道物质波的概念.考点一光电效应的实验规律1.光电效应在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子.2.实验规律(1)每种金属都有一个极限频率.(2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大.(3)光照射到金属表面时,光电子的发射几乎是瞬时的.(4)光电流的强度与入射光的强度成正比.3.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c.(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.(3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功.[例题1](2023•南通模拟)如图所示,用某频率的光照射光电管,研究饱和电流的影响因素,则()A.电源的左端为负极B.换更高频率的光照射,电流表示数一定增大C.滑动变阻器滑片移至最左端,电流表示数为零D.滑动变阻器滑片向右移的过程中,电流表示数可能一直增大[例题2](2023•抚州一模)光电效应实验的装置如图所示,现用发出紫外线的弧光灯照射锌板,验电器指针张开一个角度。
下列判断正确的是()A.锌板带正电,验电器带负电B.将带负电的金属小球与锌板接触,验电器指针偏角变大C.使验电器指针回到零,改用强度更大的弧光灯照射锌板,验电器指针偏角变大D.使验电器指针回到零,改用强度更大的红外线灯照射锌板,验电器指针偏角变大[例题3](2023春•东城区期末)把一块带负电的锌板连接在验电器上,验电器指针张开一定的角度。
用紫外线灯照射锌板发现验电器指针的张角发生变化。
下列说法正确的是()A .验电器指针的张角会变大B .锌板上的正电荷转移到了验电器指针上C .验电器指针的张角发生变化是因为锌板获得了电子D .验电器指针的张角发生变化是因为紫外线让电子从锌板表面逸出考点二 光电效应方程和E k -ν图象1.光子说爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比,即:ε=hν,其中h =6.63×10-34J·s.2.光电效应方程(1)表达式:hν=E k +W 0或E k =hν-W 0.(2)物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =12mv 2.3.由E k -ν图象(如图)可以得到的信息(1)极限频率:图线与ν轴交点的横坐标νc .(2)逸出功:图线与E k 轴交点的纵坐标的绝对值E =W 0. (3)普朗克常量:图线的斜率k =h .[例题4] (2024•成都三模)如图为美国物理学家密立根测量金属的遏止电压U c 与入射光频率ν的实验图像,该实验证实了爱因斯坦光电效应方程的正确性,并且第一次利用光电效应实验测定了普朗克常量h 。