直井下部钻具组合设计方法
- 格式:rtf
- 大小:86.67 KB
- 文档页数:4
常用钻具组合导向钻井技术的钻具组合选择1.单弯螺杆角度的选择,根据井眼曲率,最大井斜参数确定单弯螺杆的度数,根据经验,一般在0.75°~1.25°之间。
单弯螺杆是在两种工况下使用,造斜段滑动钻进单弯螺杆不仅提供井下动力,同时其单弯部分相当于原造斜段使用的单弯接头,其单弯角度决定了造斜率的大小。
复合钻进阶段单弯螺杆不仅提供井下动力和转盘一起工作提高钻头的转速,同时,其单弯部分相当于直井使用的偏轴接头,具有一定的防斜作用。
单弯角度过大,会使钻具承受较大的交变应力,而遭受疲劳破坏。
常规216mm井眼钻井参数的选择钻井方式钻压(kN)转盘转速(r)排量(L/s)立管压力(MP钻头转速(r)复合0~80≤8028~328~16转盘+螺杆滑动30~120028~328~16螺杆2.稳定器尺寸的选择:常规钻井中,216mm井眼稳定器外径一般要大于等于210mm;在导向钻井中单弯螺杆,上下两个稳定器如果同常规井一样大小,,会使钻具承受过大的弯曲应力,通过室内分析与实践,使用范围为208~210mm。
3.钻具结构的选择:常规定向井,在不同的工况段,是通过多次改变钻具而实现的,每改变一次钻具结构,就要起下一趟钻。
而导向钻井是造斜、增斜、稳斜、降斜几个工序使用一套钻具组合,而不用起下钻改变钻具结构。
因此,导向钻进的钻具结构要满足定向井不同工序的要求,不仅提高钻井速度,减少起下钻次数,在控制井身质量方面,更要优于常规钻井的井身质量。
“双稳定器稳斜型”:216mmPDC钻头+单弯螺杆(自带208~210mm上下扶正器)+159mm无磁钻铤+159mm钻铤15根+127mm钻杆4.钻头类型的选择:一般使用PDC钻头。
不仅速度快,在复合钻进中,也不存在掉牙轮的风险。
5.泥浆参数的选择:在滑动钻进阶段,要求摩擦阻力系数小于0.15。
防止粘钻具,造成钻压加不到钻头上,影响钻进速度。
使用到向钻进技术后,钻井速度明显提高,整个节奏加快,要求泥浆性能的调整满足快速钻井的需求。
钻井工程设计指导前言一、钻井设备二、井身结构设计三、钻具组合设计四、钻井液设计五、钻井参数六、油气井压力控制七、固井设计前言钻井是石油、天然气勘探与开发的主要手段。
钻井工程质量的优劣和钻井速度的快慢,直接关系到钻井成本的高低,油田勘探开发的综合经济效益及石油工业发展速度。
钻井程设计是钻井施工作业必须遵循的原则,是组织钻井生产和技术协作的基础,搞好单井预算和决算的唯一依据。
钻井设计的科学性,先进性关系到一口井作业的成败和效益。
科学钻井水平的提高,在一定程度上依靠钻井设计水平的提高。
搞好钻井工程设计也是提高技术管理和加强企业管理水平的一项重要措施,是钻井生产实现科学化管理的前提。
钻井工程设计应包括以下方面的内容:1.地面井位的选择及钻井设备的确定;2.井身结构的确定;3.钻柱设计与下部钻具的组合;4.钻井参数设计;5.钻井液设计;6.油气井压力控制;7.固井设计;一钻井设备(一) 钻进设备的选择钻井设备可以按设计及分类细分为若干部件系统。
这些系统可分为:1.动力系统;2.起升系统;3.井架及井架底座;4.转盘;5.循环系统;6.压力控制系统。
这些系统是选择钻井设备的基础。
钻井设备的选择主要依据钻机类型,地表条件及钻井设计所确定的最大载荷而定。
(二) 钻井设备选择实例表1-1是大庆地区45110钻井队芳深三井的钻进设备记录。
二井身结构设计(一) 井身结构确定的原则1.能有效的保护油气层,使不同压力梯度的油气层不受泥浆污染损害。
2.应避免漏、喷、塌卡等情况发生,为全井顺利钻进创造条件,使钻井周期最短。
3.钻下部高压地层时所用的较高密度泥浆产生的液柱压力,不致压裂上一层管鞋处薄弱的露地层。
