2019版【人教A版】高中数学:必修1课本例题习题改编(含答案)
- 格式:doc
- 大小:1.35 MB
- 文档页数:13
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页) 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==I I , {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==U U . 2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=, 得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}A B A B =-=-I U . 3.解:{|}A B x x =I 是等腰直角三角形,{|}A B x x =U 是等腰三角形或直角三角形.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U A B =I ð,()(){6}U U A B =I 痧.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 25=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥U ,{|34}A B x x =≤<I . 7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}A B =I ,{3,4,5,6}A C =I ,而{1,2,3,4,5,6}B C =U ,{3}B C =I , 则(){1,2,3,4,5,6}A B C =I U ,(){1,2,3,4,5,6,7,8}A B C =U I .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅I I .(1){|}A B x x =U 是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =I 是既参加一百米跑又参加四百米跑的同学. 9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =I 是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.解:{|210}A B x x =<<U ,{|37}A B x x =≤<I , {|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥U 或ð, (){|3,7}R A B x x x =<≥I 或ð, (){|23,710}R A B x x x =<<≤<I 或ð, (){|2,3710}R A B x x x x =≤≤<≥U 或或ð.B 组1.4 集合B 满足A B A =U ,则B A ⊆,即集合B 是集合A 的子集,得4个子集. 2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅U I ; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==U I ; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==U I ;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅U I .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B =U ,得U B A ⊆ð,即()U UA B B =I 痧,而(){1,3,5,7}U A B =I ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<, 即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.因为3sin 60=o,所以与A 中元素60o 相对应的B 中的元素4.解:3; 是因为2sin 452=o,所以与B 中的元素22相对应的A 中元素是45o . 1.2函数及其表示 习题1.2(第23页)1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠; (2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞; (2)定义域是(,0)(0,)-∞+∞U ,值域是(,0)(0,)-∞+∞U ;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.