微小电路测量仪原理图
- 格式:pdf
- 大小:233.29 KB
- 文档页数:1
万用表的使用(MF47)●指针式万用表的结构、组成与特征●万用表的原理图与工作原理●万用表的电阻档测量原理图及实际电阻色环图片表●三极管引脚判断及常用三极管直流放大倍数表●万用表的电容测量及微小电容测量法与电路分析●万用表测量驻极体话筒、喇叭、稳压管稳压电压、光敏电阻等●在线电路电容、电阻测量●万用表使用技巧与注意事项●第一节指针式万用表的结构、组成与特征1、万用表的结构特征MF47型万用表采用高灵敏度的磁电系整流式表头,造型大,设计紧凑,结构牢固,携带便,零部件均选用优良材料及工艺处理,具有良好的电气性能和机械强度。
其特点为:测量机构采用高灵敏度表头,性能稳定;线路部分保证可靠、耐磨、维修便;测量机构采用硅二极管保护,保证过载时不损坏表头,并且线路设有0.5A保险丝以防止误用时烧坏电路;设计上考虑了湿度和频率补偿;低电阻档选用2#干电池,容量大、寿命长;配合高压按着,可测量电视机25kV 以下高压;配有晶体管静态直流放大系数检测装置;表盘标度尺刻度线与档位开关旋钮指示盘均为红、绿、黑三色,分别按交流红色,晶体管绿色,其余黑色对应制成,共有七条专用刻度线,刻度分开,便于读数;配有反光铝膜,消除视差,提高了读数精度。
除交直流2500V和直流5A分别有单独的插座外,其余只须转动一个选择开关,使用便;装有提把,不仅便于携带,而且可在必要时作倾斜支撑,便于读数。
4.2 指针式万用表的组成指针式万用表的型式很多,但基本结构是类似的。
指针式万用表的结构主要由表头、档位转换开关、测量线路板、面板等组成(见下图)。
指针式万用表的组成表头是万用表的测量显视装置,电子仪表厂提供的指针式万用表采用控制显示面板+表头一体化结构;档位开关用来选择被测电量的种类和量程;测量线路板将不同性质和大小的被测电量转换为表头所能接受的直流电流。
万用表可以测量直流电流、直流电压、交流电压和电阻等多种电量。
当转换开关拨到直流电流档,可分别与5个接触点接通,用于测量500mA、50mA、5mA和500μA、50μA 量程的直流电流。
电感测微仪工作原理
电感测微仪是一种精密测量工具,其工作原理主要基于电感的变化来检测微小的位移或尺寸变化。
以下是关于电感测微仪工作原理的详细描述:
当电感测微仪的传感器铁芯处于两线圈的中间位置(即平衡位置)时,且调零电位器也在其中间位置,两个线圈的电感量是相等的。
这种情况下,由传感器线圈和调零电位器组成的电桥会处于平衡状态,没有信号输出。
然而,当铁芯发生移动并离开这个平衡位置时,电桥就会失去平衡。
铁芯离开平衡位置的位移量越大,电桥的输出信号电压就会越大。
这是因为铁芯直接与传感器的测杆连接,所以当测杆随着被测工件尺寸的变化发生上下位移时,电桥就会产生信号电压输出。
这个输出信号电压的大小与被测工件尺寸的变化量(即铁芯偏离平衡位置的位移量)成正比。
另外,信号电压的相位取决于铁芯是在平衡位置的上面还是下面。
这样,电感测微仪就能把工件的微小尺寸变化量转换成相应的电压信号。
这个电压信号经过量仪的逐级叠加、放大、整流后,会被输出至指示表,从而显示出单个工件的尺寸变化数值。
总的来说,电感测微仪的工作原理是通过测量电感的变化来检测微小的位移或尺寸变化,从而实现对工件尺寸的精密测量。
这种测量方式具有高度的灵敏度和准确性,广泛应用于各种需要精密测量的工业和科学领域。
压力变送器的组成和测量原理图作为一个转换为电信号的测量仪表,图1-2-1是压力变送器有一个基本的工作框图:压力传感器检测到压力后,输出一个电信号,这个信号可以是电压,也可以是频率或脉冲。
信号处理电路会把这个信号放大或者整形,若是智能变送器会把这个信号转换为数字量,进行非线性及温度的补偿,然后再转换为模拟量,送给变送输出部分,变成4~20mA电流信号。
若是非智能变送器,则直接把模拟的电信号送变送输出。
一般的变送器均为2线制仪表,即供电和测量信号的输出使用相同的2根导线。
图1-2-1压力变送器基本工作框图2.3压力传感器压力传感器的作用是将压力的物理信号转换为电信号。
通常使用的压力传感器主要有3类。
2.3.1陶瓷电容传感器以三氧化二铝陶瓷构成,当传感器感受压力后,两导电极板间距离发生变化,引起电容量发生变化。
通过振荡电路可以将这个电容变化转换为电压信号,就可以测量出电容量也就是压力大小。
陶瓷电容压力传感器的特点是热稳定性好,抗过载能力可达量程的百倍以上,没有液体传递压力,无任何填充液,不会产生工艺污染,因此在食品、医药等行业有着广泛的应用,加之是干式陶瓷膜片,也没有安装位置影响。
有的陶瓷压力传感器带有专用调理电路,可直接输出0.5~4.5V的电压信号。
虽然压力传感器的量程范围不同,但是输出信号的幅值都相同。
即0.5V对应传感器测量的最小压力,4.5V对应最大压力,其余中间各点与测量压力成线性关系。