4.下套管过程中,井内泥浆液柱压力之间的压差,不致产生压差卡套管事故。
(二) 井身结构设计步骤1.根据地区特点和井的自身条件,确定在保证工程需要的条件下应下几层套管,做出井身结构设计图。
2.确定套管尺及相应钻头尺寸。
3.确定各层套管的下入深度。
三扶“四合一”钻具的优化摘要:在陇东部分区块上部洛河地层增斜能力较强,延安中上部及长2以下地层降斜较快,增大了轨迹控制难度。
致使四合一钻具在实际的使用中轨迹控制表现为洛河大增、下部地层增降斜规律不稳定,导致下部大幅度滑动,低效施工,严重影响钻井速度及一趟钻的实现,进而试验推广三扶四合一钻具组合。
关键词:轨迹控制三扶四合一PDC钻头泥浆性能一、三扶“四合一”钻具组合1.四合一钻具的原理四合一钻具本身为双扶稳斜钻具,目前使用的四合一钻具组合为:PDC钻头+单弯螺杆+短钻铤+稳定器+钻铤+钻杆,其依靠单弯螺杆的滑动能力实现定向增斜,在洛河地层复合钻进微增斜,进入安定、直罗稳斜,延安及下部地层稳、微降斜。
通过调节短钻铤的长度,选择合适的钻具结构、造斜点、初始井斜角及钻进过程中的及时微调,达到实现二开一趟钻的目的。
四合一钻具的精髓在于钻具结构本身要体现“稳-微降斜”的特性,其目的是为了提高下部轨迹的可预见性,减少下部井段的调整,提高钻井的效率。
2.三扶四合一的理论依据四合一钻具组合本身相当双扶稳斜钻具组合,三扶四合一钻具相当于三扶稳斜钻具结构。
理论上三扶四合一稳斜钻具较四合一钻具下部刚性更强,钻具更居中,其稳斜、稳方位的能力较四合一钻具更强。
二、三扶四合一钻具组合的选择1.三扶四合一钻具的选择考虑到四合一钻具中单弯螺杆的长度及长井段稳斜的难度,借鉴常规三扶稳斜钻具组合②,优选三扶四合一钻具组合为:Φ222mmPDC+7LZ172mm*1.25°+Φ165SDC*1.5-3m+Φ212-213mmSTAB+Φ165无磁+Φ210-212mmSTAB+Φ165DC9~11根+……单弯螺杆扶正器外径>212mm。
螺杆扶正器的外径偏小会影响到三扶四合一钻具组合稳斜、稳方位的能力。
中稳定器外径要大于上稳定器。
三、施工要点及保障技术措施1.优化钻井设计三扶四合一钻具的设计思路与四合一基本一致,在防碰许可的情况下,尽量提高造斜点,一般放在二开后30~100m,最大井斜尽量控制在15度以下,大位移井通过提高初始井斜角,最大井斜控制在20度左右。
二开直井段技术措施一、PDC钻头+小钟摆钻具组合二、钻井参数:钻压:20-60KN根据实际情况调整转速:Ⅰ档—III档泵压:16MPa 排量:40l/s三、技术措施:1、调整钻头水眼,到底泵压不小于15MPa。
充分利用水力喷射作用,形成一定的井眼扩大率,利于下步施工。
2、执行PDC钻头操作规范,起下钻、钻进用好刮泥器。
3、钻头过套管头时特别注意,防止碰坏牙齿。
下钻时要控制下放速度,特别探水泥塞面时,防止在套管内硬遇阻损坏钻头,到底后须冲洗井底,防焊渣损坏钻头牙齿。
4、下钻到底开泵正常后加压10-20KN做井底造型后,小钻压钻完水泥塞,注意观察钻时及震动筛返砂有无铁屑。
5、送钻均匀、防溜、防顿,绝对防止出现井下落物情况。
6、提前做好做单根的准备工作,接单根前进行套划眼,接单根的速度要快,早开泵晚摘泵,防止堵水眼。
7、提前做好钻具地面检查工作,保证入井钻具的入井质量(水眼、公扣、母扣、本体、台肩面等);钻杆上钻台把钻杆内的铁锈震掉,防止堵水眼。
8、根据定向单位要求配合好测斜,提前做好测斜工作,循环泥浆不少于一个循环周,循环时要大幅度活动钻具,严禁定点循环,以防出现大肚子和糖葫芦井眼。
9、针对区块易漏特点(上部地层就有可能),防止出现因开泵过猛、钻具下放速度过快等操作不当导致井漏。
10、加强坐岗观察,调整好报警器间隙,按时测量液面并认真填写坐岗记录本,震动筛前不得离人,司钻注意观察泵压变化,发现异常及时汇报技术员。
