多模包层泵浦大功率光纤放大器的工作原理及应用
- 格式:doc
- 大小:197.00 KB
- 文档页数:7
光纤通信技术—光纤放大器光导纤维通信简称光纤通信,原理是利用光导纤维传输信号,以实现信息传递的一种通信方式。
实际应用中的光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件。
名称:光纤放大器关键字:光纤放大器 EDFA 半导体放大器光纤曼放大器摘要:光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光弧子通信以及全光网络的发展。
顾名思义,光放大器就是放大光信号。
在此之前,传送信号的放大都是要实现光电变换及电光变换,即O/E/O变换。
有了光放大器后就可直接实现光信号放大。
光放大器主要有3种:光纤放大器、拉曼放大器、半导体光放大器。
光纤放大器就是在光纤中掺杂稀土离子(如铒、镨、铥等)作为激光活性物质。
每一种掺杂剂的增益带宽是不同的;掺铥光纤放大器的增益带是S波段;掺镨光纤放大器的增益带在1310nm附近。
而喇曼光放大器则是利用喇曼散射效应制作成的光放大器,即大功率的激光注入光纤后,会发生非线性效应?喇曼散射。
在不断发生散射的过程中,把能量转交给信号光,从而使信号光得到放大。
由此不难理解,喇曼放大是一个分布式的放大过程,即沿整个线路逐渐放大的。
其工作带宽可以说是很宽的,几乎不受限制。
这种光放大器已开始商品化了,不过相当昂贵。
半导体光放大器(S0A)一般是指行波光放大器,工作原理与半导体激光器相类似。
1.引言无线光通信是以激光作为信息载体,是一种不需要任何有线信道作为传输媒介的通信方式。
与微波通信相比,无线光通信所使用的激光频率高,方向性强(保密性好),可用的频谱宽,无需申请频率使用许可;与光纤通信相比,无线光通信造价低,施工简便、迅速。
它结合了光纤通信和微波通信的优势,已成为一种新兴的宽带无线接人方式,受到了人们的广泛关注。
第17卷 第9期强激光与粒子束Vol.17,No.9 2005年9月H IGH POWER L ASER AND PA R TICL E B EAMS Sep.,2005 文章编号: 100124322(2005)0921341203包层泵浦f s光纤放大器的实验研究3沈 华1,2, 丁广雷1,2, 王屹山1, 赵 卫1(1.中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西西安710068;2.中国科学院研究生院,北京100039) 摘 要: 在实验上对双包层光纤放大器进行了研究。
采用新型内包层为六边形的铒镱共掺双包层光纤作为放大介质,用带尾纤的半导体激光器进行泵浦,对f s光脉冲进行放大。
当用2.5W的入纤功率泵浦50cm长的双包层铒镱光纤时,把平均功率为10.8mW、重复频率20.84M Hz的激光放大到176mW,增益为12.2dB,相应的单脉冲能量为8.1nJ,放大后脉冲宽度为480f s,峰值功率为16kW。
关键词: 铒镱共掺; 双包层光纤; f s脉冲; 光纤放大器 中图分类号: TN248.1 文献标识码: A f s激光脉冲具有极高的峰值功率,与物质相互作用会产生许多新现象和新研究领域,如强光光学、超快速非线性光学、光孤子通信、T Hz脉冲雷达、多光子电离、激光等离子体等。
对于波长1.5μm的通讯波段,f s激光脉冲由于它极短的脉冲宽度和与之相伴的宽带宽,将为提高光学时分复用和波分复用的信道数目提供方便,从而大大增加光纤通讯的容量。
目前普通的f s光纤激光器件主要采用单模光纤作为激光介质,对泵浦源的激光模式要求高,并且泵浦功率不高,耦合效率低,输出功率只有几mW,这比f s固体激光器低几个数量级。
