解一元二次方程不等式的解法
- 格式:doc
- 大小:294.50 KB
- 文档页数:7
一元二次不等式的解法在数学中,一元二次不等式是指形如ax^2+bx+c>0或ax^2+bx+c<0的二次不等式。
解一元二次不等式的方法可以通过图像法、代入法和判别法来实现。
本文将介绍这三种解法,并通过实例来说明其具体步骤。
图像法图像法是解一元二次不等式最直观的方法之一,它通过绘制一元二次函数的图像来找到不等式的解集。
下面以一元二次不等式x^2-4x+3>0为例来说明图像法的解题步骤:首先,将不等式转化为方程x^2-4x+3=0,求出方程的根。
我们可以通过求解x的一元二次方程来得到根,即使用求根公式x = (-b±√(b^2-4ac))/(2a)。
将方程x^2-4x+3=0代入求根公式中,得到x=1和x=3。
其次,在数轴上绘制一元二次函数y=x^2-4x+3的图像。
根据函数的开口方向和图像的凹凸性,我们可以确定函数在x<1和x>3的区间上为正值,即图像在该区间上位于x轴之上。
最后,根据不等式的正号,我们可以得出一元二次不等式x^2-4x+3>0的解集为x<1或x>3。
代入法代入法是通过代入特定的数值来判断一元二次不等式的真假。
下面以一元二次不等式x^2-4x+3>0为例来说明代入法的解题步骤:首先,将不等式转化为方程x^2-4x+3=0,求出方程的根。
我们可以使用同样的方法得到x=1和x=3。
其次,选择一些特定的数值,代入一元二次不等式中,判断不等式的真假。
例如,选择x=0、x=2和x=4来代入不等式。
计算得到代入x=0时,不等式为3>0,代入x=2时,不等式为-1>0,代入x=4时,不等式为3>0。
根据计算结果,我们可以确定不等式在x<1和x>3的区间上为真。
最后,根据不等式的真假,我们可以得出一元二次不等式x^2-4x+3>0的解集为x<1或x>3。
判别法判别法是解一元二次不等式的一种常用方法,它利用一元二次不等式的判别式来确定不等式的解集。
一元二次不等式的解法一、解一元二次不等式解一元二次不等式)0(02>>++a c bx ax 、与)0(02><++a c bx ax 时,可以通过一元二次方程20(0)ax bx c a ++=≠与一元二次函数()()20f x ax bx c a =++≠进行求解:(一)解不等式例1. (1) 解不等式:2x 2-3x -2>0 (2) 解不等式:-3x 2+x +1>0(3) 解不等式组⎪⎩⎪⎨⎧>+-≥--0412044322x x x x (4) 解不等式组:2223404210540x x x x x x ⎧+->⎪+-<⎨⎪-+>⎩(二)已知不等式的解集,写不等式例2. (1) 写出一个一元二次不等式,使它的解集()1,3-.(2) 已知219990ax x b -+>的解集是()3,1--,求不等式219990ax x b ++>的解集.(3) 不等式组⎪⎩⎪⎨⎧<+++>--05)25(20222a x a x x x 的整数解值只有2-,求实数a 的范围.二、一元二次方程根的分布例3. 若一元二次方程0)1(2)1(2=-++-m x m x m 有两个正根,求m 的取值范围.例4.⑴ 已知方程032222=-++m mx x 有一根大于2,另一根比2小,求m 的取值范围.⑵ 已知方程012)2(2=-+-+m x m x 有一实根在()0,1内,求m 的取值范围.⑶ 已知方程012)2(2=-+-+m x m x 只有较大实根在()0,1内,求实数m 的取值范围⑷ 若方程0)2(2=-++k x k x 的两实根均在区间(1-、1)内,求k 的取值范围.⑸ 若方程012)2(2=-+-+k x k x 的两根中,一根在()0,1内,另一根在()1,2内,求k 的取值范围.⑹ 已知关于x 的方程062)1(22=-++--m m mx x m 的两根为βα、且满足βα<<<10,求m 的取值范围.(三)含参数一元二次不等式例5. 当k 为何值时,不等式010)5()5(2>+----k x k x k ,对一切实数都成立.例6. 关于x 的不等式0622<+++m m mx x 的解集包含区间(1,2)时,求实数m 的范围.例7. 设集合{}{}034,0107222<+-=<++=a ax x x B x x x A ,并且B A ⊆,求实数a 的范围.例8. 解关于x 的不等式032>--a ax x .例9. 解关于x 的不等式02)2(2>--+x m mx .例10. (1) 设不等式02>++c bx ax 的解集为βαβα<<<<0},{x x ,试求不等式02<++a bx cx 的解集.