解:依题意,有2()2d x vt π=,即24vx t dπ=,显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-U ; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应. 2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3xxxf x x xxxx--<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x+,步行的路程为12x-,得222125x xt+-=+,(012)x≤≤,即241235x xt+-=+,(012)x≤≤.(2)当4x=时,2441242583()3535t h+-=+=+≈.第一章集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞U ,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)(,0)-∞上递增;函数在[0,)+∞上递减.函数在2.证明:(1)设12x x<<,而2212121212()()()()f x f x x x x x x x-=-=+-,由12120,0x x x x+<-<,得12()()0f x f x->,即12()()f x f x>,所以函数2()1f x x=+在(,0)-∞上是减函数;(2)设12x x<<,而1212211211()()x xf x f xx x x x--=-=,由12120,0x x x x>-<,得12()()0f x f x-<,即12()()f x f x<,所以函数1()1f xx=-在(,0)-∞上是增函数.3.解:当0m>时,一次函数y mx b=+在(,)-∞+∞上是增函数;当0m<时,一次函数y mx b=+在(,)-∞+∞上是减函数,令()f x mx b=+,设12x x<,而1212()()()f x f x m x x-=-,当0m>时,12()0m x x-<,即12()()f x f x<,得一次函数y mx b=+在(,)-∞+∞上是增函数;当0m<时,12()0m x x->,即12()()f x f x>,得一次函数y mx b=+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭I ,即{(0,0)}A B =I ;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭I ,即A C =∅I ;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭I ; 则39()(){(0,0),(,)}55A B B C =-I U I .6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞U .7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8kx =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}U A B =U ð,得{2,4,5,6,7,8,9}A B =U , 集合A B U 里除去()U A B I ð,得集合B , 所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++, 121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56qp =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab =212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1.(2)a aa 2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口.3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z=-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)22211lglg()lg (lg lg )lg 2lg lg 22y z x y z x y z y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞U ; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x = (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x c =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43x x -==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB :.4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76.(2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8. 7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1.3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x =1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x e e -+)2+(2x x e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)。