掺铒光纤放大器(EDFA)具有增益高、噪声小、偏振不敏感、输出功率大、与传输速率无关等特点,能补偿长距离传输后光纤的损耗。
1985年英国南安普顿大学首先研制了掺铒光纤放大器[1]。
光纤放大器的原理与工作方式光纤放大器(Optical Fiber Amplifier,简称OFA)是一种能够放大光信号的设备,广泛应用于光通信和光传感等领域。
它以光纤作为增益介质,通过激光激发得到的光子与光纤中的掺杂物相互作用,实现对信号的放大。
本文将详细介绍光纤放大器的工作原理与工作方式。
光纤放大器的工作原理主要基于光的受激辐射放大(Stimulated Emission Amplification)效应。
核心原理是掺杂物与光子相互作用,将外界输入的信号光能量传递给掺杂物中的电子,使电子激发跃迁并发射与信号光同相位的光子,达到对信号光的放大。
光纤放大器通常采用掺镱、掺铒等掺杂物,其中掺镱光纤放大器(Ytterbium-Doped Fiber Amplifier,简称YDFA)和掺铒光纤放大器(Erbium-Doped Fiber Amplifier,简称EDFA)是应用最为广泛的两种类型。
对于YDFA,其工作原理是通过电光调制激光器发出的激光通过耦合光栅器件耦合入掺镱光纤中,而掺镱离子在光纤中吸收激光的能量,使得其能级上的电子被激发,通过受激辐射的过程发射出同相位、同频率的光子。
这些发射的光子与通过掺镱光纤传输的信号光相互作用,使信号光得到放大。
而掺镱离子的浓度以及掺镱光纤中的光的波长都会影响光纤放大器的性能。
而EDFA是一种掺杂了铒离子的光纤放大器,工作在通信波长范围内。
EDFA 的工作原理是通过激光器产生铒离子的激发能级,然后电光调制器将输入的信号光和激光进行耦合,使得信号光能量被传输到掺铒光纤中。
当信号光与激光在掺铒光纤中相互作用时,铒离子的激发能级的电子会发生受激辐射,产生同相位的发射光子,从而实现对信号光的放大。
光纤放大器的工作方式通常分为均匀增益放大和分布式反馈放大两种方式。
在均匀增益放大方式中,掺镱离子或铒离子的浓度会随光纤纵向长度的变化而变化。
激光和信号光共同通过光纤,放大器中的光功率增益在整个光纤中是均匀的。
光纤放大器的原理随着通信技术的飞速发展,越来越多的信息需要通过光纤传输。
然而,信号在光纤中传输时会遭受损耗,导致信号衰减。
为了解决这个问题,人们发明了光纤放大器,它可以放大信号,延长信号传输距离,提高通信质量。
本文将介绍光纤放大器的原理。
一、光纤放大器的分类根据工作原理,光纤放大器可以分为掺铒光纤放大器(Erbium-doped fiber amplifier,EDFA)、掺镱光纤放大器(Thulium-doped fiber amplifier,TDFA)和掺铥光纤放大器(Holmium-doped fiber amplifier,HDFA)等。
其中,EDFA是最常用的一种。
二、掺铒光纤放大器的原理EDFA是一种光学放大器,它利用掺铒光纤的特殊性质来放大光信号。
掺铒光纤是一种光纤,其中掺杂了铒元素。
铒元素的电子结构使其能够吸收、发射特定波长的光子。
当光信号经过掺铒光纤时,铒元素会吸收光子并跃迁到激发态,然后再发射出同样波长的光子,使光信号得到放大。
EDFA主要由激发源、掺铒光纤、滤波器和耦合器等组成。
激发源通常是一个激光器,用来激发掺铒光纤中的铒元素。
掺铒光纤是放大器的核心部件,它的长度决定了放大器的增益。
滤波器用来过滤掉不需要放大的光信号,以避免噪声的引入。
耦合器用来将输入信号和激发光耦合到掺铒光纤中。
三、光纤放大器的优点与传统的电子放大器相比,光纤放大器具有以下优点:1、高增益。
光纤放大器的增益可以达到30dB以上,远高于传统的电子放大器。