(2) 已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>.(3) 已知关于x 的不等式0k x b x a x c++<++的解集为(-2,-1)∪(2,3),解关于x 的 1011kx bx ax cx -+<--.(4) 已知不等式223()0x a a x a -++<的解集为{|33}x x <<,求实数a 的取值情况;(5) 已知不等式223()0x a a x a -++<在{|33}x x <<内恒成立,求实数a 的取值情况.(6) 已知集合]2,21[=P ,}022|{2>+-=x ax x Q .① 若∅≠Q P ,求实数a 的取值范围;② 若方程0222=--x ax 在]2,21[内有解,求实数a 的取值范围.(7) k 为何值时,不等式13642222<++++x x k kx x 恒成立例11. 已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围;(2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.例12. 设不等式x 2-2ax +a +2≤0的解集为M ,如果M ⊆[1,4],求实数a 的取值范围.例13. 若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m 都成立,求x 的取值范围.例14. 设c bx ax x f ++=2)(,若27)1(=f ,问是否存在R c b a ∈,,,使得不等式212+x 2322)(2++≤≤x x x f 对一切实数x 都成立,证明你的结论.。
一元二次不等式全部解法一元二次不等式是指形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,其中a、b、c是已知实数且a ≠ 0。
要求解一元二次不等式,我们需要找到其解集,即使不等式成立的x的取值范围。
下面将介绍几种解一元二次不等式的方法。
方法一:图像法通过绘制二次函数的图像,我们可以直观地观察到不等式的解集。
以ax^2 + bx + c > 0为例,我们可以绘制出函数y = ax^2 + bx + c的图像,然后观察函数图像在x轴上的位置。
如果函数图像位于x轴上方,则不等式成立的x的取值范围为图像所在的区间;如果函数图像位于x轴下方,则不等式不成立的x的取值范围为图像所在的区间。
方法二:因式分解法对于一元二次不等式ax^2 + bx + c > 0,我们可以先通过因式分解将其转化为(ax + m)(ax + n) > 0的形式,其中m、n是已知实数。
然后根据乘积大于零的性质,我们可以得到两个因子同时大于零或同时小于零时不等式成立。
因此,我们需要解以下两个不等式:ax + m > 0和ax + n > 0,得到的解集再取交集,即为原不等式的解集。
方法三:配方法对于一元二次不等式ax^2 + bx + c > 0,我们可以通过配方法将其转化为完全平方的形式。
具体步骤如下:1. 将不等式移项,得到ax^2 + bx + c = 0的形式。
2. 根据二次方程的求根公式,求得方程的两个根x1和x2。
3. 根据二次函数的性质,我们可以得到该二次函数在x1和x2之间变号。
即对于ax^2 + bx + c > 0来说,当x在x1和x2之间时,不等式成立。
方法四:求解判别式对于一元二次不等式ax^2 + bx + c > 0,我们可以先求解对应的二次方程ax^2 + bx + c = 0的判别式Δ=b^2-4ac。
根据判别式的值,我们可以得到不等式的解集:1. 当Δ>0时,二次方程有两个不相等的实根x1和x2,此时不等式成立的x的取值范围为x<x1或x>x2。
一元二次不等式方程的解法含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a不等于0),其中ax2+bx+c实数域上的二次三项式。
一元二次不等式的解法有哪几种?1、公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b²-4ac<0的方程)。
求根公式: x=-b±√(b2-4ac)/2a。
2、配方法比较简单:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数绝对值一半的平方。
