物源分析方法及进展
- 格式:doc
- 大小:42.00 KB
- 文档页数:5
天然产物是动物、植物以及微生物体内的组成成分或代谢产物,具有不同的生物学功能,在自然界中广泛存在。
例如,食用天然色素主要是从动植物组织中提取;抗生素主要是微生物产生的具有抗病原体功能的次级代谢产物。
目前,人们对许多天然产物的功能尚不了解,需要进一步进行探索研究。
微生物作为生态环境中广泛存在的一类群体,蕴藏的天然产物是有待发现的资源宝库。
1 天然产物概述1.1 天然产物种类天然产物主要包括萜类、甾体、香豆素类、酮类、抗生素、色素、有机酸、蒽醌、多糖、多肽、脂肪酸以及蛋白质等[1]。
近年来,研究人员关于新型天然产物开展了大量的研究工作,如尼瑞斯制药公司从海洋放线菌中发现的化合物NPI-3114 和NPI-3304 具有抗菌性[2];或采用新技术提高产量,如重建菌株黑曲霉T132 发酵产酒精,将转化率提高到86.8%[3]。
在我国经济增长和丰富物种资源背景的推动下,天然产物的研究也获得了具有一些新类型、新结构的原创性成果。
1.2 天然产物功能天然产物本质为次级代谢产物,结构和化学成分复杂,需其他小分子作为底物经催化反应合成,具有一定的生物活性和功能[4]。
天然产物具有种类、结构和功能多样性的特点。
目前,天然产物在药物开发和代谢研究中应用广泛,可用作治疗剂、化妆品和农药等,这些产品多达千种。
例如,花生四烯酸可降低患肿瘤的风险,预防心脑血管病,可由嗜冷菌希瓦氏菌(Ac10)低温诱导生产[5]。
海洋中由于盐浓度高、压强大、温度低,使海洋微生物具有区别于陆生微生物的代谢途径,从而生产独特的天然产物,因此海洋生物是天然产物的主要资源宝库。
如海洋链霉菌(TPA0879)能够产生含有一个γ- 内酯的聚酮类化合物,可有效抑制癌细胞的扩散[6]。
由此可见,天然产物可用于医学治疗,或农业上用于防治有害生物,或用作药剂的模板物、引导物[4]。
目前,已有不同生物种属来源的天然产物被发现并应用,如分离于细菌的抗寄生虫药伊维菌素、抗肿瘤药物博莱霉素和阿霉素,分离于短皮酵母和桔霉的抗真菌药物等。
准噶尔盆地环玛湖地区三叠系百口泉组物源分析单祥;邹志文;孟祥超;唐勇;郭华军;陈能贵;徐洋【摘要】通过对百口泉组重矿物特征研究、古流向分析、砾石成分特征研究及地层含砂率特征研究,讨论了环玛湖地区百口泉组沉积时期的物源方面和母岩性质.采用重矿物Q型聚类分析,结合重矿物ZTR等值线图以及地层倾角测井古流向分析,指出环玛湖地区百口泉组存在3大物源体系,分别为北部夏子街物源、西部黄羊泉物源以及东部夏盐物源;通过砾岩成分以及重矿物组合类型研究,认为北部物源和西部物源成分存在差异:北部夏子街物源及夏盐物源成分以凝灰岩和中酸性火山喷出岩为主;西部黄羊泉物源成分以凝灰岩、沉积岩和花岗岩为主.西部物源中花岗岩岩屑含量较高,致使储层刚性颗粒含量高、抗压实能力强,这是西部扇体储层物性普遍优于北部扇体储层物性的原因之一.各物源方向及物源体系与扇三角洲的推进方向具有较好的一致性,因此,利用多种方法结合来划分环玛湖地区百口泉组沉积时期物源是十分有效的.【期刊名称】《沉积学报》【年(卷),期】2016(034)005【总页数】10页(P930-939)【关键词】物源分析;重矿物;聚类分析;百口泉组;玛湖凹陷;准噶尔盆地【作者】单祥;邹志文;孟祥超;唐勇;郭华军;陈能贵;徐洋【作者单位】中国石油杭州地质研究院杭州310023;中国石油杭州地质研究院杭州310023;中国石油杭州地质研究院杭州310023;中国石油新疆油田分公司勘探开发研究院新疆克拉玛依834000;中国石油杭州地质研究院杭州310023;中国石油杭州地质研究院杭州310023;中国石油杭州地质研究院杭州310023【正文语种】中文【中图分类】P618.13物源分析是沉积学研究的重要内容,是再现盆地演化、恢复岩相及古地理环境、预测沉积矿床的重要依据[1]。
随着实验分析测试手段的不断提高,物源分析方法也日趋多样化,日趋完善。
目前物源分析方法总结起来主要有以下几类:常用的方法有重矿物分析法(包括单矿物分析法和重矿物组合法)[2-4]、沉积体系研究法(包括基础编图法、地震地层学分析法、古地貌分析法、古流向分析法)以及轻矿物分析法[5-6];特色方法有地质年代学研究法(包括磷灰石裂变径迹法、同位素测年法)[7-8]以及地球化学分析法[9-10]。
大气颗粒物来源解析与控制技术研究大气颗粒物来源解析与控制技术研究摘要:大气颗粒物污染对人类健康和环境产生了严重影响。
本文综述了大气颗粒物的来源解析和控制技术研究进展。