高中数学人教A 版(2019)必修一 第三章 第一节 函数的解析式的求法一、单选题(共4题;共8分)1.(2分)若函数f(x−1x )=1x 2−2x+1,则函数g(x)=f(x)−4x 的最小值为( )A .-1B .-2C .-3D .-42.(2分)若f(1x )=x+1x2,则有( )A .f(x)=x 2+1B .f(x)=x 2+xC .f(x)=x 2+x(x ≠0)D .f(x)=x 2+1(x ≠0)3.(2分)已知f(x −1)=x 2+4x −5,则f(x)的解析式是( )A .f(x)=x 2+6xB .f(x)=x 2+8x +7C .f(x)=x 2+2x −3D .f(x)=x 2+6x −104.(2分)已知 f(x)+2f(−x)=3x 2−x ,则 f(x)= ( )A .x 2+xB .x 2C .3x 2+xD .x 2+3x二、多选题(共2题;共6分)5.(3分)已知函数f(√x −1)=2x +√x −3,则( )A .f(1)=7B .f(x)=2x 2+5xC .f(x)的最小值为−258D .f(x)的图象与x 轴只有1个交点6.(3分)已知f(x-1)=x 2,则下列结论正确的是( )A .f(−3)=4B .f(x)=(x +1)2C .f(x)=x 2D .f (3)=16三、填空题(共3题;共3分)7.(1分)若函数 f(√x +1)=x −1 ,则 f(x)= .8.(1分)已知函数 f(x) 满足 f(2x +1)=x 2−2x ,则 f(2) 的值为 . 9.(1分)若函数f(2x +1)=x +1,则f(1−x)= .四、解答题(共9题;共85分)10.(10分)求下列函数的解析式:(1)(5分)已知二次函数f(x)满足f(0)=1,且f(x +1)−f(x)=2x ; (2)(5分)已知函数f(x)满足:f(√x +1)=x −2√x ;11.(10分)已知函数g(√x +2)=x +2√x +1(1)(5分)求函数g(x)的解析式;(2)(5分)设f(x)=g(x)−2x x,若存在x ∈[2,3]使f(x)−kx ≤0成立,求实数k 的取值范围.12.(10分)已知二次函数f(x)=ax 2+bx +c .(1)(5分)若函数满足f(x +1)−f(x)=2x +2,且f(0)=1.求f(x)的解析式;(2)(5分)若对任意x ∈R ,不等式f(x)≥2ax +b 恒成立,求b 24(a 2+c 2)的最大值.13.(10分)求下列函数的解析式(1)(5分)已知f(x)是一次函数,且满足3f(x +1)−2f(x −1)=2x +17,求f(x); (2)(5分)若函数f(√x +1)=x −1,求f(x).14.(10分)已知二次函数f(x)=ax 2+bx +c 的图象与x 轴交于点(1,0)和(2,0),与y 轴交于点(0,2).(1)(5分)求二次函数f(x)的解析式;(2)(5分)若关于x 的不等式f(x)≤tx 2−(t +3)x +3对一切实数x 恒成立,求实数t 的取值范围.15.(10分)已知函数 f(x) 满足 f(x)+2f(1x)=3x .(1)(5分)求函数 f(x) 的解析式;(2)(5分)判断函数 f(x) 在 (0,+∞) 上的单调性,并用定义证明.16.(10分)若 f(x) 是定义在 R 上的二次函数,对称轴 x =−12,且 f(1)=3 , f(0)=1 .(1)(5分)求函数 f(x) 的解析式;(2)(5分)设函数 g(x)=kx 2+2kx +1(k ≠0) ,若对 ∀x 1∈[−2,2] , ∃x 2∈[−1,2] , f(x 1)=g(x 2) ,求实数 k 的取值范围.17.(5分)若 f(x) 是二次函数,且满足 f(0)=3 , f(x −1)−f(x)=−4x ,求 f(x) 的解析式.18.(10分)(1)(5分)已知f(x)是一次函数,且满足3f(x +1)−2f(x −1)=2x +17,求f(x)的解析式; (2)(5分)已知函数f(x)={x +2(x ≤1)x 2(1<x <2)2x(x ≥2)①求f(2),f(12),f[f(−1)];②若f(a)=3,求a的值.答案解析部分1.【答案】D【解析】【解答】因为f(x−1x )=1x 2−2x +1=x 2−2x+1x 2=(x−1x )2, 所以f(x)=x 2(x ≠1).从而g(x)=x 2−4x =(x −2)2−4, 当x =2时,g(x)取得最小值,且最小值为-4. 故答案为:D【分析】由配方法求得f(x)=x 2(x ≠1),进而得到g(x)=x 2−4x ,即可求解。