3、数轴穿根:用穿根法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点,大于零的不等式的解对应这曲线在x轴上方部分的实数x的值的集合,小于零的则相反。
这种方法叫做序轴穿根法,又叫“穿根法”。
口诀是“从右到左,从上到下,奇穿偶不穿。
”4、一元二次不等式也可通过一元二次函数图象进行求解。
通过看图象可知,二次函数图象与X轴的两个交点,然后根据题中所需求"<0"或">0"而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。
解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简化。
等式的基本性质:1、等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。
2、等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。
3、不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;4、不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;5、不等式的两边同时乘(或除以)同一个负数,不等号的方向变。
一元二次方程与不等式的解法一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为实数且a≠ 0。
而不等式是指形式为ax^2 + bx + c > 0或ax^2 + bx + c ≤ 0的不等关系,其中a、b、c为实数且a≠ 0。
本文将探讨一元二次方程与不等式的解法,并分析其应用场景。
一、一元二次方程的求解方法一元二次方程的解法主要有图像法、配方法、公式法和因式分解法等,在不同的情况下可以选择相应的方法进行求解。
1. 图像法图像法主要通过绘制函数y = ax^2 + bx + c的图像,通过观察函数与x轴的交点来确定方程的解。
当图像与x轴相交于两个点时,方程有两个实根;当图像与x轴相交于一个点时,方程有一个实根;当图像与x轴不相交时,方程无实根。
2. 配方法配方法是通过将一元二次方程的形式转化为一个完全平方的形式,并借助平方根的性质来求解。
具体步骤如下:- 首先,将方程的三项按照平方根的部分进行配方,即将bx项除以2并平方。
- 其次,将方程两边的式子按照平方差公式进行整理,并将两项的平方根合并。
- 最后,通过开平方根运算,得到方程的解。
3. 公式法公式法是通过一元二次方程的根与系数之间的关系,直接利用求根公式来求解方程。
对于一元二次方程ax^2 + bx + c = 0,其根的求解公式为:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个相反的根。
4. 因式分解法因式分解法主要适用于一元二次方程可以进行因式分解的情况,即方程的三项均可以被因式分解为两个一次项的乘积。
通过将方程进行因式分解,得到每个因式等于零的条件,并解得方程的根。
二、不等式的解法不等式的解法主要有图像法、代数法和数线法等,根据不同的不等式形式选择相应的方法进行求解。
1. 图像法图像法同样通过绘制不等式对应的函数曲线,观察函数曲线与坐标轴的关系来确定不等式的解。
一元二次不等式6种解法大全一元二次不等式是指形如ax²+bx+c>0或ax²+bx+c≥0的二次不等式,其中a、b、c为实数,a≠0。
这种不等式的解法有很多种,下面我将介绍其中的六种解法。
解法一:使用因式分解法。
对于形如(ax+b)(cx+d)>0或(ax+b)(cx+d)≥0的一元二次不等式,可以尝试将其因式分解为两个一次因式相乘的形式,然后根据不等式的性质讨论各个因式的取值范围,从而求得不等式的解。
解法二:使用它的图像解法。
将一元二次不等式对应的二次函数的图像画出来,然后根据图像的特点来确定使得函数大于0(或大于等于0)的x的取值范围,即为不等式的解。
解法三:使用开平方法。
对于形如x²+a≥0或x²+a>0的一元二次不等式,可以通过开平方的方法来求解。
首先将不等式移到一边,得到一个完全平方的形式,然后对不等式两边同时开平方,得到关于x的两个二次方程,根据二次方程的性质来求解。
解法四:使用代数求解法。
对于一元二次不等式ax²+bx+c>0或ax²+bx+c≥0,可以将其转化为一个关于x的二次方程ax²+bx+c=0的解的范围问题。
求得这个二次方程的解,然后根据这些解的范围来确定不等式的解。
解法五:使用数轴法。