11、加强固控设备的维护保养,认真测量监督无固相泥浆性能,注意坂含、固含的控制是否在设计范围,泥浆的抑制性能是否达到要求(在起下钻、短起下时能得到验证)。
12、按300-500米中途进行短起下,保证下定向钻具前井眼畅通。
第二节钻柱与下部钻具组合设计一、钻柱设计与计算合理的钻柱设计是确保优质、快速、安全钻井的重要条件。
尤其是对深井钻井,钻柱在井下的工作条件十分复杂与恶劣,钻柱设计就显得更加重要。
钻柱设计包括钻柱尺寸选择和强度设计两方面内容。
在设计中,一般遵循以下两个原则:第一,满足强度(抗拉强度、抗击强度等)要求,保证钻柱安全工作;第二,尽量减轻整个钻柱的重力,以便在现有的抗负荷能力下钻更深的井。
(一)钻柱尺寸选择具体对一口井而言,钻柱尺寸的选择首先取决于钻头尺寸和钻机的提升能力。
同时,还要考虑每个地区的特点,如地质条件、井身结构、钻具供应及防斜措施等。
常用的钻头尺寸和钻柱尺寸配合列于表2-21供参考。
表2-21 钻头尺寸与钻柱尺寸配合从上表可以看出,一种尺寸的钻头可以使用两种尺寸的钻具,具体选择就要依据实际条件。
选择的基本原则是:1.钻杆由于受到扭矩和拉力最大,在供应可能的情况下,应尽量选用大尺寸方钻杆。
2.钻机提升能力允许的情况下,选择大尺寸钻杆是有利的。
因为大尺寸钻杆强度大,水眼大,钻井液流动阻力小,且由于环空较小,钻井液上返速度高,有利于携带岩屑。
入境的钻柱结构力求简单,以便于起下钻操作。
国内各油田目前大都用127mm(5 in)钻杆。
3.钻铤尺寸决定着井眼的有效直径,为了保证所钻井眼能使套管或套铣筒的顺利下入,钻铤中最下部一段(一般应不少一立柱)的外径应不小于允许最小外径,其允许最小钻铤外径为允许最小钻铤外径=2×套管接箍外径-钻头直径当钻铤柱中采用了稳定器,可以选用稍小外径的钻铤。
钻铤柱中选用的最大外径钻铤应以保证在可能发生的打捞作业中能够被套铣为前提。
在大于241.3mm的井眼中,应采用复合钻铤结构。
但相邻两段钻铤的外径一般以不超过25.4mm为宜。
4.钻铤尺寸一般选用与钻杆接头外径相等或相近的尺寸,有时根据防斜措施来选用钻铤的直径。
近些年来,在下部钻具组合中更多的使用大直径钻铤,因为使用大直径钻铤具有下列优点:1)用较少的钻铤满足所需钻压的要求,减少钻铤,也可减少起下钻时连接钻铤的时间;2)高了钻头附近钻柱的刚度,有利于改善钻头工况;3)铤和井壁的间隙较小,可减少连接部分的疲劳破坏;4)利于放斜。
一、常规钻井(直井)钻具组合:BIT钻头;DC钻鋌;SDC 螺旋钻鋌;LZ螺杆钻具;SJ双向减震器;DP钻杆;HWOP加重钻杆;STB或LF钻具稳定器;LB随钻打捞杯;DJ震击器;1、塔式钻具组合:Φ444.5mmBIT×0.50m+Φ229mmDC×27.24m +Φ203mmDC×54.94m+Φ165 mmDC×54.51m+Φ139.7mmDPΦ311.1mmBIT×0.40m+Φ229mmDC×54.38m+Φ203mmDC×82.23m+Φ165m mDC×81.83m+Φ139.7mmDPФ311.1mmBIT×0.32m+Ф244.5mm LZ×9.50m+Ф229mmDC×45.40m+Ф203 mmDC×73.13m+Ф165mmDC×81.83m+Ф139.7mmDPΦ311.1mmBIT×0.30m+Φ229mm SJ×6.62m+Ф229mmDC×53.94m+Ф203mm DC×81.75m+Ф165mmDC×81.83m+Ф139.7mmDP钻头FX1951X0.44 m(Φ311.1mm)+6A10/630×0.61 m+9″钻铤×52.17m (6根)+6A11/5A10×0.47 m+ 