首先介绍了大气颗粒物的种类和来源,包括自然源和人为源。
然后详细讨论了大气颗粒物的解析方法,包括传统方法和现代方法。
接着,综述了大气颗粒物的控制技术,包括源控制和尾气控制。
最后,提出了未来大气颗粒物研究的发展方向。
关键词:大气颗粒物,来源解析,控制技术,研究进展1. 引言大气颗粒物是由气溶胶粒子组成的空气污染物,对人类健康和环境产生了严重影响。
大气颗粒物分为可吸入颗粒物(PM10)和细颗粒物(PM2.5)。
根据世界卫生组织的统计数据,大气颗粒物污染每年导致超过百万人死亡,且对呼吸系统、心血管系统和神经系统等健康影响明显。
因此,解析大气颗粒物的来源和研究控制技术对于改善空气质量和保护人类健康具有重要意义。
2. 大气颗粒物的来源解析大气颗粒物的来源包括自然源和人为源。
2.1 自然源自然源是指大气颗粒物由自然过程形成的源头。
自然源包括风尘、火山喷发、植物排放等。
风尘是大气颗粒物的重要来源之一,它是由于风吹动地表尘土悬浮而形成的。
火山喷发会伴随着大量的烟尘和火山灰释放到大气中。
植物排放主要是指植物通过气孔释放的悬浮颗粒物。
2.2 人为源人为源是指大气颗粒物由人类活动产生的源头。
人为源包括工业排放、机动车尾气、燃煤和燃油燃烧等。
工业排放是大气颗粒物的主要来源之一,工业生产过程中释放出的燃烧产物、炉渣等颗粒物成为大气颗粒物的重要组成部分。
机动车尾气也是大气颗粒物的主要来源之一,机动车的燃烧产物会释放到大气中,特别是柴油车的尾气中含有大量的颗粒物。
燃煤和燃油燃烧也是大气颗粒物的重要来源,燃料的不完全燃烧会产生大量的颗粒物。
3. 大气颗粒物的解析方法解析大气颗粒物的来源是了解大气颗粒物污染情况、指导控制措施的重要前提。
常用的大气颗粒物解析方法包括传统方法和现代方法。
水环境中污染物同位素溯源的进展分析摘要:在当前流域水污染治理中面临着的难题之一是辨识水环境中污染物的来源,如为弄清某污水厂因超标污水排入导致的出水水质不稳定或超标,需查明污水来源,常规的方法往往难以达到目的,为了解决这一问题,就需要利用同位素示踪技术追踪并解决污染物的来源,使得在解决污染问题时能够实施具有针对性的具体方案。
本文主要综述了同位素溯源技术在水环境污染物源解析中的实际应用情况,以供实践参考。
关键词:水环境;污染物;同位素溯水环境污染物源解析实际上就是对水体中污染物以及污染物的来源进行有效识别,并以此作为依据提出具有针对性的措施,从而减少和控制流域污染,这是流域水安全管理中非常重要的一项工作内容。
一、溯源技术的发展水环境中污染物的溯源技术在发展过程中有着非常重要的几个阶段,分别为水化学方法分析溯源、同位素分析溯源、同位素与其他技术结合分析溯源等。
最开始对水环境污染物进行溯源时所用的方法主要是水化学参数统计法[1]。
水化学方法的应用主要是在上世纪六十年代之前,主要的作用就是通过收集和分析水化学参数,对水环境中污染物的来源进行识别,并且对水环境中污染物的迁移过程进行追踪。
在使用水化学方法时,水体基本化学指标和其中各种物质含量信息是这种方法应用的基础,并以此对水体的水化学特征进行确定,这样在研究过程中就能够通过各个指标之间的相关性对区域水化学过程进行全面、深入的了解。
对水环境污染物溯源时,应用水化学参数统计分析法是一种相对成熟并且应用比较普遍的,不过这一方法的局限性也非常明显,比如,很难对比较复杂污染物来源进行准确判断,并且结论含糊不清;水化学参数缺乏稳定性,使用场合需要是特定的,适用范围有限;这一方法在使用时,贡献较大的污染源能被发现,但是并不能将贡献大小具体的给出,在防治水体污染工作中缺少实际的指导价值。
同位素技术是在上世纪六十年代后逐渐兴起的一种水环境污染物溯源的方法的,应用前景非常广泛。
物源区分析(王建刚,2008)所谓物源区分析,即根据沉积作用的最终产物,来推断碎屑物源区母岩的岩石学特征以及沉积作用发生时的气候条件和构造背景(Pettijohnetal. ,1987)。
包括古侵蚀区的判别,古地貌特征的重塑,古河流体系的再现,物源区母岩的性质、气候以及沉积盆地构造背景的确定等(王成善等,2003;Basu, 2003)。
研究方法(赵红格,2003)1.重矿物分析法:包括单矿物分析法和重矿物组合分析法单矿物分析法:用于重矿物分析的单矿物颗粒主要有:辉石、角闪石、绿帘石、十字石、石榴石、尖晶石、硬绿泥石、电气石、锆石、磷灰石、金红石、钛铁矿、橄榄石等。
用电子探针可分析上述矿物的含量、化学组分及其类型、光学性质等,针对每个重矿物的特性及其特定元素含量,用其典型的化学组分判定图或指数来判定其物源。