2、宽带。
光纤放大器可以放大多个波长的光信号,因此可以传输更多的信息。
3、低噪声。
光纤放大器的噪声系数比传统的电子放大器低得多,可以提高通信质量。
4、长距离传输。
光纤放大器可以延长信号传输距离,可以在更远的距离传输信号。
四、光纤放大器的应用光纤放大器已经广泛应用于光通信、光传感、激光雷达等领域。
其中,光通信是最重要的应用领域之一。
在光通信中,光纤放大器可以用来放大光信号,延长信号传输距离,提高通信速度和质量。
通信电子中的光纤放大器技术随着通信技术的不断发展,光通信已成为现代通信领域中的一个重要分支。
其中,光纤放大器技术是光通信中不可或缺的关键技术之一。
本文将从光纤放大器的基本原理、发展历程及其应用领域等方面进行探析。
一、光纤放大器的基本原理光纤放大器(Optical fiber amplifier,简称OFA)是指一类能在光纤中实现光信号增强的光学器件。
其基本原理是通过将掺杂有掺杂物的光纤介质放置在激光器或者泵浦光源的辐射下,使得光子与掺杂物间相互作用而发生能级跃迁,从而实现光信号的放大。
OFA主要包括掺铒光纤放大器、掺铒-镱光纤放大器、掺铒-氢光纤放大器等类型。
其中掺铒光纤放大器是应用最广泛的一种,其工作原理是基于铒离子具有能够吸收、发射1550nm波长的激光的特性,从而实现信号增强。
二、光纤放大器的发展历程20世纪70年代,光纤通信领域中的光纤中继技术已经相当成熟,但由于信号的衰减问题限制了其在实际应用中的效果。
这时,光纤放大技术的出现,为光纤通信带来了新的技术突破,同时也成为了光通信中的重要关键技术之一。
光纤放大技术的初期发展主要是通过将半导体激光放大器(Semiconductor Optical Amplifier,简称SOA)的功率和噪声性能进行提升,从而实现信号的放大。
但SOA的局限在于增益范围有限,增益带宽较窄,因此不能很好地适应高速传输的需求。
随着掺铒光纤放大器的出现,光纤放大技术有了质的飞跃,同时掺铒光纤的应用范围也越来越广泛。
目前,掺铒光纤放大器已经被广泛应用于光传输、光通信、光放大、激光技术、光纤传感及光纤光栅等领域。
三、光纤放大器的应用领域1. 光纤通信领域在光纤通信领域,光纤放大器主要用于放大在光纤中传输的信号,使得信号的传输距离更长,同时也能够提高信号质量和信号强度。
在光纤通信系统中,使用掺铒光纤放大器可以实现超过100km的无中继传输,增加光纤通信的可靠性和经济性。
2. 光放大和激光领域在光放大和激光领域,掺铒光纤放大器主要被应用在拉曼放大和激光降噪等方面。
多模包层泵浦大功率光纤放大器的工作原理及应用摘要本文要讨论是多模包层泵浦大功率光纤放大器。
简单介绍其的基本组成及工作原理。
通过与普通光纤放大器的比较来讨论其应用上的优点和发展前景。
关键词多模包层泵浦,双包层光纤,高功率1引言多模包层泵浦大功率光纤放大器是一种由多模包层泵浦技术这一最近发展起来的新兴技术产物。
采用Yb3+和Er3+离子共掺杂双包层光纤,是一系列新技术、新工艺和新材料相结合的产物,是实现光纤放大器超大功率输出的技术核心。
2 多模包层泵浦光纤放大器的结构多模包层泵浦光纤放大器的光路结构如图1所示:3 多模包层泵浦光纤放大器的工作原理多模包层泵浦,是将多模泵浦激光耦合到双包层光纤的内包层中,当多模泵浦光在内包层中传播时会反复穿过光纤纤芯(如图2所示),泵浦光在穿过掺有稀土元素的光纤纤芯时被吸收从而实现泵浦。
与单模纤芯泵浦不同,用于光纤放大器的双包层光纤,泵浦光主要在内包层中传播,因此,同样的纤芯参数,包层泵浦的泵浦吸收截面要小得多,所以,提高泵浦吸收效率是制造双包层光纤需要重点考虑的因素。
