现代钢结构抗火设计方法_李国强
- 格式:pdf
- 大小:161.60 KB
- 文档页数:4
从钢结构在火灾下的反应谈如何提高钢结构的抗火性能摘要:本文通过查阅相关文献,从火灾下钢材性能反应方面入手,了解火灾下钢结构的反应。
后结合火灾下钢结构反应分析与现有国内外研究内容,从而对如何提高钢结构的抗火性能的方法进行讨论,并提出自己的观点。
关键词:钢结构;火灾下;反应;抗火性能近年来随着经济的发展,大跨度、超高层建筑应运而生,促使钢结构的快速发展。
且随着随着房屋密度加大以及燃气、电器的普遍使用,建筑物发生火灾的可能性越来越大火灾给人类带来的危害是巨大的。
钢材为非燃烧材料,但钢耐火性能极差,因此,钢结构一旦发生火灾,结构很容易遭到破坏甚至倒塌。
2001年“9.11”事件充分证明了这一点。
2001年世贸大厦被撞击后飞机携带大量的燃油向大厦底部流淌,火势迅速向下蔓延,燃烧不久,灼热的高温就通过钢结构迅速传遍整幢大楼,致使大厦承重的钢结构熔化,撞机仅57分钟南楼就彻底崩溃倒塌,而北楼也仅坚持了l小时22分钟,造成了死亡2797人、损失360亿美元的惊世惨案。
因此,了解钢结构在火灾下的反应从而提出提高钢结构的抗火性能的方法是非常有意义的。
1 火灾下钢结构的反应1.1 高温下钢材的反应在加热情况下,普通钢材的性能随着温度升高而变化。
钢材的性能分为物理性能和力学性能。
物理性能主要为膨胀系数、热传递系数、比热、密度等。
高温作用后钢材的物理性能除了密度,总体上都随着温度的升高而变大,而钢材的热膨胀对极限承载力影响不大但使结构或构件产生变形与附加应力。
而钢材的力学性能随温度升高,弹性模量、屈服强度、极限强度随着温度的升高而下降,塑性变形和蠕变随温度的升高而增加。
总体上随着温度变化为:在180℃~370℃温度期间内,钢材出现蓝脆现象,此时钢材的极限强度有所提高而塑性韧性降低,材料相对其他温度段比变脆;当温度超过400℃后,钢材的强度与弹性模量开始急剧下降;在500℃时,钢的极限强度和屈服强度极限大大降低;当温度为600℃时EC3指出钢材的名誉屈服强度及极限强度分别为为常温下的0.47及0.36;650℃以后基本丧失其承载力,造成钢结构建筑物部分或全部垮塌毁坏。
高层建筑钢结构的抗火设计方法及防火措施摘要:近几年,随着城市化的深入,城市可供使用的土地日益减少,导致了城市高层和超高层建筑的迅速发展。
同时,钢结构也广泛应用于高层和超高层建筑,在建筑中的地位日益突出。
介绍了高层建筑钢结构防火设计的基本思路,以及高层钢结构的施工特点,并对其防火风险进行了分析。
关键词:钢结构;抗火设计;防火措施;1.高层钢结构的建筑特点1.1预工程化程度高,建设成本降低,工期缩短钢构构件的模数协调统一规范,使其达到工业化、规模化,使不同材料、形状和工艺的建筑构件之间具有某种共性和可互换性。
同时,预工程钢结构的施工也使得材料的加工与安装成为一体,从而大大减少了施工费用;同时也可以加速工程进度,将工程进度减少40%,这样可以加速开发商的资金周转,使大楼提前交付。
1.2建筑与结构的设计与功能一体化,使建筑更富有功能化钢结构建筑的意象组成是一个非常关键的要素,其形态、要素、节点都是影响和限制建筑物形象的重要因素。
只有将建筑和结构的设计和功能结合起来,才能让建筑更加具有功能性,从而在后续的设计中继续进行,从而形成一种技术和艺术相结合的钢结构建筑。
1.3钢结构建筑能够满足超高度和超跨度的要求钢的结构是均匀的,具有较高的强度和较高的弹性模量。
它的密度和强度之比比水泥、混凝土、木头要小得多,在相同的荷载下,钢结构的重量相对较轻,因此可以制成大跨度、高、结构形式。
目前,人类已经能够建造1000多米长的巨型圆顶,以及1000多米高到4000多米的超高层建筑。
同时,索膜结构与钢索组合而成的索膜结构更能满足建筑物的跨径需求,从而使其成为一种具有代表性的建筑物。
1.4原材料可以循环使用,有助于环保和可持续发展由于中国是全球最大的砖混结构和混凝土结构国家,因此,发展钢铁结构对于资源和能源都十分匮乏的国家具有重要的意义。
钢材是一种高强度高效能的材料,具有很高的再回收的利用价值,边角料也有价值,而且不需要制模施工。