【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。
结合全新各地模拟考试相关题目人教A版高中数学必修1全册课后习题(附解析)第一章集合与常用逻辑用语1.1集合的概念第1课时集合的概念与几种常见的数集课后巩固1.设集合A={2,4,5},B={2,4,6},若x∈A,且x∉B,则x的值为()A.2B.4C.5D.62.若a是R中的元素,但不是Q中的元素,则a可以是()A.3.14B.-5C.D.是实数,但不是有理数,故选D.3.若集合A只含有元素a,则下列各式正确的是()A.0∈AB.a∉AC.a∈AD.a=AA中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应该用“=”,故选C.4.下列对象能构成集合的是()A.高一年级全体较胖的学生B.sin 30°,sin 45°,cos 60°,1C.全体很大的自然数D.平面内到△ABC三个顶点距离相等的所有点较胖”与“很大”的标准不明确,所以A、C不能构成集合;对于B,由于sin 30°=cos 60°=,不满足集合中元素的互异性,故B错误;对于D,平面内到△ABC三个顶点距离相等的所有点,可知这个点就是△ABC外接圆的圆心,满足集合的定义,故选D.5.(多选题)下列关系正确的有()A.∈RB.∉RC.|-3|∈ND.|-|∈Q中,∈R,正确;B中,∉R,错误;C中,|-3|∈N,正确;D中,|-|∈Q,错误,所以正确的个数是两个,故选A,C.6.已知集合S中的元素a,b是一个四边形的两条对角线的长,那么这个四边形一定不是()A.梯形B.平行四边形C.矩形D.菱形,所以a≠b,即四边形对角线不相等,故选C.7.已知集合A中含有2个元素x+2和x2,若1∈A,则实数x的值为.x+2=1或x2=1,所以x=1或x=-1.当x=-1时,x+2=x2,不符合题意,所以x=-1舍去;当x=1时,x+2=3,x2=1,满足题意.故x=1.8.设P,Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是.a∈P,b∈Q,则a+b的取值分别为1,2,3,4,6,7,8,11,则组成的集合P+Q中有8个元素.9.已知集合A中含有两个元素a-3和2a-1.(1)若-3是集合A中的元素,试求实数a的值;(2)-5能否为集合A中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由.因为-3是集合A中的元素,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0,此时集合A含有两个元素-3,-1,符合要求;若-3=2a-1,则a=-1,此时集合A中含有两个元素-4,-3,符合要求.综上所述,满足题意的实数a的值为0或-1.(2)若-5为集合A中的元素,则a-3=-5,或2a-1=-5.当a-3=-5时,解得a=-2,此时2a-1=2×(-2)-1=-5,显然不满足集合中元素的互异性;当2a-1=-5时,解得a=-2,此时a-3=-5,显然不满足集合中元素的互异性.综上,-5不能为集合A中的元素.10.已知集合A中含有3个元素:x,,1,B中含有3个元素:x2,x+y,0,若A=B,则x2 017+y2 018=.A=B,∴解得则x2 017+y2 018=(-1)2 017+02 018=-1.11.设x,y,z是非零实数,若a=,则以a的值为元素的集合中元素的个数是.x,y,z都是正数时,a=4;当x,y,z都是负数时,a=-4;当x,y,z中有一个是正数另两个是负数或有两个是正数另一个是负数时,a=0.所以以a的值为元素的集合中有3个元素.12.设A是由一些实数构成的集合,若a∈A,则∈A,且1∉A.(1)若3∈A,求集合A;(2)证明:若a∈A,则1-∈A;(3)集合A中能否只有一个元素?若能,求出集合A;若不能,说明理由.3∈A,∴=-∈A,∴∈A,∴=3∈A,∴A=.a∈A,∴∈A,∴=1-∈A.A只有一个元素,记A={a},则a=,即a2-a+1=0有且只有一个实数解.∵Δ=(-1)2-4=-3<0,∴a2-a+1=0无实数解.这与a2-a+1=0有且只有一个实数解相矛盾,故假设不成立,即集合A中不能只有一个元素.第2课时集合的表示课后巩固1.已知集合A={x|x(x+4)=0},则下列结论正确的是()A.0∈AB.-4∉AC.4∈AD.2∈AA={x|x(x+4)=0}={0,-4},∴0∈A.2.一次函数y=x+2和y=-2x+8的交点组成的集合是()A.{2,4}B.{x=2,y=4}C.(2,4)D.{(x,y)|x=2且y=4}解得∴一次函数y=x+2与y=-2x+8的图象的交点为(2,4),∴组成的集合是{(x,y)|x=2且y=4}.3.集合用描述法可表示为()A. B.C. D.3,,即,从中发现规律,x=,n∈N*,故可用描述法表示为.4.已知集合A=m y=∈N,m∈N,用列举法表示集合A=.集合A=m y=∈N,m∈N,∴A={1,2,4}.5.(一题多空题)设集合A={x|x2-3x+a=0},若4∈A,则a=,集合A用列举法表示为.4∈A,∴16-12+a=0,∴a=-4,∴A={x|x2-3x-4=0}={-1,4}.6.