合理的内包层结构形状能够显著提高泵浦吸收效率,目前,已经设计并制作出了多种内包层形状的双包层光纤,这些专门设计的内包层结构和形状,使泵浦光在单位长度内有效穿过光纤纤芯的几率大大增加。
图3是设计制作的部分双包层光纤内包层形状示意图。
另外,对于1550nm波段光纤放大器,采用铒、镱共掺的双掺杂技术,利用镱元素的高吸收和铒镱之间能量的高效传递,能够获得铒元素的高效泵浦。
图4为铒镱共掺有源光纤的泵浦吸收和能量传递简单能级示意图。
铒、镱共掺由于存在能量传递的互逆性,因此,需要尽可能快的消耗铒离子的受激状态。
减小纤芯直径,有效提高光密度,是通常的做法,这样做对低功率光纤放大器影响不大,但是,对于大功率和超大功率光纤放大器,会由于过高的光功率密度导致非线性效应,这是有害的。
对于光纤放大器的应用,双包层光纤主要用于大功率和超大功率情况,双包层光纤小芯径纤芯设计已经成为一种制约因素。
光纤放大器工作原理
光纤放大器是一种用于增强光信号强度的器件。
它基于光放大效应,通过在光纤中控制光信号与掺杂有放大介质的光纤发生相互作用,从而使光信号得到放大。
光纤放大器的工作原理可以分为三个基本步骤:泵浦、信号注入和放大。
首先是泵浦过程。
在光纤放大器中,通过泵浦光源注入高功率的光信号,这种泵浦光通常由激光器产生。
泵浦光的波长通常比待放大光信号的波长要短,这样可以最大限度地与放大介质进行相互作用。
泵浦光的功率越高,放大器的增益就越大。
接下来是信号注入。
待放大的光信号被传输到光纤放大器的输入端。
这个信号与泵浦光发生作用,通过受激辐射的机制,能量从泵浦光转移到光信号中。
这种能量转移使得光信号的强度得到增强。
最后是放大过程。
在光纤放大器中,有一种或多种掺杂有特定离子的光纤,这些离子可以吸收泵浦光并向光信号传递能量。
当泵浦光和光信号经过放大介质的光纤时,光信号的强度逐渐增加。
放大的过程可以通过增加 pump-to-signal (P/S)功率比来
优化。
这意味着将更多的泵浦功率注入光信号中,从而提高放大器的增益。
总的来说,光纤放大器通过泵浦光与待放大光信号的相互作用,使得光信号的强度得到放大。
这种放大器可用于光信号传输、
光通信以及其他光学应用中。
它在增强光信号强度方面具有重要的应用价值。
光纤放大器工作原理及其在无线光通讯的应用0前言无线光通讯是以激光作为信息载体,是一种不需要任何有线信道作为传输媒介的通讯方式。
与微波通讯对比,无线光通讯所使用的激光频次高,方向性强(保密性好),可用的频谱宽,无需申请频次使用允许;与光纤通讯对比,无线光通讯造价低,施工简易、快速。
它联合了光纤通讯和微波通讯的优势,已成为一种新兴的宽带无线接人方式,遇到了人们的宽泛关注。
可是,恶劣的天气状况,会对无线光通讯系统的流传信号产生衰耗作用0前言无线光通讯是以激光作为信息载体,是一种不需要任何有线信道作为传输媒介的通讯方式。
与微波通讯对比,无线光通讯所使用的激光频次高,方向性强(保密性好),可用的频谱宽,无需申请频次使用允许;与光纤通讯对比,无线光通信造价低,施工简易、快速。
它联合了光纤通讯和微波通讯的优势,已成为一种新兴的宽带无线接人方式,遇到了人们的宽泛关注。
可是,恶劣的天气状况,会对无线光通讯系统的流传信号产生衰耗作用。
空气中的散射粒子,会使光芒在空问、时间和角度上产生不一样程度的误差。
大气中的粒子还可能汲取激光的能量,使信号的功率衰减,在无线光通讯系统中光纤通讯系统低消耗的流传路径已不复存在。
大气环境多变的客观性没法改变,要获取更好更快的传输成效,对在大气信道传输的光信号就提出了更高的要求,一般地,采纳大功率的光信号能够获取更好的传输成效。
跟着光纤放大器(EDFA)的快速发展,稳固靠谱的大功率光源将在各样应用中知足无线光通讯的要求。