8″钻铤×133.19m(9根)+410/5A11×0.49 m+61/2″钻铤×79.88m(9根)+51/2″HWOP×141.88m(15根)+51/2″钻杆(**根)+顶驱Φ215.9mmBIT×0.25m+430/4A10+Ф165mmSDC×161.56m+4A11/410+Ф165 mmDJ×8.81m+411/4A10+61/2″钻铤×79.88m(9根)+51/2″HWOP×141.88m (15根)+51/2″钻杆(**根)+顶驱2、钟摆钻具组合:Φ660.4mmP2×0.50m+730/NC61母+Φ229mm SJ×9.24m+Φ229mmSDC×1 8.24m+730/NC61公+26″LF+731/NC61母+Φ229mmSDC×9.24m+730/NC61公+ 26″LF+731/NC56母+Φ203mmDC×94.94m+410/NC56公+Φ139.7mmDP+顶驱Φ444.5mmGA114×0.50m+730/NC61母+Φ229mmSJ×9.24m+Φ229mm SDC ×18.24m+171/2″LF+Φ229mmSDC×9.24m+171/2″LF+NC61公/NC56母+Φ2 03mmDC×121.94m+8″随震+8″DC×18.94m+410/NC56公+Φ127mmH WOP×141. 94m +Φ139.7mmDP+顶驱Φ311.1mmBIT×0.46m+Φ229mmDC×18.08m+Φ308mmLF×1.82m+Φ203 mmDC×9.10m+Φ308mmLF×1.51m+Φ229mmDC×27.32m+203mmDC×73.13m+Φ178mmDC×81.83m+Φ139.7mmDP+顶驱Φ311.1mmDB535Z×0.50m+630/NC61母+Φ229mmSJ×9.24m+Φ229mm SDC×18.24m +NC61公/NC56母+121/4″LF + NC56 公/ NC61母+Φ229mm SDC×9. 24m +NC61公/NC56母+121/4″LF+Φ203mmDC×121.94m+8″随震+8″SDC×27.9 4m+410/NC56公+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱Φ311.1mmDB535FG2×0.50m+630/731+95/8″LZ+Φ229mmSJ×18.64m+ 12 1/4″LF ++Φ229mm SDC×9.24m +121/4″LF+Φ203mmDC×148.94m+410/NC56公+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱Φ215.9mmBIT×0.33m+Φ172mmLZ×8.55m+Φ165mmSDC×1.39m+Φ165mmSD C×1.39m+Φ214mmSTB×1.38m+Φ165mmDC× 236.14m+Φ139.7mmHWOP×141.94 m +Φ139.7mmDP+顶驱3、满眼钻具组合:Φ311.1mmH136×0.30m+121/4″LF +NC56 公/ NC61母+Φ229mmSJ×9.24m+NC61公/NC56母+121/4″LF + NC56 公/ NC61母+Φ229mm SDC×18.24 m+NC61公/NC56母+121/4″LF+Φ203mmDC×121.94m+8″随震+8″SDC×18.94m +410/NC56公+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱Φ215.9mm牙轮BIT×0.24m+Φ190mm LB×1.10m+Φ214mmSTB×1.39m+Ф16 5mm SDC×1.39m+Φ214mmSTB×1.40m+Ф165mm