另外,单颗粒重矿物含量比值亦具有一定的源区意义。
独居石/锆石比值(M Zi)可显示深埋砂岩物源区的情况;石榴石/锆石比值(G Zi)用来判断层序中石榴石是否稳定;磷灰石/电气石比值(A Ti)指示层序是否受到酸性地下水循环的影响。
单颗粒重矿物含量的平面变化可用来判定物源方向,如磁铁矿等。
重矿物组合分析法:对物源区用处颇大,尤其是在矿物种类较复杂、受控因素较多的地区特别有用。
,利用不同时期水平方向上重矿物种类和含量变化图,可推测物质来源的方向。
主要引用一些数学分析方法,如聚类分析(R型或Q型)、因子分析、趋势面分析等方法来研究矿物组合特征、相似性等指数,从而提取反映物源的信息。
重矿物方法适用于:(1)母岩性质:对火山岩和变质岩作为母岩时,其中的重矿物所经历的搬运、沉积次数较少,受后期的影响小,保留的一般较好,能够很好的反映源区的性质;对沉积岩母岩而言,其中的沉积物可能经历了多次的搬运、沉积和改造作用,具有多旋回性,其中所含的重矿物随之受到影响,发生组分或含量的变化,用它进行物源判断时应慎重。
(2)沉积物的时代:一般对新生代的沉积物,其判断较为准确、可靠;对中生代、古生代等时代较老的沉积物,重矿物自保存至现今,会因温度、埋深等条件在不同时期不同而使其种类增多,含量分布较分散,保留原岩的信息减小,对判断物源不利。
1 空气颗粒物概述20世纪50年代前后在世界上不同地区的城市中发生了几起著名的空气污染事件,如1944年的洛杉矶烟雾事件、1952年的伦敦烟雾事件和1961年四日市哮喘病事件,这些都是空气污染物在短时间内大量增加导致的。
空气颗粒物是环境空气的重要污染物之一,空气颗粒物不是一种单一成分的空气污染物,而是由许多人为或自然污染源排放的大量化学物质所组成的一种复杂的大气污染物,其中既有污染源直接排出的颗粒物(称为一次颗粒物,Primary Particles),也有气态污染物在大气中经过冷凝或复杂的化学反应而生成的颗粒物(称为二次颗粒物,Secondary Particles)。
1.1 空气颗粒物的粒径分布对大气中颗粒的划分通常是以空气动力学直径为基础的,根据其粒径大小,又可分为总悬浮颗粒物TSP(空气动力学直径小于或等于100μm)和可吸入颗粒物(空气动力学直径小于或等于10μm)。
可吸入颗粒物又可分为细颗粒物PM2.5(空气动力学直径小于或等于2.5μm)和粗颗粒物PM10(空气动力学直径介于2.5μm至10μm)。
图1 空气颗粒物的三模态分布空气颗粒物的来源和形成过程、在大气中的迁移转化、输送和清除过程及其物理化学性质均与粒径有着直接的关系。
空气颗粒物通常呈三模态分布,即粒径小于0.08μm的爱根(Aitken)核模态、粒径0.08μm~2μm的积聚模态(Accumulation mode)和粒径大于2μm的粗粒子模态(Coarse particle mode)。
粗粒子模态的颗粒物主要是由工业源与生活源燃烧排放、机械粉碎过程和交通运输等产生的一次颗粒物和各种自然界产生的颗粒物组成。
这部分颗粒物是构成空气颗粒物的体积浓度和质量浓度的主体,由于重力沉降作用大而在大气中存在的时间不长。
爱根核模态颗粒物也称为超细颗粒物(Superfine particles),主要是由污染气体经过复杂的大气化学反应转化而成,或者由高温下排放的过饱和气态物质冷凝而成,也有少量来自于自然界和人为源直接排放。
城市环境空气颗粒物源解析技术及进展简介城市环境空气质量一直备受关注,其中颗粒物是影响空气质量的重要指标之一。
颗粒物源解析技术的发展可以帮助深入了解城市空气中的颗粒物来源,为改善空气质量提供有效途径。
本文将探讨城市环境空气颗粒物源解析技术的现状及未来发展方向。
颗粒物来源解析技术的原理颗粒物来源解析技术是通过分析空气中颗粒物的化学组成和物理特征,结合气象条件、地理信息等数据,利用数学模型和统计方法进行推断,从而确定颗粒物的来源和贡献程度。
常见的颗粒物来源解析技术1.化学物种比值法:通过分析不同化学物种在颗粒物中的比例,推断不同来源的贡献;2.后向轨迹模型:根据气象条件,追踪颗粒物来源的路径,确定其源地;3.溯源分析技术:结合颗粒物的化学特征和稳定同位素分析,确定不同来源的比例。
颗粒物来源解析技术的应用颗粒物来源解析技术在城市环境管理、空气质量改善和应对大气污染事件等方面发挥着重要作用。
空气质量监测与评估通过颗粒物来源解析技术,可以准确评估城市空气中不同来源的颗粒物含量,为相关部门提供科学依据,指导制定空气质量改善措施。