用列举法表示下列集合:(1)方程组的解集;(2)不大于10的非负奇数集;(3)A=.由故方程组的解集为{(2,1)}.(2)不大于10,即小于或等于10,非负是大于或等于0,故不大于10的非负奇数集为{1,3,5,7,9}.(3)由式子可知4-x的值为1,2,3,6,从而可以得到x的值为3,2,1,-2,所以A={-2,1,2,3}.7.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x∈Z且x<5};(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.绝对值不大于3的整数可以表示为{x||x|≤3,x∈Z},也可表示为{-3,-2,-1,0,1,2,3};(2){x|x=3n,n∈Z};(3)∵x=|x|,∴x≥0.∵x∈Z且x<5,∴{x|x=|x|,x∈Z且x<5}还可表示为{0,1,2,3,4};(4){-2}.(特别注意x∈Z这一约束条件)8.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x,y)到x轴的距离为|y|,到y轴的距离为|x|,所以该集合用描述法表示为{(x,y)||y|=|x|}.能力提升1.已知集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},a∈P,b∈Q,则()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P,Q,R中的任意一个a=2m(m∈Z),b=2n+1(n∈Z),则a+b=2m+2n+1=2(m+n)+1.因为m+n∈Z,与集合Q中的元素特征x=2k+1(k∈Z)相符合,所以a+b∈Q,故选B.2.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x+y∈A},则B中所含元素的个数为.A={1,2},B={(x,y)|x∈A,y∈A,x+y∈A},所以B={(1,1)},只有一个元素.3.如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M=.(x,y)xy≥0,-2≤x≤,-1≤y≤4.已知集合A={x|ax2-3x+2=0},其中a为常数,且a∈R.(1)若A中至少有一个元素,求a的取值范围;(2)若A中至多有一个元素,求a的取值范围.当A中恰有一个元素时,若a=0,则方程化为-3x+2=0,此时关于x的方程ax2-3x+2=0只有一个实数根x=;若a≠0,则令Δ=9-8a=0,解得a=,此时关于x的方程ax2-3x+2=0有两个相等的实数根.当A中有两个元素时,则a≠0,且Δ=9-8a>0,解得a<,且a≠0,此时关于x的方程ax2-3x+2=0有两个不相等的实数根.综上,a≤时,A中至少有一个元素.(2)当A中没有元素时,则a≠0,Δ=9-8a<0,解得a>,此时关于x的方程ax2-3x+2=0没有实数根.当A中恰有一个元素时,由(1)知,此时a=0或a=.综上,a=0或a≥时,A中至多有一个元素.1.2集合间的基本关系课后巩固1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D.2.下列集合中表示空集的是()A.{x∈R|x+5=5}B.{x∈R|x+5>5}C.{x∈R|x2=0}D.{x∈R|x2+x+1=0}分别表示的集合为{0},{x|x>0},{0},∵x2+x+1=0无解,∴{x∈R|x2+x+1=0}表示空集.3.(多选题)下列命题中,错误的是()A.空集没有子集B.任何集合至少有两个子集C.空集是任何集合的真子集D.若⌀⫋A,则A≠⌀错,空集是任何集合的子集;B错,如⌀只有一个子集;C错,空集不是空集的真子集;D正确,因为空集是任何非空集合的真子集.4.设集合A={-1,0,1},B={a,a2},则使B⊆A成立的a的值是()A.-1B.0C.1D.-1或1B⊆A,∴∴a=-1.5.满足{1}⊆A⊆{1,2,3}的集合A的个数是()A.2B.3C.4D.8满足{1}⊆A⊆{1,2,3}的集合A为:{1},{1,2},{1,3},{1,2,3},共4个.6.设集合M={y|y=x2+1},N={x|y=x2+1},能正确表示集合M与集合N的关系的Venn图是()M={y|y=x2+1}={y|y≥1},N={x|y=x2+1}=R,∴M⫋N,对应的Venn图是D.7.集合{x|1<x<6,x∈N*}的非空真子集的个数为.{x|1<x<6,x∈N*}={2,3,4,5},有4个元素,故有非空真子集24-2=14(个).8.下列各组中的两个集合相等的所有序号是.①P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z};②P={x|x=2n-1,n∈N*},Q={x|x=2n+1,n∈N*};③P={x|x2-x=0},Q=x x=,n∈Z.