例如,-0.1~1MPa的压力传感器,在压力为0时的理论输出为0.86V。
2.3.2金属电容差压传感器图1-2-2金属电容差压传感器罗斯蒙特公司使用金属电容传感器制成了1151差压变送器,现在国内很多厂家的差压变送器都是参考1151制造的。
金属电容差压传感器的原理是:被测介质的两种压力通入高、低两压力室,作用在敏感元件的两侧隔离膜片上,通过隔离片和元件内的填充的硅油传送到测量膜片两侧。
由测量膜片与两侧绝缘片上的电极各组成一个电容器。
目录一、设计思路-------------------------------------------------------------------------------------11.设计思路和采取的技术方案----------------------------------------------------------11.1设计思路--------------------------------------------------------------------------11.2采取的技术方案----------------------------------------------------------------12.工具设备要求和技术规范-------------------------------------------------------------22.1工具设备要求--------------------------------------------------------------------22.2技术规范--------------------------------------------------------------------------2二、设计过程与说明----------------------------------------------------------------------------31.调研----------------------------------------------------------------------------------------32.设计要求----------------------------------------------------------------------------------33.设计方案----------------------------------------------------------------------------------33.1硬件电路设计与制作----------------------------------------------------------33.2系统主程序的设计-------------------------------------------------------------93.3系统组装与调试---------------------------------------------------------------104.在设计过程中遇到的问题及解决措施--------------------------------------------12三、设计成果简介-----------------------------------------------------------------------------131.作品特点--------------------------------------------------------------------------------131.1技术指标------------------------------------------------------------------------131.2性能特点-------------------------------------------------------------------------131.3创新之处------------------------------------------------------------------------131.4实用性---------------------------------------------------------------------------132.归纳与总结-----------------------------------------------------------------------------133.