DC×8.53m+Φ214mmSTB×1.39m+Φ165mm SJ×5.08m+Ф165mm DC×244.63m+Φ139.7mmHWOP×141.94m +Φ139.7m mDP+顶驱Φ215.9mm牙轮BIT×0.24m+Φ214mmLF×1.49m+Ф165mmSDC×1.39m+Φ21 4mmLF×1.40m+Ф165mmDC×8.53m+Φ214mmLF×1.39m+Φ165mm SJ×5.08m+Ф16 5mmDC×244.63m+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱Φ215.9mm牙轮BIT×0.25m+Φ214mmSTB×1.50m+Ф165mmSDC×1.38m+Φ2 14mmSTB×1.40m+Ф165mmDC×8.81m+Φ214mmSTB×1.40m+Ф165mm SJ×6.11m+Ф165mmDC×229.22m+Φ139.7mmHWOP×141.94m +Φ139.7mmDP+顶驱二、定向井(水平井)钻具组合:1、直井段钻具组合:采用塔式钻具组合、钟摆钻具组合、满眼钻具组合。
长庆油田定向井二开“一趟钻”钻井技术--长庆石油勘探局四合一钻井技术主要依靠转盘与井下动力钻具的复合运动,驱动钻头共同破岩,提高破岩效率,应用预弯曲井下动力钻具,增加了对钻头的导向能力控制,通过对复合运动情况下钻柱准动力学、动力学原理分析,使钻头产生的侧向力克服地层造斜力,从而推动钻头沿设计轨迹的方向运动,实现直井段防斜打快,斜井段轨迹控制。
配合高效PDC钻头与MWD等工具,可简化施工工序、实现一套钻具组合就能完成定向、增斜、稳斜、降斜钻井施工工序,从而缩短钻井周期、提高机械钻速,节约钻井成本。
四合一钻井技术主要的钻具组合为PDC钻头+螺杆钻具+定向接头+短钻铤+扶正器+钻铤+钻杆。
一、基本情况长庆石油勘探局采用“四合一”钻具,在油井定向井施工实现了二开“一趟钻”完钻,“四合一”钻具是复合钻井技术的继承和发展,是四种工具、四种性能的集成。
具备了塔式钟摆的防斜性能、多稳定器结构稳斜稳方位能力、复合钻井的滑动可调性、PDC 钻头的快速钻进等综合优势,使定向井的二开直井段-造斜段-增斜段-稳斜段钻井实现“一趟钻”完钻,成为钻井提速的有效钻具组合。
2006年在姬塬区块试验应用后,刷新了长庆钻井历史上11项指标,钻机月速度提高23.95 %,一趟钻比例达到19.31 %。
2007年在油田各区块推广应用,再次刷新了长庆钻井历史上6项指标,截止6月26日油井开钻745口,完井691口钻井进尺145.7万米,二开“一趟钻”完钻185口,完钻比例达到27.24 %,钻机月速度提高27.45 %,机械钻速提高19.7 %,钻井周期下降12.39%。
二、“四合一”钻具结构形成的背景及技术思路(一) “四合一”钻具是提速的需要1、市场占有率低长庆钻井的内部市场占有率仅为50%,与长庆油田的大发展不相适应,靠增加设备,需要大量的投资,在设备有限的情况下,只有提高钻井速度,才能提高市场占有率,才能促进长庆油田的快速有效协调发展。
以上是濮城区块及同类型井设计以下是文72块区及同类型井设计一、井身结构二、钻头及钻井参数1、沙二及沙三地层使用大港或川石产高效PDC。
2、表中钻井参数可根据具体情况调整。
三、钻具组合注:表中钻具组合根据现场需要调整和选用,定向井斜井段钻具组合可增加随钻震击器和加重钻杆。
造斜钻具的螺杆类型或弯接头度数根据具体情况确定。
311.14mm井眼造斜钻具组合根据具体情况而定。
古云区块及同类型井设计一、井身结构二、钻头及钻井参数注:1、东营及沙一地层使用普通PDC,沙二及沙三地层使用大港或川石产高效PDC。
2、表中钻井参数可根据具体情况调整。