大气环境治理根据颗粒物来源解析结果,可以有针对性地制定减排政策,降低城市空气中特定来源的颗粒物排放,从而改善空气质量。
突发大气污染事件处置在大气污染事件发生时,颗粒物来源解析技术可以迅速确定污染源,及时采取措施,减少污染扩散范围,保护公众健康。
颗粒物来源解析技术的挑战与展望尽管颗粒物来源解析技术在空气质量管理中具有重要意义,但仍面临一些挑战,如模型精度不足、监测设备精度等。
未来,随着科技的发展,颗粒物来源解析技术将不断完善,更加精确地分析和解析颗粒物来源,为城市环境空气质量提供更有力的支持。
结语颗粒物来源解析技术是城市空气质量管理中的重要工具,通过分析颗粒物来源,可以有针对性地制定措施改善空气质量。
随着技术的不断进步和完善,相信这一技术将在未来发挥更加重要的作用,为城市环境空气质量的改善贡献力量。
源解析方法及其发展1、排放源清单法排放源清单法(emission inventory)是通过对行业活动水平的分析,对某地区的一种污染物的排放源进巧估算,在局部区域内对污染物总量进行评价,为政策制定及巧学研究提供理论基础。
排放源清单法简单的说,就是是排放因子和基于该排欢因子下活动水平的乘积。
E=AxEF式中,E为排放量;A为活动水平;EF为排放因子,例如单位燃料下NOx排放量。
可建立数据库现有MEIC数据库、重点区域、典型诚市的源清单2、扩散模型扩敌模型是一种基于源排放清单己知的污染源,根据所巧累的大量的污染源数据,建立王业排放与大气环境质量之间的定量关系,主耍针对有组织排放进行研究,为污染源的治理、环境空气的改善提供理论基础。
3、受体模型通过分析环境大气中采集的大气颗粒物样品,从而反推颗粒物的来源。
这标志着受体模型的诞生,其优势就在于受体模型属于诊断性模型,受体模型一般不受污染源的源强,气象条件、地形等数据的影响,不需要考虑颗粒物的转移过程。
主要通过输理、化学的方法分析污染源和环境空气中的颗粒物样品,通过模型拟合不同污染源的贡献率。
受体模型主要有通过物理方法研究而形成的显微分析法和以化学分析为主要手段的化学-统计学方法常见的方法包括富集因子法、因子分析法(FA)、正定矩阵分解法(PMIO)、多元线性回归分析法(FVMLR)、化学质量平衡法(CMB)等。
富集因子法在大气颗粒物研究中用富集因子法评价其中各元素的来源,首先要选择参比元素对受体数据进行标准化,根据参比元素的选择标准,一般选择地壳中大量存在,化学稳定性好,人为污染源很少,挥发性低且易于分析的元素作为参比元素。
然后按下式求得富集因子式中指受体粒子中元素与参比元素的相对浓度;指地壳中与受体对应元素和参比元素的平均丰度的相对浓度。
相关性分析法对于污染源的不同组分,我们分析其线性关系,并用相关性系数来描述其相关程度,并同时考虑相关关系的显著水平。
猪源性成分检测方法验证分析石 旺,杨 冰,陈帅虎,何雅媛,何 浩*(湖南省产商品质量检验研究院,湖南长沙 410007)摘 要:目的:建立基于基因扩增方法检测食品中动物源性成分的验证方法,提升实验室人员基因扩增的检测能力。
方法:依据SB/T 10923—2012,分析猪源性成分的扩增效率、基质效应参数和实验室间能力比对结果。
结果:猪源性成分扩增效率E>90%,检出限可以达到0.1 ng,实验室间能力比对样品3116A和3116B获得了满意结果。
结论:实验室条件满足SB/T 10923—2012中猪源性成分扩增要求。
关键词:基因扩增;方法验证;扩增效率;基质效应Validation and Analysis of Detection Methods for Pig DerivedIngredientsSHI Wang, YANG Bing, CHEN Shuaihu, HE Yayuan, HE Hao*(Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China) Abstract: Objective: To establish a validation method based on gene amplification for detecting animal derived components in food, and to enhance the detection ability of laboratory personnel in gene amplification. Method: According to SB/T 10923—2012, analyze the amplification