设计成果--------------------------------------------------------------------------------143.1单片机程序---------------------------------------------------------------------143.2电路原理图---------------------------------------------------------------------223.3作品实物图---------------------------------------------------------------------23五、参考文献-----------------------------------------------------------------------------------25一、设计思路1.设计思路和采取的技术方案1.1设计思路能够用所制作的简易R、L、C、F数显测量仪去完成电阻、电感、电容、频率的测量工作,并利用LCD1602显示出被测器件及测量器件的结果,每个测量器件都可以在独立界面显示。
电子技术课程设计报告——简易数字电容测量仪的设计设计题目:简易数字电容测量仪班级学号:学生姓名:目录一、预备知识.................... 错误!未定义书签。
二、课程设计题目:简易数字电容测量仪的设计错误!未定义书签。
三、课程设计目的及基本要求...... 错误!未定义书签。
四、设计内容提要及说明.......... 错误!未定义书签。
4.1设计内容........................................ 错误!未定义书签。
4.2设计说明........................................ 错误!未定义书签。
五、原理图及原理说明 ........................ 错误!未定义书签。
5.1功能模块电路原理图..................... 错误!未定义书签。
5.2模块工作原理说明 ........................ 错误!未定义书签。
六、调试...........................................................................错误!未定义书签。
七、设计中涉及的实验仪器和工具.... 错误!未定义书签。
八、课程设计心得体会 ........................ 错误!未定义书签。
九、参考文献 ........................................ 错误!未定义书签。
一、预备知识关于数字式简易数字电容测试仪的设计,我们提出了三种设计方法和思路。
在具体操作中,经过对资料的收集、分析,研究与对比,最终选择了简单易懂,而且精度较高的方法,即门控法。
本方法的基本理论是单稳态触发器电路的输出脉宽wt与电容C成正比,再通过一系列的控制,计数,锁存,显示电路实现了对电容的一般测试与数字显示。
在本次数电课程设计的同时,对于中大规模集成电路从认识到分析、再到整体框图设计、单元模块设计、最终到电路的模拟和实际电路的成形有了一定的认识,同时使我们在电子设计方面有了一定的实际动手能力,也为这次数电课程设计打下了坚实的基础。
电容式测厚仪一、电容传感器基本原理电容传感器具有温度稳定性好、结构简单、精度高、响应快、线性范围宽和实现非接触式测量等优点。
近年来,由于电容测量技术的不断完善,微米级精度的电容测微仪已是一般性产品,电容测微技术作为高精度、非接触式的测量手段广泛应用于科研和生产加工行业。
电容传感器最常用的形式为平行平板电容器,物理学上用下式描述:即电容器的电容值C与极间距h成反比,与极板面积S和介电常数成正比。
对于变极距型传感器,测量中被测物与大地连接,单极式电容传感器与之形成一个电容器,此电容器接入开环放大倍数为A的运算放大器反馈回路中,由此得到其原理公式:式中:为电容式精密测微仪的电压输出;为标准参比电容;为信号源标准方波输出信号;S为传感器测头有效端面面积;为传感器测头的有效待测电容;h为传感器与被测物体之间的距离。
二、电容测厚仪设计图1电容测厚仪传感器安装结构示意图电容测厚仪用于测量金属板材在轧制过程中的厚度变化,,放在板材两边,板材是电容的动极板,总电容为,作为一个桥臂。
如果板材只是上下波动,电容的增量一个增加一个减少,总的电容量不变;如果板材的厚度变化使电容变化,电桥将该信号变化输出为电压,经放大器、整流电路的直流信号送出处理显示,显示为厚度变化。
图2测厚原理示意图图2所示为测厚原理,由于被测物3是非绝缘体,特别是在线测量时,由于工件加工中存在振幅为的振动,所以采用差动测量的方法,使其表面分别与传感器1、2构成电容器,由此形成对其厚度变化量的实时监测,即当给定传感器2的相对位置和板材初始厚度h时,板材厚度变化,则有,传感器引起电压的变化为:式中:可得总的变化电压:由此,差动测量方法有效地解决了工件加工过程中的振动问题。