三、钻具组合注:表中钻具组合根据现场需要调整和选用,定向井斜井段钻具组合可增加随钻震击器和加重钻杆。
造斜钻具的螺杆类型或弯接头度数根据具体情况确定。
文92块及同类型井设计一、井身结构注:部分井二开设计311.1mm钻进1250m。
二、钻头及钻井参数注:1、使用大港或川石产高效PDC。
2、表中钻井参数可根据具体情况调整。
三、钻具组合文13、文203区块及同类型井设计一、井身结构二、钻头及钻井参数注:1、本区块使用川石或川克产高效PDC。
2、表中钻井参数可根据具体情况调整。
三、钻具组合注:1、表中钻具组合根据现场需要调整和选用,定向井斜井段钻具组合可增加随钻震击器和加重钻杆。
造斜钻具的螺杆类型或弯接头度数根据具体情况确定。
2、二开大井眼定向钻具组合根据具体情况而定。
四、重点提示文33块区及同类型井设计一、井身结构二、钻头及钻井参数注:1、东营及沙一地层使用普通PDC,沙二及沙三地层使用大港或川石产高效PDC。
2、表中钻井参数可根据具体情况调整。
三、钻具组合注:表中钻具组合根据现场需要调整和选用,定向井斜井段钻具组合可增加随钻震击器和加重钻杆。
造斜钻具的螺杆类型或弯接头度数根据具体情况确定。
文184块及同类型井设计一、井身结构。
QSH 0081-2022探井(直井)钻井工程设计QSH 0081-2022探井(直井)钻井工程设计ICS 75.020E 13备案号:Q/SH中国石油化工集团公司发布QSH 0081-2022探井(直井)钻井工程设计QSH 0081-2022探井(直井)钻井工程设计目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 设计原则 (1)4 设计内容与要求 (2)5 设计的审批与更改 (4)6 设计格式 (4)附录A (规范性附录)探井(直井)钻井设计格式 (5)QSH 0081-2022探井(直井)钻井工程设计前言本标准的附录A为规范性附录。
本标准由中国石油化工股份有限公司科技开发部提出。
本标准由中国石油化工集团公司油田企业经营管理部归口。
本标准起草单位:胜利石油管理局钻井工艺研究院。
本标准主要起草人:陈明边培明窦玉玲王介坤张春涛QSH 0081-2022探井(直井)钻井工程设计探井(直井)钻井工程设计1 范围本标准规定了探井(直井)钻井工程设计的内容与要求。
本标准适用于中国石油化工集团公司暨股份公司所属的陆上探井(直井)钻井工程设计。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
SY/T 5087 含硫化氢油气井安全钻井推荐作法SY/T 5127 井口装置和采油树规范SY/T 5172 直井下部钻具组合设计方法SY/T 5234-2022 优选参数钻井基本方法及应用SY/T 5251-2022 油气探井地质录取项目及质量基本要求SY/T 5322 套管柱强度设计方法SY/T 5347 钻井取心作业规程SY/T 5430 地层破裂压力测定套管鞋试漏法SY/T 5431-1996 井身结构设计方法SY/T 5467 套管柱试压规范SY/T 5480 注水泥流变性设计SY/T 5593 钻井取心质量指标SY/T 5623 地层孔隙压力预测检测方法SY/T 5724 套管串结构设计SY/T 5729 稠油热采井固井作业规程SY/T 5730 常规注水泥作业规程SY/T 5954 开钻前验收项目及要求SY/T 5964 钻井井控装置组合配套、安装调试与维护SY/T 6026 双级注水泥作业规程SY/T 6199 钻井设施基础规范SY/T 6277 含硫油气田硫化氢监测与人身安全防护规程SY/T 6426-2022 钻井井控技术规程SY/T 6543.1 欠平衡钻井技术规范第1部分:设计方法SY/T 6616 含硫油气井钻井井控装置配套、安装和使用规范Q/SHS 0001.1 中国石油化工集团公司安全、环境与健康(HSE)管理体系Q/SHS 0003.1 天然气井工程安全技术规范第1部分:钻井与井下作业Q/SH 0034 空气钻井安全技术规范3 设计原则3.1 符合质量、安全、环境与健康体系要求。