中对于Q,n∈Z,所以n-1∈Z,Q表示偶数集,所以P=Q;②中P是由1,3,5,…所有正奇数组成的集合,Q是由3,5,…所有大于1的正奇数组成的集合,1∉Q,所以集合P与集合Q不相等;③中P={0,1},Q中当n为奇数时,x==0;当n为偶数时,x==1,Q={0,1},所以P=Q.9.集合A={x|-1≤x≤1},B={x|a-1≤x≤2a-1},若B⊆A,则实数a的取值范围是.B=⌀,即2a-1<a-1,即a<0时,满足B⊆A.若B≠⌀,即a-1≤2a-1,即a≥0时,要使B⊆A,则满足解得0≤a≤1.综上:a≤1.≤110.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.B是A的子集,所以B中元素必是A中的元素,若x+2=3,则x=1,符合题意.若x+2=-x3,则x3+x+2=0,所以(x+1)(x2-x+2)=0.因为x2-x+2≠0,所以x+1=0,所以x=-1,此时x+2=1,集合B中的元素不满足互异性.综上所述,存在实数x=1,使得B是A的子集,此时A={1,3,-1},B={1,3}.能力提升1.M={x|6x2-5x+1=0},P={x|ax=1},若P⊆M,则a的取值集合为()A.{2}B.{3}C.{2,3}D.{0,2,3}{x|6x2-5x+1=0}=,P={x|ax=1}.∵P⊆M,∴P=⌀或P=或P=, ∴相应地,有a=0或a=3或a=2.∴a的取值集合为{0,2,3}.2.已知集合A=x x=(2k+1),k∈Z,B=x x=k±,k∈Z,则集合A,B之间的关系为.A,k=2n时,x=(4n+1)=,n∈Z,当k=2n-1时,x=(4n-2+1)=,n∈Z, 即集合A=x x=,n∈Z,由B=x x=,k∈Z,可知A=B.3.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},(1)若B⊆A,求实数m的取值范围.(2)当x∈Z时,求A的非空真子集个数.(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.当m+1>2m-1即m<2时,B=⌀,满足B⊆A.当m+1≤2m-1即m≥2时,要使B⊆A成立,需可得2≤m≤3.综上,m≤3时有B⊆A.(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},所以A的非空真子集个数为:28-2=254.(3)∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},没有元素x使x∈A与x∈B同时成立.则①若B=⌀,即m+1>2m-1,得m<2时满足条件.②若B≠⌀,则要满足条件:解得m>4.综上,有m<2或m>4.1.3集合的基本运算第1课时并集和交集课后巩固1.设集合A={0,2,4,6,8,10},B={x|2x-3<4},则A∩B=()A.{4,8}B.{0,2,6}C.{0,2}D.{2,4,6}{x|x<3.5},又A={0,2,4,6,8,10},∴A∩B={0,2}.2.已知集合M={-1,0,1,2}和N={0,1,2,3}的关系的Venn图如图所示,则阴影部分所表示的集合是()A.{0}B.{0,1}C.{0,1,2}D.{-1,0,1,2,3}M∩N={0,1,2},故选C.3.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}4.集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.4A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},∴∴a=4.故选D.5.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=.,可知a=1,b=6,∴2a-b=-4.6.已知关于x的方程3x2+px-7=0的解集为A,方程3x2-7x+q=0的解集为B,若A∩B=,求A∪B.A∩B=,∴-∈A且-∈B.由-∈A,设3x2+px-7=0的另一根为m.由根与系数的关系得m=-,解得m=7.∴A=,同理B=,∴A∪B=.7.已知集合A={x|-2<x<3},B={x|m<x<m+9}.(1)若A∪B=B,求实数m的取值范围;(2)若A∩B≠⌀,求实数m的取值范围.A∪B=B,∴A⊆B,∴解得-6≤m≤-2,∴实数m的取值范围是[-6,-2].(2)当A∩B=⌀时,3≤m或者m+9≤-2,解得m≥3或m≤-11,∴A∩B≠⌀时,-11<m<3,∴实数m的取值范围是(-11,3).能力提升1.设A={x|2≤x≤6},B={x|2a≤x≤a+3},若A∪B=A,则实数a的取值范围是()A.[1,3]B.[3,+∞)C.[1,+∞)D.(1,3)A∪B=A,∴B⊆A,当B=⌀时,2a>a+3,解得a>3;当B≠⌀时,且a≤3,解得1≤a≤3.综上,a≥1.∴实数a的取值范围是[1,+∞).2.(一题多空题)设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2},且集合A∩(B∪C)={x|a≤x≤b},则a=,b=.B∪C={x|-3<x≤4},∴A⫋(B∪C).