图3电容测厚仪电路原理框图至此,输出信号通过放大、整流、差放电路和指示仪表即可显示板材的厚度三、电容测厚传感器在板材轧制装置中的应用。
优点由于这种传感器具有结构简单,体积小,动态响应好,能实现非接触测量等特点,因而被广泛应用动态响应好温度稳定性好电容式传感器的电容值一般与电极材料无关,有利于选择温度系数低的材料,又由于本身发热极小,因此影响稳定性也极微小缺点.输出阻抗高,负载能力差,电容传感器的电容量受其电极几何尺寸等限制,一般为几十皮法到几百皮法,使传感器输出阻抗很高,尤其当采用音频范围内的交流电源时,输出阻抗更高,因此传感器负载能力差,易受外界干扰影响而产生不稳定现象;寄生电容影响大。
电工测量仪表1电工测量仪表的分类11电工测量仪表的分类电工仪表的作用是测量各种电参数,如电流、电压、周期、频率、电功率、功率因数、电阻、电感、电容等。
电工通过测量这些电参数数值,便可以了解电路的电气设备的技术性能和工作情况,以便进行适当的处理和必要的调整,保证电路正常工作和设备安全运行。
按用途不同:可分为电压表、电流表、功率表、电度表等;还可根据电流种类,分为直流表、交流表和交直流两用表等三种,还有能聚测量电流、电压、电阻等功能的万用表。
按作用原理:常用的有磁电式、电磁式、电动式和感应式四种,其它还有振动式、热电式、热线式、静电式、整流式、光电式和电解式等。
按测量方法:可分为直读式和比较式两种。
直接指示被测量数值的仪表,称为直读式仪表,例如电压表、电流表、功率表等;被测量数值用“标准量”比较出来的仪表,称为比较式仪表,如平衡电桥、补偿器等。
此处的电工仪表章节主要介绍宣读式仪表。
按准确度:可分为0∙1级、0.2级、0.5级、1.0级、1.5级、2.5级、和5.0级七种。
0.2级仪表的允许误差为0.2%,0.5级仪表误差为0.5%,以此类推。
0.5级以上的仪表准确度较高,多用在实验室作为校验仪表。
1.5级、2.5级等准确度较低,一般装在配电盘和操作台上,用来监视电器设备允许情况。
2指针式万用表万用表是一种多功能、多量程的测量仪表,一般的万用表可以测量直流电压、直流电流、交流电压、电阻和音频电平等电学量。
有些万用表还可以测量交流电流、电容量和电感量以及半导体(二极管等)的一些参数,随着数字显示万用表的出现,测量更为方便。
指针式万用表因为结构简单、性价比高、量值表现直观,目前依然被广泛使用。
2.1指针万用表的结构表头:及用于显示数值的部分,是一只高灵敏度的磁电式直流电流表,有万用表的“心脏”之称,是用以指示被测量的数值,万用表的主要性能指标基本上取决于表头的性能。
表头的灵敏度是指表头指针满刻度偏转时流过表头的直流值,这个值越小,表头的灵敏度越高,测量电压时的内阻也就越大,万用表性能就越好。
简易电阻、电容和电感测试仪设计原理简易电阻、电容和电感测试仪一、任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:二、要求1.基本要求.基本要求(1)测量范围:电阻100Ω~1M Ω;电容100pF 100pF~~10000pF 10000pF;电感;电感100μH ~10mH 10mH。
(2)测量精度:±5% 。
)测量精度:±5% 。
(3)制作4位数码管显示器,显示测量数值,并用发光二极管分别指示所测元件的类型和单位。
三、设计步骤三、设计步骤1、分模块测量电路的设计原理(1)电阻测量电路的基本原理电阻测量仪的关键技术是电阻测量仪的关键技术是R X /V 转换器,转换器,R R X 即所需测量的电阻,无论电路多么复杂,总可以把与R X 相并联的元件等效为两只互相串联的电阻R 1和R 2。
由此构成三角形电阻网络,其原理图如下所示:上图中R 0为量程电阻,只要使R 1两端呈等电位,此时U R1=0=0,则,则R 1相当于开路,路,R R 2变成运放的负载电阻,变成运放的负载电阻,R R 1和R 2就不起分流作用,这样即可直接测就不起分流作用,这样即可直接测 R R X 的阻值。
的阻值。
E E 为测试电压,为测试电压,I I S 为测试电流,设流过R X 和R 1的电流分别为I X 和I 1,根据基尔霍夫定律可知:,根据基尔霍夫定律可知:I S =I X + I 1又根据“虚地”原理,则又根据“虚地”原理,则U R1= I 1 R 1=0故I 1=0=0,可忽略不计。
由此得到:,可忽略不计。
由此得到:,可忽略不计。
由此得到:I S =I X再考虑到C 点接地,则D 点为“虚地”,因此:点为“虚地”,因此:I S=E/ R0进而推导出:进而推导出: U X= I X R X= I S R X= (E/ R0)·R X显然,只要能得到RX 两端的电压UX,就能求出RX的值,即:的值,即: R X= U X/(E/ R0)= U X R0/ E这就是电阻测量的基本原理。