将一元二次不等式对应的二次函数的图像画在数轴上,然后根据函数的凸性来确定函数取正值的x的取值范围,即为不等式的解。
解法六:使用区间法。
将一元二次不等式移项,化成形如ax²+bx+c<0或ax²+bx+c≤0的不等式,然后求出二次函数的零点,并根据二次函数的凸性来确定函数小于0(或小于等于0)的x的取值范围,即为不等式的解。
以上是关于一元二次不等式的六种解法,每种解法都有其独特的思路和方法。
在实际的解题过程中,可以根据具体的题目情况选择合适的解法来求解,以提高解题效率和准确性。
一元二次不等式的解法一元二次不等式是由一个二次方程构成的数学不等式,其形式通常为 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0。
解一元二次不等式需要运用一些特定的方法和原理,下面将介绍一些常用的解法。
1. 图像法图像法是一种直观的解一元二次不等式的方法。
首先,我们可以将不等式的左边化简成一个二次函数的形式,例如将 ax^2 + bx + c > 0 转化为 y = ax^2 + bx + c 的图像。
然后,通过观察图像的形状和位置,确定不等式的解集。
对于一元二次不等式 ax^2 + bx + c > 0,可以按照以下步骤使用图像法解答:a) 计算二次函数的顶点坐标 (-b/(2a), f(-b/(2a))),其中 f(x) = ax^2 + bx + c。
b) 如果 a > 0,表示二次函数开口向上,则解集为顶点坐标的右侧部分。
如果 a < 0,表示二次函数开口向下,则解集为顶点坐标的左侧部分。
c) 如果二次函数与 x 轴有交点,则解集还包括这些交点。
举例说明:假设要解一元二次不等式 x^2 + 4x + 3 > 0。
a) 通过计算,可得到顶点坐标为 (-2, -1)。
b) 由于 a > 0,解集为顶点坐标的右侧部分。
c) 二次函数与 x 轴的交点为 (-3, 0) 和 (-1, 0)。
因此,解集为 (-∞, -3) ∪ (-1, +∞)。
2. 因式分解法对于一元二次不等式,我们可以先将其因式分解为二次方程的形式,然后再解这个二次方程。
具体步骤如下:a) 将不等式左边移项,将其写成一个完全平方的形式,例如 a(x -r)(x - s) > 0 或 a(x - r)(x - s) < 0,其中 r 和 s 是待定系数。
b) 将方程 a(x - r)(x - s) = 0 求解,得到方程的根(解),记作 x = r和 x = s。
一元二次分式不等式的解法一元二次分式不等式是指由一元二次分式构成的不等式,其解法与一元二次不等式有所不同。
下面将介绍一元二次分式不等式的解法。
我们来回顾一下一元二次不等式的解法。
对于一元二次不等式ax^2+bx+c>0,我们可以先求出其根,即解方程ax^2+bx+c=0,得到x1和x2。
然后根据二次函数的图像,我们可以将x轴分割成三个区间:(-∞, x1),(x1, x2),(x2, +∞)。
接下来,我们选择每个区间内的一个数代入原不等式,并判断其符号。
如果原不等式在某个区间内的代入值为正数,则该区间为不等式的解集。
最后,我们将这些解集合并起来,即得到原不等式的解集。
对于一元二次分式不等式,解法也是类似的。
我们先将一元二次分式不等式转化为一个一元二次不等式。
具体来说,我们需要将分式不等式的两边通分,然后将其转化为一个一元二次不等式。
这样,我们就可以按照一元二次不等式的解法来解决问题了。
假设我们要解一元二次分式不等式f(x)/g(x)>0,其中f(x)和g(x)分别为两个关于x的多项式函数。
我们先将分式不等式的两边通分,得到f(x)g(x)>0。
然后,我们需要求出这个一元二次不等式的根,即解方程f(x)g(x)=0。
接下来,我们将x轴根据这些根分成若干个区间,并选择每个区间内的一个数代入原分式不等式,并判断其符号。
如果原分式不等式在某个区间内的代入值为正数,则该区间为分式不等式的解集。
最后,我们将这些解集合并起来,即得到原分式不等式的解集。
需要注意的是,由于分式的分母不能为零,所以我们需要将f(x)g(x)=0的根排除在解集之外。
另外,如果分式的分子和分母都是一元二次多项式,那么我们还需要考虑分式在根附近的符号变化情况。
一元二次分式不等式的解法可以归纳为以下几个步骤:1. 通分,将一元二次分式不等式转化为一个一元二次不等式;2. 求解一元二次不等式,得到根的集合;3. 将x轴根据根分成若干个区间;4. 选择每个区间内的一个数代入原分式不等式,并判断其符号;5. 将正数代入值所对应的区间作为分式不等式的解集;6. 排除分式不等式的根。