EDFA的原理及构造掺铒光纤放大器(EDFA)拥有增益高、噪声低、频带宽、输出功率高、连结消耗低和偏振不敏感等长处,直接对光信号进行放大,无需变换成电信号,能够保证光信号在最小失真状况下获取稳固的功率放大。
1.1EDFA的原理EDFA的泵浦过程需要使用三能级系统,如图1所示。
在掺铒光纤中注入足够强的泵浦光,就能够将大多数处于基态的Er3+离子抽运到激发态,处于激发态的Er3+离子又快速无辐射地转移到亚稳态。
多模包层泵浦大功率光纤放大器的工作原理及应用
摘要本文要讨论是多模包层泵浦大功率光纤放大器。
简单介绍其的基本组成及工作原理。
通过与普通光纤放大器的比较来讨论其应用上的优点和发展前景。
关键词多模包层泵浦,双包层光纤,高功率
1引言
多模包层泵浦大功率光纤放大器是一种由多模包层泵浦技术这一最近发展起来的新兴技术产物。
采用Yb3+和Er3+离子共掺杂双包层光纤,是一系列新技术、新工艺和新材料相结合的产物,是实现光纤放大器超大功率输出的技术核心。
2 多模包层泵浦光纤放大器的结构
多模包层泵浦光纤放大器的光路结构如图1所示:
3 多模包层泵浦光纤放大器的工作原理
多模包层泵浦,是将多模泵浦激光耦合到双包层光纤的内包层中,当多模泵浦光在内包层中传播时会反复穿过光纤纤芯(如图2所示),泵浦光在穿过掺有稀土元素的光纤纤芯时被吸收从而实现泵浦。
与单模纤芯泵浦不同,用于光纤放大器的双包层光纤,泵浦光主要在内包层中传播,因此,同样的纤芯参数,包层泵浦的泵浦吸收截面要小得多,所以,提高泵浦吸收效率是制造双包层光纤需要重点考虑的因素。
合理的内包层结构形状能够显著提高泵浦吸收效率,目前,已经设计并制作出了多种内包层形状的双包层光纤,这些专门设计的内包层结构和形状,使泵浦光在单位长度
内有效穿过光纤纤芯的几率大大增加。
图3是设计制作的部分双包层光纤内包层形状示意图。
另外,对于1550nm波段光纤放大器,采用铒、镱共掺的双掺杂技术,利用镱元素的高吸收和铒镱之间能量的高效传递,能够获得铒元素的高效泵浦。
图4为铒镱共掺有源光纤的泵浦吸收和能量传递简单能级示意图。
铒、镱共掺由于存在能量传递的互逆性,因此,需要尽可能快的消耗铒离子的受激状态。
减小纤芯直径,有效提高光密度,是通常的做法,这样做对低功率光纤放大器影响不大,但是,对于大功率和超大功率光纤放大器,会由于过高的光功率密度导致非线性效应,这是有害的。
对于光纤放大器的应用,双包层光纤主要用于大功率和超大功率情况,双包层光纤小芯径纤芯设计已经成为一种制约因素。
采用高浓度铒单掺杂可能是解决小芯径问题的一种途径。
我们知道,阻碍铒元素掺杂浓度进一步提高的主要原因,是铒元素在掺杂过程中,不可能达到理想的均匀分布,这样会造成铒掺杂的局部浓度过高,从而导致局部铒元素间距过小,相邻铒元素之间出现非辐射交叉弛豫过程,这种局部的过高浓度,还会导致玻璃基质中产生结晶现象。
所以,人们正在发展新的技术,使铒元素的掺杂非常均匀,在不引起明显的非辐射交叉弛豫过程的情况下,大幅度提高铒元素的掺杂浓度,使采用相对较大
的纤芯直径成为可能。
需要说明的是,在其他参数不变的情况下,增大双包层光纤纤芯直径,也能提高泵浦光的吸收效率。
所以,实现高浓度铒单掺和增大纤芯直径,可以获得与铒镱共掺相当甚至更高的泵浦吸收效率,从而发展性能更好的大功率光纤放大器。
目前,通过多种途径优化设计制造的双包层光纤,多模包层泵浦效率已经与单模纤芯泵浦的效率相当。
将多模泵浦激光高效耦合到双包层光纤的内包层中,是多模包层泵浦的关键技术之一,光功率合成器件(Combiner)是实现这种耦合的关键元件。
图5是多模包层泵浦光纤放大器使用的一种(6+1)×1 Combiner 的标准结构。
图5 (6+1)×1 Combiner结构示意图
4应用
4.1多包层泵浦高功率光放的应用及其优点