微小电压测量放大电路的抗共模噪声设计方法唐金元;王翠珍;于潞【摘要】The quality of measurement instruments usually was determined by the quality of their front amplifier, so those amplifiers with higher input impedance and stronger ability of anti-noise were chosen for using in computing circuits and instrumental circuits. When weak voltage signal is needed to be measured accurately, the symmetry of the instrumental amplifiers is difficult to realize. The authors proposed to add negative feedback circuit with common -mode voltage in instrumental amplifiers to totally or partly offset the common -mode noise in the strong noise environment, and add following circuit at the input end to decrease the measurement error caused by the imbalance of inputting circuit when the signal need to be transmitted in a long distance. The experimental results proved that the improved instrumental amplifier can effectively restrain common-mode interference.%测量仪器性能的好坏在很大程度上取决于其前端放大电路的性能,常选择具有较强噪声抑制能力和较大输入阻抗的运算放大电路和仪用放大电路.在微小电压的精密测量时,仪用放大电路的对称性很难完全保证,在强噪声的环境中,在仪用放大电路中加入共模电压的负反馈电路可抵消共模噪声或其中的一部分;在长距离信号传输时,在电路输入端加入跟随器电路可很好地克服由于测量电缆较长造成的输入电路不平衡而引入的测量误差.实验测试结果表明:改进型的仪用放大电路噪声抑制效果良好.【期刊名称】《中国测试》【年(卷),期】2012(038)004【总页数】4页(P83-85,109)【关键词】放大电路;电压信号;共模噪声;共模抑制比;平衡【作者】唐金元;王翠珍;于潞【作者单位】海军航空工程学院青岛分院,山东青岛266041;海军航空工程学院青岛分院,山东青岛266041;海军航空工程学院青岛分院,山东青岛266041【正文语种】中文【中图分类】TP274+.2;TN702;TM930.12;TN7220 引言对微弱电信号进行放大是各种不同用途的电子测量仪器的关键部分——前置放大器的任务。
高精度电感,电容测量仪原理,电路图及制作方法这个电路不同国家和地区很多人制作过,测量精度高,测量范围大,有用不同语言写的程序,我作了一个BASCOM-AVR版本的,并增加了对电解电容器测量。
电感测量范围:0.1μH~2H电容测量范围:1pF~2.5μF电解电容测量范围:0.1μF~30000μF一、电容、电感测量原理:电路是一个由LM393(U3A)组成的LC振荡器。
由单片机测量LC震荡回路的频率F1,然后控制继电器K2将标准电容C2与C1并联,测出振荡器频率F2,再用下列式子计算出电容C1电感L1的值。
这里电容器C2的容量的精确程度,基本上决定了整个测量过程的精度。
应该选用稳定性好精度高的电容器,这个制作选用了1800pF的云母电容器。
上述过程可称作为一个校准过程,由M8控制每次开机时自动完成。
开机后延时1500ms,测量由U1A、L1、C1组成振荡器频率F1;Portd.3 = 0,K2吸合,C2接入延时1500ms,测量振荡器频率F2,Portd.3 = 1,K2断开。
M8计算C1、L1完成后按S1进入电容Cx的测量状态。
电容Cx、电感Lx的值,分别用下列式子计算:二、电解电容测量原理:电解电容的测量是基于对RC电路的时间常数的计算,由脉冲电路原理可知,电容的充电速度与R和C的大小有关,R与C的乘积越大,过渡时间就越长。