efficiency, matrix effect parameters, and inter laboratory capability comparison results of pig derived components. Result: The amplification efficiency E of pig derived components was greater than 90%, and the detection limit could reach 0.1 ng. Satisfactory results were obtained in the inter laboratory capability comparison of samples 3116A and 3116B. Conclusion: The laboratory conditions meet the requirements for amplification of pig derived components in SB/T 10923—2012.Keywords: gene amplification; method verification; amplification efficiency; matrix effect近年来,因食品假冒伪劣、真伪难辨而产生的食品安全问题越来越多[1-2]。
天然产物中活性成分提取分离及分析技术一、概述作为自然界赋予人类的宝贵财富,一直以来都是药物研发、医疗保健、食品工业等领域的重要原料来源。
活性成分是天然产物发挥生物活性的关键所在,具有广泛的应用前景和巨大的经济价值。
对天然产物中活性成分的提取、分离及分析技术的研究,不仅是推动相关领域技术进步的关键环节,也是实现天然产物高效利用和可持续发展的必然要求。
天然产物中活性成分的提取分离技术,涉及物理、化学、生物等多个学科领域,具有高度的复杂性和挑战性。
天然产物中的活性成分种类繁多、结构复杂,且含量往往较低,使得提取分离过程变得尤为困难。
不同的活性成分在性质、稳定性等方面存在显著差异,需要针对不同成分的特性制定相应的提取分离策略。
随着科学技术的不断进步,越来越多的新技术和新方法被应用于天然产物活性成分的提取分离领域。
这些技术不仅提高了提取分离的效率和质量,也拓展了天然产物活性成分的应用范围。
分析技术的发展也为活性成分的结构鉴定、生物活性评价等提供了有力的支持。
尽管天然产物活性成分提取分离及分析技术取得了显著的进展,但仍面临着诸多挑战和问题。
如何进一步提高提取分离的效率和纯度,如何实现对活性成分的全面深入了解,以及如何将这些技术更好地应用于实际生产中,都是未来需要重点研究和解决的问题。
1. 天然产物的定义与分类是指未经人为加工、改造,而由自然界直接产出的各种形式的生命体和具备一定结构的有机化合物。
这些化合物广泛存在于自然界的植物、动物和微生物中,具有多种多样的生物活性。
天然产物作为药物、食品添加剂、化妆品原料等,在人类生产生活中发挥着重要作用。
(1)植物源天然产物:包括各种中草药、植物提取物等,这些天然产物具有多种药理活性,是药物研发的重要来源。
许多中药材如人参、黄芪等,含有丰富的活性成分,具有调节人体代谢、增强免疫力等功效。
(2)动物源天然产物:包括海洋生物、昆虫、动物组织等中提取的活性物质。
这些天然产物具有独特的生物活性和结构特点,在抗肿瘤、抗病毒等领域具有潜在的应用价值。
大气颗粒物的源解析方法概述针对大气颗粒物对空气质量和人体健康的重要影响,文章探讨了几种目前国际国内比较流行的大气颗粒物源解析方法,通过源解析可以有效的确定颗粒物的排放源,进而突出重点治理污染严重的污染源及排放源,有效的改善空气质量。
标签:大气;颗粒物;源解析1 概述大气颗粒物对空气质量、大气辐射平衡、气候变化和人体健康等有着重要影响。
通常把粒径在10微米以下的颗粒物称为可吸入颗粒物(PM10),粒径在2.5微米以下的颗粒物称为细粒子(PM2.5)。
颗粒物对人体健康的影响包括导致呼吸不适及呼吸系统症状(例如气促、咳嗽等)、加重已有的呼吸系统疾病及损害肺部组织。
颗粒物的直径越小,进入呼吸道的部位越深。
因此,大气颗粒物尤其是PM10和PM2.5已经成为世界各国主要城市共同面临的大气环境问题,并成为很多城市主要的大气污染物。
通过使用大气颗粒物源解析方法可以确定排放源的种类和排放源的贡献,可以突出重点治理污染严重的污染源及排放源;有效控制大气污染,提高空气质量。