第9卷第6期2007年12月建 筑 钢 结 构 进 展Progress in Steel Building Structu res Vo l.9N o.6 Dec.2007收稿日期:2007-01-17;收到修改稿日期:2007-02-13基金项目:上海市科委基金资助项目(02JC14020),国家科技计划项目衔接)科技奥运专项基金(Z0006279040221)作者简介:黄珏倩(1978-),女,博士研究生,主要从事钢结构抗火研究。
E -mail:hjq1113@ 。
李国强(1963-),男,博士,教授,主要从事多高层建筑钢结构及钢结构抗火研究。
门式钢刚架结构实用抗火临界温度计算方法黄珏倩1,李国强1,2,包盼其3,刘 克3(1.同济大学土木工程学院,上海 200092;2.同济大学土木工程防灾国家重点实验室,上海 200092;3.北京北辰会议中心发展有限公司,北京 100101)摘 要: 本文应用A nsy s 程序,针对门式钢刚架结构,变化各种参数,进行了多个不同算例的结构整体抗火临界温度的计算。
在对算例结果进行参数分析的基础上,忽略次要参数,考虑主要参数,得出了适用于跨度小于52m,高度小于10m,截面高度小于900mm 的任意门式钢刚架结构整体抗火临界温度的简化计算表格,可方便地用于该类结构的抗火设计。
关键词: 门式钢刚架;A N SYS 计算;抗火临界温度;简化计算方法中图分类号:T U 392.5,T U 318.01 文献标识码:A 文章编号:1671-9379(2007)06-0042-07A Practical Approach for Fire -Resistant Designof Steel Portal FramesH UAN G J ue -qian 1,L I Guo -qiang 1,2,BA O P an -qi 3,L I U K e 3(1.School of Civil Engineering,Tongji University,Shanghai 200092,Chi na;2.State Key Laboratory for Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China;3.Beijing North Star ConventionCenter Development Ltd,co.,Beiji ng 100101,China)HUANG Jue -qian:hjq1113@Abstract : U sing the finite element analysis softw are ANSYS,the critical temperatures of steel portal frames in fir e affected withvar ied factor s ar e investig ated.With the analy tical results,the major factors influencing the structural critical temper -atur e are identified.And a simple table is proposed for estimating any steel portal frame's critical temperatur es.T he simplified method in this article can be used in the fir e -resistant desig n of this kind of steel por tal fr ames.Keywords: steel portal frame;AN SYS calculation;cr itical temper ature of fir e -resistant;simplified calculation method钢结构是一种重要的建筑结构形式,但是它存在高温强度低、抗火性能差等缺点,所以在钢结构建筑中,防火问题至关重要。