光纤放大器作为现代光通信的基础器件之一,不仅是大容量长距离全光通信网存在的前提,还会在光纤网络不断延伸和扩展的进程中发挥越来越重要的作用。
下面对传统普通光纤放大器的代表掺铒光纤放大器(EDFA)与多模包层泵浦大功率光纤放大器的代表铒镱共掺放大器(EYDFA)在光纤到户(FTTH)上的应用进行比较。
采用传统普通EDFA技术的解决方案
如图6所示,信号先在第一级得到放大后,分成几路进入第二级的若干个放大器,使功率得到进一步的提升。
最终放大后的功率可进行功率分配。
该方案存在的主要问题主要是:
1、由于采用了多级结构,所以光学结构十分复杂,而且,由于内部采用了多个激光器,所以相应的控制方案十分复杂。
2、由于多级结构在两级光放之间插入了分波器,相当于在光路中插入了一定的损耗,所以整个EDFA的噪声指数将会恶化。
3、另外,传统EDFA采用单模纤芯泵浦技术,高输出功率的单模泵浦激光器在技术和成本上均受到极大限制。
4、整台EDFA成本很高,所以价格昂贵。
图6 采用传统EDFA工艺的级联式放大示意图
采用基于镱/铒共掺双包层光纤的包层泵浦的方案
采用Yb3+(Yb3+的吸收谱如图7所示)和Er3+离子共掺杂双包层光纤。
该技术是一系列新技术、新工艺和新材料相结合的产物,是实现光纤放大器超大功率输出的技术核心,代表了光纤放大器制作技术的发展方向。
传统EDFA采用单模纤芯泵浦技术,实现更高输出功率在技术和成本上均受到极大限制,目前国内外采用这种技术途径制作的光纤放大器,输出功率一般限制在23dBm(约0.2W)以下。
而多模包层泵浦技术就是实现光纤放大器超大功率输出的最佳选择。
图8为一个包层泵浦高功率光放大器的典型光学结构。
图7 镱的吸收谱
图8镱/铒共掺包层泵浦光放的典型结构
有此可见多包层泵浦高功率光放的主要优点如下:
1、与单模纤芯泵浦技术相比,多模包层泵浦技术具有明显的优势,采用多模包层泵浦技术,是将泵浦光输入至横截面数百倍至数千倍于单模光纤的多模双包层光纤之中,因此,同样的输入光密度,多模包层泵浦可以允许数百倍至数千倍于单模泵浦的输入,从而轻易实现光纤放大器的大功率或超大功率输出。
2、采用简单光学结构即可实现,所以应用形式简单。
如图9所示。
图9 双包层泵浦高功率光纤放大器示意图
3、泵浦的整体成本大幅度降低。
表一为两种方案光放的简单比较:
表一普通EDFA和EYDFA的简单比较
可以预见,超大功率光纤放大器的广泛应用,将对光通信的发展产生深远影响,其市场前景和经济、社会效益良好。
4.2影响多模包层泵浦光纤放大器技术参数
1、泵浦波长
单模纤芯泵浦所使用的泵浦激光器,其输出波长在980nm附近,与铒离子的光谱吸收峰吻合,由于该吸收峰陡直狭窄,所以,吸收效率对泵浦波长非常敏感,需要对泵浦波长采取严格的波长稳定措施,这大大增加了单模泵浦激光器的制作成本。
多模泵浦激光器容易获得大功率输,所以,包层泵浦使用吸收率较低但变化比较平坦的915nm至960nm光谱吸收区(见图10)这样,降低了对泵浦激光器输出波长稳定性的要求,所以,多模包层泵浦不需要采取泵浦波长稳定措施,极大地降低了单位泵浦功率的成本。
图10 铒镱双掺双包层光纤的吸收光谱
2、泵浦功率和输出功率
对于输出功率大于1瓦(30dBm)的大功率光纤放大器来说,由于泵浦功率和输出功率都很高,因此对光纤熔接质量要求更好,对光纤元件的要求更高,对光纤盘绕更讲究。
由于输出功率很高,一般需要将输出信号分成多路进行传输。
3、非线性效应问题
对于大功率光纤放大器,由于光纤中的光功率密度很高,因此,制作和使用这种大功率光纤放大器时,非线性效应成为需要重视的问题。
5 结束语
多模包层泵浦大功率光纤放大器可以获得很高的输出功率,可以大幅度降低单位输出功率的成本,能够获得长寿命。
代表了大功率光纤放大器的发展方向。