2 大气颗粒物源解析方法指通过化学、物理、数学等方法定性或者定量的识别大气中颗粒物污染的来源的方法,包括源清单法、源模型法和受体模型法。
接下来本文将对这几种方法的原理和实施步骤进行概述。
2.1 源清单法2.1.1 原理:根据排放因子及活动水平估算污染物排放量,根据此排放量识别对环境空气中颗粒物有贡献的主要排放源。
2.1.2 实施步骤。
第一,颗粒物排放源分类。
按照研究需求对颗粒物排放源进行分类。
一般可将颗粒物排放源分为天然源、人为源、混合源和其它源,其中人为源是我们希望努力控制的源。
人为源包括固定燃烧源、生物质开放燃烧源、工业工艺过程源、移动源;其中,固定燃烧源包括电力、工业和民用等,以及煤炭、柴油、煤油、燃料油、液化石油气、煤气、天然气等燃料类型,工业工艺过程源包括冶金、建材、化工等行业。
第二,颗粒物排放源清单的建立。
调查各类颗粒物源的排放特征,根据排放因子和活动水平确定颗粒物排放源的排放量,建立颗粒物排放源清单。
物源分析的方法与进展王昭阳发布时间:2021-08-16T02:21:25.288Z 来源:《防护工程》2021年12期作者:王昭阳[导读] 沉积学奠基于19世纪末,20世纪50年代初出现现代沉积学(或称沉积学的复兴与革命),在随后的半个多世纪里,沉积学蓬勃发展,成为了地质科学的一个极富生命力的分支学科。
长安大学地球科学与资源学院陕西西安 710054摘要:物源分析是盆地和造山带研究中一项重要的内容,它可作为连接沉积盆地和造山带的纽带和盆山耦合研究的切入点,对沉积盆地的大地构造背景判别、古环境恢复以及分析沉积盆地与造山带的相对位置、演化过程及相互作用等方面意义重大。
本文对目前较为常用的物源分析方法进行了简要的介绍,在此基础上,分析了目前物源分析存在的问题以及发展前景。
关键词:沉积盆地;物源分析;研究现状0 引言沉积学奠基于19世纪末,20世纪50年代初出现现代沉积学(或称沉积学的复兴与革命),在随后的半个多世纪里,沉积学蓬勃发展,成为了地质科学的一个极富生命力的分支学科。
在近百年的发展时间里,陆相沉积、过度相沉积、海相沉积等传统沉积学沉积体系的建立已趋于完善,各种新兴的沉积学研究方兴未艾。
新的发展方向有:沉积盆地分析、古气候与沉积作用、前寒武纪沉积、人类生存环境沉积学、区域沉积学和全球沉积学(何起祥,2003;孙枢,2005)。
物源分析是沉积学研究中非常重要的一环。
随着现代分析手段的提高,物源分析方法日趋增多,并不断相互补充和完善,目前应用较多的为:碎屑岩的碎屑骨架统计、重矿物法、地球化学法方法等。
主要研究岩石、矿物成分及其组合特征及组合变化等,其依据在于不同的物源在沉积物搬运和沉积过程中会有不同的岩性、岩相和地球化学特征响应。
下面对这些方法进行简要介绍。
1 碎屑骨架统计法砂岩中的碎屑组分和结构特征能直接反应物源区和沉积盆地的构造环境。
前人对砂岩碎屑骨架组分与其构造背景和盆地性质的相关性进行了大量研究,Dickinson et al.(1970,1983)通过对大量已知构造背景的砂岩碎屑组分进行统计分析,总结出了一系列可用来辅助判别构造背景的三角图解,分别为QLF主图解和QmFLt、QpLvLs、QmPK三个辅助图解。
物源分析研究方法物源分析在确定沉积物物源位置和性质及沉积物搬运路径,甚至整个盆地的沉积作用和构造演化等方面意义重要。
近年来已发展成为多方法、多技术的一门综合研究领域。
电子探针、质谱分析、阴极发光等先进技术在物源分析中应用日益广泛;同时,各种沉积、构造、地震、测井等地质方法与化学、物理、数学等学科的应用及相互结合,使物源判定更具说服力。
它在原盆地恢复、古地理再造、限定造山带的侧向位移量,确定地壳的特征,验证断块或造山带演化模型,绘制沉积体系图,进行井下地层对比以及在评价储层的品质等方面,都可起到重要作用。
物源分析已经成为连接沉积盆地与造山带的纽带,为学者提供了一个研究盆山相互作用的有效切入点。
其研究内容不仅包括物源区的方位、侵蚀区与母岩区的位置、母岩的性质及组合特征,还包括沉积物的搬运距离、搬运路径;而且,根据物源分析资料还可以进一步了解物源区的气候条件和大地构造背景,进行沉积体系分析,重建古地理面貌。
因此进行物源研究既是沉积地质学、构造地质学、岩石学的重要研究内容,也是古海洋学、石油地质学的重要课题。
随着现代分析手段的提高,物源分析方法日趋增多,并不断的相互补充和完善。
目前应用较多的为:重矿物法、碎屑岩类分析法、沉积法、裂变径迹法、地球化学法和同位素法等。