地震:因地球内部缓慢积累的能量突然释放而引起的地球表层的振动震源:地壳岩层发生断裂破坏、错动,产生剧烈振动的地方震中:震源正上方的地面位置极震区:在震中附近,振动最剧烈、破坏最严重的地区震中距:地面某点至震中的距离震源深度:震中到震源的距离或震源到地面的垂直距离构造地震:亦称“断层地震”,是由于地壳发生断层引起的,地壳在构造运动中发生变形,当变形超过岩石的承受能力,岩石就发生断裂,在构造运动中,长期积累的能量迅速释放,造成岩石振动,从而形成地震地震波(体波和面波):地震引起的振动以波的形式从震源向各个方向传播体波:通过地球本体传递的波,包括纵波和横波纵波:由震源向外传递的压缩波,质点的振动方向与波的前进方向一致横波:由震源向外传递的剪切波,质点的振动方向与波的前进方向垂直面波:沿介质表面(或地球地面)及其附近传播的波纵波最快,横波次之,面波最慢,当横波或面波到达时地面振动最强烈地震动三要素:峰值、频谱、持续时间地震烈度:一次地震对某一地区的影响和破坏程度影响烈度的因素:震级、震中距,震源深度、地质构造和地基条件等地震灾害的表现:地表破坏(地裂缝与变形、喷砂冒水、河床变位、地面下沉、滑坡塌方)工程建筑物破坏(承载力不足引起的破坏、结构丧失整体性)次生灾害(火灾、毒气泄漏、放射性污染、滑坡泥石流、海啸)抗震设防:各类工程结构按照规定的可靠性要求和技术经济水平所确定的统一抗震技术要求,是对房屋进行抗震设计和采取抗震构造措施来达到抗震效果的过程基本烈度:即设防烈度,一个地区未来50年内一般场地条件下可能遭受的具有10%超越概率的地震烈度值抗震设防烈度:按国家批准权限审定作为一个地区抗震设防依据的地震烈度抗震设防目标:小震不坏,中震可修,大震不倒两阶段抗震设计方法:强度验算(以小震验算承载力,结构弹性变形)第一水准设防通过构造措施保证结构必要的变形能力(中震可修得到保证)第二水准设防变形验算(对特别重要的结构和易倒塌结构按大震验算层间位移)第三水准设防建筑物重要性分类:特殊设防,重点设防,标准设防,适度设防抗震设计:抗震概念设计(抗震基本原则和思想)、抗震计算(提供定量手段)和抗震构造措施(保证计算结果有效性)抗震设计基本原则:注意场地选择、把握建筑体型、利用结构延性、设置多道防线、重视非结构因素结构延性:结构在承载力无明显降低的前提下发生非弹性变形的能力,反映了结构的变形能力,是防止在地震作用下倒塌的关键因素之一强柱弱梁:使框架结构塑性铰出现在梁端的设计要求,以提高结构的变形能力,防止强烈地震作用下倒塌强剪弱弯:使钢筋混凝土构件中与正截面受弯承载力对应的剪力低于该构件斜截面受剪承载力的设计要求,用以改善构件自身的抗震性能场地:建筑物所在地,具有相似的反应谱特征,范围相当于厂区、居民点和自然村场地土:场地范围内的地基土地基:建筑基础下受力范围内的土层工程地质条件对震害的影响:局部地形,地质构造(发震断裂与非发震断裂),地下水位(越浅,震害越严重)覆盖层厚度:从地表到地下基岩面的垂直距离,即基岩的埋深划分场地类别的目的:在地震作用计算中,定量考虑场地条件对设计参数的影响,确定不同场地上的设计反应谱,以便采用合理的设计参数和采取有关的抗震措施地基土液化:饱和松散的沙土或粉土,地震时易发生液化现象,使地基承载力丧失减弱,甚至喷水冒砂地基土液化机理:处于地下水位以下的饱和砂土和粉土的土颗粒结构受到地震作用时将趋于密实,使空隙水压力急剧上升,而在地震作用的短暂时间内,这种急剧上升的空隙水压力来不及消散,使原有土颗粒通过接触点传递的压力减小,当有效压力完全消失时,土颗粒处于悬浮状态影响液化因素:土层的地质年代,土层组成,土的相对密度,土层的埋深,地下水位的深度,地震烈度和地震持续时间液化的震害:地面开裂下沉,不均匀沉降底部剪力法条件:结构的地震反应可用第一振型反应表征,结构的第一振型为线性倒三角砌体结构的优点:就地取材、造价低、保温、隔热性能好,并且施工简单,具有优于其他结构的经济效益和使用性能砌体结构的缺点:拉、抗剪和抗弯能力很低并缺乏抗震所要求的延性,即抗震能力较差构造柱的作用:提高墙体的抗剪强度,增强变形能力,避免墙体倒塌圈梁的作用:对于砌体房屋,现浇钢筋混凝土圈梁可加强墙体的连接,提高楼、屋盖的刚度,增强房屋的整体性;还可以和构造柱共同限制墙体裂缝的开展以及抵抗或减小由于地震或其他原因引起的地基不均匀沉降而对房屋造成的不利影响抗震等级:确定结构构件抗震计算和抗震措施的标准,根据设防烈度、房屋高度、建筑类别、结构类型及构件在结构中的重要程度来确定多高层建筑结构体系:框架结构:由纵横向框架梁柱组成(平面布置灵活,室内空间较大;抗侧刚度较小)抗震墙结构:由钢筋混凝土墙体承受竖向荷载和水平荷载的结构体系(整体性能好、抗侧刚度大和抗震性能好,可降低建筑层高,充分利用空间;限制建筑内部平面布置的灵活性)框架-抗震墙结构:由框架和抗震墙相结合而共同工作的结构体系(空间大,抗侧刚度大)。