一元二次不等式6种解法大全
一元二次不等式有多种解法,以下是一些常见的解法:
1. 图像法:将一元二次不等式转化为图像,通过观察图像的变化来确定解的范围。
首先,将不等式转化为等式,再画出对应的抛物线图像,然后根据不等式的符号确定解的范围。
2. 因式分解法:将一元二次不等式进行因式分解,得到一个或多个一次因子和一个二次因子。
然后,根据这些因子的正负确定不等式的解。
3. 求导法:对一元二次不等式两边同时求导数,得到一个一次方程。
然后,通过解这个一次方程得到不等式的解。
4. 完全平方式:将一元二次不等式进行变形,使其成为完全平方式。
然后,通过对方程两边取平方根,得到不等式的解。
5. 化简法:将一元二次不等式进行化简,整理为一个或多个一次项和一个常数项的形式。
然后,根据这些项的符号确定不等式的解。
6. 区间法:将一元二次不等式转化为一个或多个区间,并确定每个区间内的解的情况。
然后,将这些区间的解合并,得到不等式的解集。
以上是一些常见的一元二次不等式的解法,具体使用哪种解法取决于不等式的形式和题目要求。
在解题过程中,可以根据需要选择适合的方法进行求解。
一元二次方程与不等式的解法在学习数学的过程中,我们经常会遇到一元二次方程和不等式的解法。
这两个概念是数学中重要的基础知识,掌握它们对我们解决各种实际问题非常有帮助。
本文将对一元二次方程和不等式的解法进行详细探讨。
一、一元二次方程的解法一元二次方程是指只有一个未知数的二次方程,其一般形式为Ax^2 + Bx + C = 0。
为了解一元二次方程,我们可以使用以下三种方法:因式分解法、配方法和求根公式法。
1. 因式分解法对于一元二次方程Ax^2 + Bx + C = 0,我们首先尝试将其进行因式分解。
这种方法适用于方程可以通过因式分解得到解的情况。
例如,对于方程x^2 + 5x + 6 = 0,我们可以将其因式分解为(x +2)(x + 3) = 0。
由此我们得到两个根x = -2和x = -3,这就是方程的解。
2. 配方法当方程无法通过因式分解得到解时,我们可以使用配方法来解决。
配方法的关键是通过添加合适的常数使得方程能够被写成完全平方的形式。
例如,对于方程x^2 + 6x + 8 = 0,我们可以通过添加常数2使其变为x^2 + 6x + 9 = 1。
然后,我们可以将方程改写为(x + 3)^2 - 1 = 0。
从中我们可以得到根x = -3±1,即x = -4和x = -2。
3. 求根公式法当方程无法通过因式分解或配方法得到解时,我们可以使用求根公式来解决。
对于一元二次方程Ax^2 + Bx + C = 0,其根可以通过以下公式推导得到:x = (-B ± √(B^2 - 4AC)) / (2A)通过带入系数A、B和C的值,我们可以计算出方程的两个根。
二、不等式的解法不等式是数学中常见的问题,解不等式可以帮助我们确定未知数的取值范围。
不等式的解法主要包括以下几种:代入法、图像法和区间法。
1. 代入法代入法是最直接的一种解不等式的方法,我们将候选值代入不等式中判断其真假。
如果候选值满足不等式,则表示该候选值是不等式的解。
解一元二次方程
解法一元二次方程:因式分解法;公式法
移项:使方程右边为0
因式分解:将方程左边因式分解;方法:一提,二套,三十字,四分组
由A∙B=0,则A=0或B=0,解两个一元一次方程
2、公式法
将方程化为一般式
写出a、b、c
求出ac
b4
2-,若<0,则无实数解
若>0,则代入公式求解
解下列方程:
1、)4
(5
)4
(2+
=
+x
x2、x
x4
)1
(2=
+3、2
2)
2
1(
)3
(x
x-
=
+
4、3
10
22=
-x
x5、(x+5)2=16 6、2(2x-1)-x(1-2x)=0
7、x2 =64 8、5x2 -
5
2
=0 9、8(3 -x)2–72=0
10、3x(x+2)=5(x+2) 11、(1-3y)2+2(3y-1)=0 12、x2+ 2x + 3=0 13、x2+ 6x-5=0 14、x2-4x+ 3=0 15、x2-2x-1 =0 16、2x2+3x+1=0 17、3x2+2x-1 =0 18、5x2-3x+2 =0 19、7x2-4x-3 =0 20、-x2-x+12 =0 21、x2-6x+9 =0
22、22
(32)(23)x x -=-
23、x 2-2x-4=0 24、x 2-3=4x
25、3x 2+8 x -3=0 26、(3x +2)(x +3)=x +14
27、(x+1)(x+8)=-12 28、2(x -3) 2=x 2-9