主要研究岩石、矿物成分及其组合特征、地层的发育状况(包括接触关系和沉积界面等)、岩相的侧向变化和纵向迭置、地球化学特征及其组合变化等,其依据在于不同的物源在沉积物的搬运和沉积过程中就会有不同的岩性、岩相和地球化学特征响应。
一、重矿物分析法由于电子探针技术的应用及其分析水平、精度的不断提高,重矿物分析法应用广泛。
重矿物因其耐磨蚀、稳定性强,能够较多的保留其母岩的特征,其在物源分析中占有重要地位。
它包括单矿物分析法和重矿物组合分析法。
1、单矿物分析法用于重矿物分析的单矿物颗粒主要有:辉石、角闪石、绿帘石、十字石、石榴石、尖晶石、硬绿泥石、电气石、锆石、磷灰石、金红石、钛铁矿、橄榄石等。
用电子探针可分析上述矿物的含量、化学组分及其类型、光学性质等,针对每个重矿物的特性及其特定元素含量,用其典型的化学组分判定图或指数来判定其物源。
如Morton用辉石矿物对南Uplands 地区奥陶系Portpa2t rik组进行物源判断,依据Let terier提出的Ca2Ti2Cr2Na2Al 组分图解,用Ti2(Ca + Na)来判定其物源是拉斑玄武岩或碱性玄武岩,用( Ti + Cr)2a 图解区分辉石源区为造山带还是非造山带环境,指出该区辉石源自钙碱性火山岩。
另外,单颗粒重矿物含量比值亦具有一定的源区意义。
独居石/锆石比值( MZi)可显示深埋砂岩物源区的情况;石榴石/锆石比值(GZi)用来判断层序中石榴石是否稳定;磷灰石/电气石比值(ATi)指示层序是否受到酸性地下水循环的影响。
单颗粒重矿物含量的平面变化可用来判定物源方向,如磁铁矿等。
2、重矿物组合法矿物之间具有严格的共生关系,所以重矿物组合是物源变化的极为敏感的指示剂。
在同一沉积盆地中,同时期的沉积物的碎屑组分一致,而不同时期的沉积物所含的碎屑物质不同,据此,利用不同时期水平方向上重矿物种类和含量变化图,可推测物质来源的方向〔5。
重矿物组合分析法对物源区用处颇大,尤其是在矿物种类较复杂、受控因素较多的地区特别有用。
具体组合形式、分析方法根据不同地区特点不同而有差异。
目前,主要引用一些数学分析方法,如聚类分析(R型或Q 型) 、因子分析、趋势面分析等方法来研究矿物组合特征、相似性等指数,从而提取反映物源的信息。
重矿物方法对母岩性质具有一定的要求,对火山岩和变质岩作为母岩时,其中的重矿物所经历的搬运、沉积次数较少,受后期的影响小,保留的一般较好,能够很好的反映源区的性质。
而对沉积岩母岩而言,其中的沉积物可能经历了多次的搬运、沉积和改造作用,具有多旋回性,其中所含的重矿物随之受到影响,发生组分或含量的变化,用它进行物源判断时应慎重。
同时,它对沉积物的时代也有一定的要求,一般对新生代的沉积物,其判断较为准确、可靠;对中生代、古生代等时代较老的沉积物,重矿物自保存至现今,会因温度、埋深等条件在不同时期不同而使其种类增多,含量分布较分散,保留原岩的信息减小,对判断物源不利。
因此,沉积物时代越新,利用重矿物判断物源时的准确性会越高。
同时,水动力会影响沉积时重矿物性质,成岩作用会改变沉积时的部分沉积组分,如矿物的层间溶解等,会使不稳定重矿物含量变化,应慎重分析。
而且,对出现的自生重矿物,如白云石、黄铁矿等,也应加以考虑。
二、碎屑岩类分析法1、砂岩碎屑岩中的碎屑组分和结构特征能直接反映物源区和沉积盆地的构造环境。
通过对选定层位砂岩样品中的石英、长石、岩屑含量进行统计,用Dickinson碎屑骨架三角图进行投值。
根据点的分布情况,确定物源类型。
可以有QL F 主图解和三个辅助图解,从QFL 图中可区分陆块、岩浆弧和再旋回造山带三个基本物源区。
在QmFLt、QpLvLs和QmPK辅助图上,可将物源进一步精确确定出来。
以后学者不断的进行了补充,使其更为完善。
该方法比较简单、直观,已经得到广泛的应用。
但是,在应用该方法时,应注意以下问题: (1)混合物源区的情况,判别图仅说明了沉积物通过直接和短途搬运进入邻近盆地而形成砂岩相的物源区地块性质。
对于多物源情况,应用时应慎重区别。
如碰撞带和活动大陆边缘,多种构造单元可能并列在一起,并且同时抬升遭受剥蚀;同时,流经性质极不相同的构造单元的大水系,也会形成混合物源区的岩相。
(2)次生作用影响,风化、搬运和成岩作用不可避免的要破坏不稳定碎屑颗粒;气候的分化作用是通过控制成土作用来影响砂岩成分的,进而影响物源区的解释。
(3)统计方法的影响,必须用特定方法(如Gazzi2Dickinson的点计法) 、选择成岩作用小的样品,统计碎屑含量,才能有合理的结论。
另外,还可根据砂岩中石英颗粒类型,作菱形图,区分深成的、中高级变质的、低级变质的三类物源区;长石的化学成分、光学特征、石英中α、β石英含量变化、石英构造缺陷、矿物包体及矿物形成介质的包体等标型特征均可用来分析物源特点。