对钢结构抗火性能的认识火灾会给人类的生命和财产造成巨大的损失,火灾的类型有建筑火灾、工业生产设备火灾、森林火灾、交通工具火灾等,其中损害最大发生次数最多的就是建筑火灾,约占火灾的80%。
建筑火灾发生时,除了会烧毁设备并对人的生命有威胁外,而且还会造成结构的破坏。
随着我国经济水平的迅速提高,城市规模飞速发展,城市中的建筑物也快速向高层、超高层、多功能化和大规模化发展,并且钢结构建筑在近些年越来越受到企业及工厂的喜爱。
虽然钢材是非燃烧材料,但是钢材不耐火,当火灾发生时,如果温度升高到4000C,那么钢材的屈服强度将降至室温下强度的一半,如果温度继续升高,达到6000C时,钢材的强度和刚度基本会全部丧失。
因此,如果建筑采用无防火保护措施的钢结构,那么一旦发生火灾,结构就会短时间内遭到破坏,从而造成难以估量的损失。
所以为了尽量降低这种损失,近几年各专家学者都在对结构的抗火性能进行研究,并已取得了很好的成果,但是,也还存在许多问题亟待解决。
需要注意的是“抗”主要为“抵抗”的意思。
结构的功能即为抵抗各种环境作用,如抵抗重力、抵抗风荷载(即抗风)等。
火作为一种环境作用,结构同样要抵抗。
结构抗火一般通过对结构构件采取防火措施,使其在火灾中承载力降低不多而满足受力要求来实现。
结构抗火设计意义十分重大,主要是能减轻结构在火灾中的破坏,避免结构在火灾中局部倒塌造成灭火及人员疏散困难;避免结构在火灾中整体倒塌造成人员伤亡;减少火灾后结构的修复费用,缩短灾后结构功能恢复周期,减少间接经济损失。
而进行建筑防火设计的目的则是:减小火灾发生的概率,减少火灾直接经济损失,避免或减少人员伤亡。
其实对钢结构抗火性能的研究最早是以简单的单个构件为研究对象开始研究的,研究方法包括试验研究和理论研究两种。
构件的抗火性能研究主要针对钢梁、钢柱、节点、楼板进行,对高温下钢梁、钢柱的结构受力、变形性能的分析主要基于常温下的钢构件受力、变形性能分析方法,采用高温下的结构材料特性进行分析。
现代钢结构抗火设计方法【摘要】本文基于钢结构建筑的特点,分析了钢结构建筑抗火的设计原理和方法,论述了钢结构抗火设计的要点和具体的步骤,以期能够通过分析为我国现代钢结构的抗火设计工作提供有意义的借鉴。
【关键词】钢结构;抗火;设计;方法一、前言钢结构的设计已经成为了当下建筑设计的一个重点方向,在钢结构建筑设计的环节里,抗火设计成为了一个设计的关键工作。
只有保证了钢结构建筑具有抗火性能,才能够提高钢结构建筑的整体质量。
二、结构附火极限长期以来,建筑防火被认为是建筑师设计时需要考虑的问题,结构工程师设计时考虑结构防火(对结构更适合称抗火)问题的不多。
确实,建筑的防火分隔、避难层的设置、安全疏散出口的布置等为建筑防火设计问题,目的在于减轻火灾损失,减少人员伤亡.然而,作为防火分隔的防火墙靠结构支承,如果火灾中支承结构破坏,防火墙也起不了防火分隔作用;还有避难层下的结构如果达不到耐火时间要求而破坏,造成的人员伤亡将更为严重;此外,建筑结构构件(如梁、楼板、楼梯等)在火灾中如果破坏,会影响人员的疏散和消防人员进入建筑内灭火。
因此,各国建筑防火设计规范都有建筑结构构件耐火时间(或耐火极限)的规定。
表1是我国规定的各类建筑结构构件的耐火极限。
表1建筑结构构件的燃烧性能和耐火极限三、钢结构抗火设计的目标与意义钢结构抗火设计的目标就是使结构构件的实际耐火时间大于或等于规定的耐火极限。
在火灾高温下,结构钢的强度和刚度都将迅速降低(见图1),而火灾升温迅速(见表1),故无防火保护的钢构件在火灾中很容易破坏。
因此,钢结构抗火设计的一般要求是:如何定量地确定防火保护措施,使得钢结构构件的耐火时间大于或等于规定的耐火极限。
表2ISO834标准升温曲线温度时间关系进行结构抗火设计具有如下意义:1、减轻结构在火灾中的破坏,避免结构在火灾中,局部倒塌造成灭火及人员疏散困难;2、避免结构在火灾中整体倒塌造成人员伤亡;3、减少火灾后结构的修复费用,缩短灾后结构功能恢复周期,减少间接经济损失。