SY/T5172-1996
代替SY5172-87 直井下部钻具组合设计方法
1范围
本标准规定了石油与天然气钻井工程钻直井用下部钻具组合的设计原理及方法。
本标准适用于石油与天然气地层倾角小的常规直井钻井的下部钻具组合设计。
2钻铤尺寸及重力的确定
2.1钻铤尺寸的确定
2.1.1为保证套管能顺利下入井内,钻柱中最下段(一般不应少于一立柱)钻铤应有足够大的外径,推荐按表1选配。
表1 与钻头直径对应的推荐钻铤外径
钻头直径钻铤外径
142.9~152.4 104.7,120.6
158.8~171.4 120.6,127.0
190.5~200.0 127.0~158.8
212.7~222.2 158.8~171.4
241.3~250.8 177.8~203.2
269.9 177.8~228.6
311.2 228.6~254.0
374.6 228.6~254.0
444.5 228.6~279.4
508.0~660.4 254.0~279.4
2.1.2钻铤柱中最大钻铤外径应保证在打捞作业中能够套铣。
2.1.3在大于190.5mm的井眼中,应采用复合(塔式)钻铤结构(包括加重钻杆),相邻两段钻铤的外径差一般不应大于25.4mm。
最上一段钻
铤的外径不应小于所连接的钻杆接头外径。
每段长度不应少于一立
柱。
2.1.4钻具组合的刚度应大于所下套管的刚度。
2.2钻铤重力的确定
根据设计的最大钻压计算确定所需钻铤的总重力,然后确定各种尺寸钻铤的长度,以确保中性点始终处于钻铤柱上,所需钻铤的总重
力可按式(1)计算:
PmaxKs
Wc= ……………………………
(1)
K f
其中:
ρm
K f=1-
ρs
式中:Wc——所需钻铤的总重力,kN;
Pmax——设计的最大钻压,kN;
Ks——安全系数,一般条件下取1.25,当钻铤柱中加钻具减振器时,取1.15;
K f——钻井液浮力减轻系数;
ρm——钻井液密度,g/cm3;
ρs——钻铤钢材密度,g/cm3。
3钟摆钻具组合设计
3.1无稳定器钟摆钻具组合设计
为了获得较大的钟摆降斜力,最下端1~2柱钻铤应尽可能采用大尺寸厚壁钻铤。
3.2单稳定器钟摆钻具组合设计
3.2.1稳定器安放高度的设计原则:
3.2.1.1在保证稳定器以下钻铤在纵横载荷作用下产生弯曲变形的最大挠度处不与井壁接触的前提下,尽可能高地安放稳定器。
3.2.1.2在使用牙轮钻头、钻铤尺寸小,井斜角大时,应低于理论高度安放稳定器,可参照表2安放稳定器。
表2 定长钻摆钻具组合的推荐稳定器高度
钻头直径稳定器高度
mm m
≥339.7 ≈36(四根钻铤单根)
244.5~311.2 ≈27(三根钻铤单根)
193.7~244.5 ≈18(两根钻铤单根)
≤152.4 ≈9(一根钻铤单根) 注:钻铤单根长度按9m计
3.2.2当稳定器以下采用同尺寸钻铤时,可用式(2)计算稳定器的理论
安放高度:
-b+ b2-4ac
Ls= (2)
2a
其中:
b=184.6P(0.667+0.333e/r)2(r-0.42e-0.08e2/r)
α=π2qsinα
c=-184.6π2EI(r-0.42e-0.08e2/r)
式中:Ls——稳定器的理论安放高度,m;
p——钻压,kN;
e——稳定器与井眼间的间隙值,即稳定器外径与钻头直径差值之半,m;
r——钻铤与井眼间的间隙值,即井眼直径与钻铤外径的差值。