同时,在用碎屑石英判定物源时,应考虑石英的多种来源、运移及沉淀机制2、砾岩砾岩中砾石的成分、砾径等变化是确定物源的直接证据。
利用砾石中不同成分的含量、粒径大小及所占百分比等统计资料,能区分源岩的主要岩性、搬运距离。
粒序层、砾石的分选、磨圆、砾岩体的形态等都可作为有用的参考。
3、泥岩泥岩物源研究具有相当大的潜力,一些探索性的研究很值得关注。
Blat t 已用泥岩中石英颗粒在二叠纪盆地页岩中确定沉积场所到海岸的距离,泥岩的泥砂组分中多晶石英特征可指示片麻岩物源,长石含量和成分可指出花岗岩类物源,角闪石含量和中性斜长石可用于识别闪岩物源。
泥岩的渗透率明显的低于砂岩,故其在确定物源方面常比与之共生的砂岩可能有用。
另外,碎屑粘土是泥岩中的独特组分,它在确定物源方面有很大的应用潜力。
4、沉积法根据盆地钻井、测井、地震等资料,经过详细的地层对比与划分,作出某时期的地层等厚图、沉积相展布图等相关图件,可推断出物源区的相对位置,结合岩性、成分、沉积体形态、粒度、沉积构造(波痕、交错层等) 、古流向及植物微体化石等资料,使物源区更具可靠性。
三、裂变径迹法裂变径迹法分析物源区是利用磷灰石、锆石中所含的微量铀杂质裂变时在晶格中产生的辐射损伤,经一系列化学处理后,形成径迹,通过观测径迹的密度、长度等分布,并对其加以统计分析,从中提供与物源区的年龄及构造演化有关的信息。
磷灰石裂变径迹退火带温度范围约60~130 ℃,与生油窗口温度带基本一致,故在油气研究中应用广泛。
浅部地层中的磷灰石没有受到退火的影响,其裂变径迹的年龄及长度均可代表物源特征。
但也常用锆石来判定,因其退火温度较高(160~250 ℃) ,不易受退火的影响。
若沉积后样品未经完全退火,则其单颗粒年龄还有可能是各物源区母岩组分的混合。
针对该情况, Galbrait提出了用χ2检验来判定颗粒年龄是否服从泊松分布即是否属于同一组分。
也可用放射图来判定裂变径迹年龄是否由多个组分构成。
Brandon等提出了两种确定总体混合成分的分离方法,从而避免了单个颗粒锆石年龄精确度较低的缺点。
并提出了裂变径迹可能反映的三种源区,建立了源区的剥蚀速率模型Sambridge等曾成功地用混合模拟的方法来对锆石年龄成分进行了分离〔,该方法也可用于裂变径迹组分的分离。
该方法的不足之处为: (1)沉积物的热演化史可能使径迹部分或全部退火,从而调整了径迹的的年龄,使其不代表物源年龄。
磷灰石的径迹退火温度较低,一般不宜作物源区的区分。
(2)不适当的刻蚀和统计、无法统计蜕晶质高铀锆石等也会引起偏差,应加以注意。
随着先进分析手段,如电子探针、离子探针、等离子质谱技术以及同位素测年等的应用,有关物源的研究也从最初的定性化朝定量化方向发展。
物源分析与矿物学、地球化学等联系日益密切,矿物学、地球化学方法在物源分析中的应用越来越广泛。
1、重矿物在物源分析中的应用该方法主要利用单颗粒重矿物的地球化学分异特征来判断物源。
随着电子探针的应用,很多学者针对不同的地区,利用不同重矿物(如辉石、角闪石电气石、锆石、石榴石等)分析提出了判别物质来源的指标和端元图。
Leter rier 等对爱尔兰海、赫布里底群岛和北海海底沉积物中的辉石成分分析后利用辉石化学分异特征,提出用w ( Ti) - w (CaNa)图解来判定物源是拉斑玄武岩还是碱性玄武岩、用w ( Ti + Cr) - w (Ca)图解来区分辉石源区是造山带还是非造山带环境。
Morton对中国北海砂岩、新西兰和孟加拉扇地区海底古近纪、新近纪沉积物中的石榴石成分差异进行研究后,根据不同条件下石榴石组分的差异,提出了P (镁铝榴石) 、A(铁铝榴石+锰铝榴石) 、GA (钙铝榴石+钙铁榴石三端元图,李任伟等利用该方法研究了合肥盆地在侏罗纪时期大别山物源区的特征。
虽然重矿物地球化学特征对物源分析很灵敏,但其在沉积旋回中会受到风化、搬运、沉积等作用的影响。
因此,Moton 等提出利用具有相同物理和化学稳定性,在相似的水动力条件下存在的重矿物特征指数来获取物源信息,如利用A Ti [A Ti = 10 ×磷灰石样品数/(磷灰石样品数+电气石样品数) ,指示层序是否受到酸性地下水循环的影响]、MZi [MZi = 100×独居石样品数/ (独居石样品数+锆石数) ,可显示深埋砂岩物源区的情况]、GZi [ GZi = 100×石榴石样品数/(石榴石样品数+锆石样品数) ,用来判断层序中石榴石是否稳定]等重矿物特征指数来指示物源特征。