29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=0
31、2x 2-9x +8=0 32、3(x-5)2=x(5-x)
33、(x +2) 2=8x 34、(x -2) 2=(2x +3)2
35、2720x x += 36、24410t t -+=
37、()()2
4330x x x -+-= 38、2631350x x -+=
39、()2231210x --= 40、2223650x x -+=
41、()()2
116x x ---= 42、()()323212x x -+= 44、22510x x +-=
45、 46、2
1
302
x x ++
=、
二.利用因式分解法解下列方程
(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+
x 2 ()()0165852
=+---x x
三.利用开平方法解下列方程
51)12(212=-y 4(x-3)2=25 24)23(2=+x
四.利用配方法解下列方程
220
x -+=
012632=--x x
7x=4x 2+2 01072=+-x x
五.利用公式法解下列方程
-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2
+5(2x+1)=0
六.选用适当的方法解下列方程
(x +1) 2-3 (x +1)+2=0 2
2
(21)9(3)x x +=- 2
230x x --=
39922=--x x
2
1
302
x x ++
= 4
)
2)(1(13)1(+-=
-+x x x x
2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).
0862
=+-x x 01522
=--x x 0151122
=++x x
02532
=-+x x 2082
=-x x 02522
=++x x
一元二次不等式及其解法
知识点一:一元二次不等式的定义(标准式)
任意的一元二次不等式,总可以化为一般形式:
或
.
知识点二:一般的一元二次不等式的解法
一元二次不等式
或
的解集可以联系二次函数
的图象,图象在轴上方部分对应的横坐标值的集合为不等式
的解集,图象在轴
下方部分对应的横坐标值的集合为不等式
的解集.
设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表:
二次函数
()的图象
有两相异实根有两相等实根
无实根
知识点三:解一元二次不等式的步骤
(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;
(2)写出相应的方程,计算判别式:
①时,求出两根,且(注意灵活运用因式分解和配方法);
②时,求根;③时,方程无解
(3)根据不等式,写出解集.
规律方法指导
1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;
2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;
3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;
4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;
5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数
例1.解下列一元二次不等式
(1);(2);(3)
(1)解:因为
所以方程的两个实数根为:,
函数的简图为:
因而不等式的解集是
.
(1)练习: 解下列不等式 (2) ;
;
02732
<+-x x ;
0262≤+--x x ; 01442<++x x ; 0532
>+-x x
862
-=+x x 021152
=++x x 02732
=+-x x
062
=--x x 01522
=--x x ; 01662
=++x x ;
08232
≥+--x x ; 0542
≥+-x x ; 31
≥-x x
;
0652≤--x x 01272<++x x 0652>++x x
0672≥+-x x 0122<--x x 0122>-+x x
2230x x --+≥ 0262≤+--x x 0532>+-x x
0142562≤++x x 0941202≤+-x x (2)(3)6x x +-<。