这个RC 的乘积就叫做RC电路的时间常数τ,即τ=R?C。
若R的单位用欧姆,C的单位用法拉,则τ的单位为秒。
图示曲线可以得到充电过程的一般规律:Uc是按指数规律上升的,Uc开始变化较快,以后逐渐减慢,并缓慢地趋近其最终值,当t=τ时,Uc=0.632E;本测量仪就是利用单片机测量Uc=0到0.632E这段时间,用下列式子计算计算被测电容值:电路由比较器U3B,放电晶体管Q等组成。
设定比较器正输入端为Uc,(Uc=0.632E=0.632?5=3.16V,调节RP1获得),反向输入端接被测电容CEx,当D 端为高电平时,Q导通电路处于放电状态,这时CEx被放电,比较器U3B输出高电平。
毫伏电压表的工作原理1. 介绍毫伏电压表(Millivoltmeter)是一种用来测量电路中微小电压的仪器。
它可以测量毫伏级别的电压,通常在0.001V到20V之间。
本文将详细解释毫伏电压表的工作原理,包括其基本原理和测量过程。
2. 基本原理毫伏电压表的基本原理是利用欧姆定律和电流平衡原理进行测量。
当一个直流电源连接到一个具有内部电阻的测量仪器上时,根据欧姆定律,测量仪器将产生一个与输入电压成正比的电流。
3. 毫伏表的内部结构毫伏电压表通常由以下几个主要组件组成:a. 选择档位开关选择档位开关用于选择合适的量程以适应不同范围的待测电压。
它通常具有多个档位,如200mV、2V、20V等。
b. 输入端口输入端口用于连接待测电路中的两个点。
它通常是一个金属插针或夹子,可以轻松连接到电路中。
c. 显示屏显示屏用于显示测量结果,通常以数字形式显示。
d. 内部电阻毫伏电压表的内部电阻是一个关键组件。
它通常由大量的串联电阻组成,以提供不同的量程选择。
内部电阻的大小取决于选择档位。
e. 电流平衡器电流平衡器是一个用来调整内部电阻与待测电路之间的连接的可变电阻。
通过调整电流平衡器,可以使得测量仪器输出的电流等于输入端口上的待测电压产生的电流。
4. 测量过程毫伏电压表的测量过程分为以下几个步骤:步骤1:连接待测电路将待测电路中需要测量的两个点连接到毫伏表的输入端口上。
确保连接正确并牢固。
步骤2:选择合适的档位根据待测电压的范围选择合适的档位。
如果不确定待测电压范围,可以从最大档位开始选择,并逐渐减小档位直到得到合适的读数。
步骤3:调零和校准在测量之前,需要进行调零和校准操作。
调零是将毫伏表的指针或数字显示调整到零位,以确保准确度。
校准是通过与已知电压源进行比较来验证仪器的准确性。
步骤4:读取测量结果在进行以上步骤后,可以读取毫伏表的测量结果。
结果通常显示在仪器的显示屏上,并以数字形式呈现。
5. 注意事项在使用毫伏电压表时,需要注意以下几个事项:a. 选择合适的量程选择合适的量程可以使测量结果更加准确。
自制法拉第杯测微小颗粒电荷量曾育锋;程倍珊【摘要】采用高压电场电晕放电的方式使微小颗粒荷电,并将带电颗粒导入法拉第杯中,通过运放电路测量出法拉第杯中带电微粒的总电量,同时测算出杯中颗粒总数,即可求得微小颗粒的带电量,最终结果由单片机输出.【期刊名称】《实验技术与管理》【年(卷),期】2013(030)004【总页数】3页(P55-57)【关键词】微小颗粒电荷量;法拉第杯;电晕放电【作者】曾育锋;程倍珊【作者单位】华南师范大学物理与电信工程学院,广东广州 510006;华南师范大学物理与电信工程学院,广东广州 510006【正文语种】中文【中图分类】O441.1-33日常生活中,静电除尘、静电分选和静电复印等领域都需要对粉体或者是尘粒进行荷电。
测量出不同粉体的荷电量,对上述技术和设备的应用的改进具有十分重要的意义。
本实验中使用自制的利用电晕放电原理的荷电系统对微小颗粒进行荷电,配合使用法拉第杯的方法对荷电后的颗粒进行荷电量的测量。
1 基本原理1.1 荷电系统采用电晕放电的方法对微粒进行荷电[1],其装置如图1所示。
在两电极间加上自制的500kV高压电场[2],并将阴极板接地,阳极板作为尖端,与阴极板之间形成火花放电而电离空气,产生大量的正离子和负离子,负离子受到阳极板吸引而向阳极板运动,负离子被导入地下;正离子在加速电场的作用下加速运动,当微粒进入电晕电场时,微粒与运动的带电离子碰撞并俘获这些自由离子而荷电[3]。
图1 荷电系统1.2 测量系统根据静电计原理设计法拉第杯[4],测量经过高压离子荷电系统荷电之后的带电微粒的电量。
1.2.1 法拉第杯工作原理根据静电计原理[5],法拉第杯由不锈钢制成,如图2所示。
内筒高16cm、直径为5.5cm,外筒高18cm、直径6cm。
内外筒间由一层绝缘木块隔开,使内外筒有均匀间隙。
法拉第杯与测试电路之间通过BNC接头(同轴电缆连接器)连接起来。
带电微粒进入法拉第杯后,由于接触起电,会使内筒带电,内外筒之间产生电势差,通过电缆屏蔽线将电压信号传给测量电路[6]。