∴A∩(B∪C)=A,由题意{x|a≤x≤b}={x|-1≤x≤2}.∴a=-1,b=2.第2课时补集及其应用课后提升1.已知全集U={1,2,3,4,5},∁U A={1,3,5},则A=()A.{1,2,3,4,5}B.{1,3,5}C.{2,4}D.⌀全集U={1,2,3,4,5},∁U A={1,3,5},∴A={2,4}.2.已知集合A={x|-1<x-3≤2},B={x|3≤x<4},则∁A B=()A.(2,3)∪(4,5)B.(2,3]∪(4,5]C.(2,3)∪[4,5]D.(2,3]∪[4,5]{x|2<x≤5},因为B={x|3≤x<4},所以∁A B=(2,3)∪[4,5].3.若全集U={1,2,3,4,5},且∁U A={x∈N|1≤x≤3},则集合A的真子集共有()A.3个B.4个C.7个D.8个A={1,2,3},所以A={4,5},其真子集有22-1=3个,故选A.U4.设全集U=R,集合A={x|x≤3},B={x|x≤6},则集合(∁U A)∩B=()A.{x|3<x≤6}B.{x|3<x<6}C.{x|3≤x<6}D.{x|3≤x≤6}U=R,集合A={x|x≤3},B={x|x≤6},则集合∁U A={x|x>3},所以(∁U A)∩B={x|3<x≤6}.5.已知全集U={1,3,5,7},集合A={1,3},B={3,5},则如图所示阴影区域表示的集合为()A.{3}B.{7}C.{3,7}D.{1,3,5},知A∪B={1,3,5},如图所示阴影区域表示的集合为∁U(A∪B)={7}.6.已知集合U={2,3,a2+2a-3},A={2,3},∁U A={5},则实数a的值为.5∈U,故得a2+2a-3=5,即a2+2a-8=0,解得a=-4或a=2.当a=-4时,U={2,3,5},A={2,3},符合题意.当a=2时,U={2,3,5},A={2,3},符合题意.所以a=-4或a=2.7.(一题多空题)设集合U=-2,,2,3,A={x|2x2-5x+2=0},B=3a,,若∁U A=B,则a=,b=.A={x|2x2-5x+2=0}=,2,∁U A=B,故B={-2,3},则3a=3,=-2,所以a=1,b=-2.-28.已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(∁U B);(4)B∩(∁U A);(5)(∁U A)∩(∁U B).①.(1)A∩B={x|0≤x<5}.(2)A∪B={x|-5<x<7}.图①(3)如图②.图②∁U B={x|x<0,或x≥7},∴A∪(∁U B)={x|x<5,或x≥7}.(4)如图③.图③∁U A={x|x≤-5,或x≥5},B∩(∁U A)={x|5≤x<7}.(5)(方法一)∵∁U B={x|x<0,或x≥7},∁U A={x|x≤-5,或x≥5},∴如图④.图④(∁U A)∩(∁U B)={x|x≤-5,或x≥7}.(方法二)(∁U A)∩(∁U B)=∁U(A∪B)={x|x≤-5,或x≥7}.9.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁R A)=R,B∩(∁R A)={x|0<x<1,或2<x<3},求集合B.A={x|1≤x≤2},∴∁R A={x|x<1,或x>2}.又B∪(∁R A)=R,A∪(∁R A)=R,可得A⊆B.而B∩(∁R A)={x|0<x<1,或2<x<3},∴{x|0<x<1,或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1,或2<x<3}={x|0<x<3}.能力提升1.设全集U={1,2,3,4,5},若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,且3∉BB.3∉B,但3∈AC.3∉A B.3∈A,且3∈BA∩B={2},故2∈B,且2∈A,(∁U A)∩B={4},所以4∈B但4∉A,(∁U A)∩(∁U B)=∁U(A∪B)={1,5},故1∉A,1∉B且5∉A,5∉B,所以3∉B,但3∈A.2.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中的元素个数为()A.1B.2C.3D.4A={1,2},B={x|x=2a,a∈A}={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5},故选B.3.设全集U={1,2,3,4,5,6},且U的子集可表示为由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若M={2,3,6},则∁U M表示的6位字符串为;(2)已知A={1,3},B⊆U,若集合A∪B表示的字符串为101001,则满足条件的集合B的个数是.由已知得,∁U M={1,4,5},则∁U M表示的6位字符串为100110.(2)由题意可知A∪B={1,3,6},而A={1,3},B⊆U,则B可能为{6},{1,6},{3,6},{1,3,6},故满足条件的集合B的个数是4.(2)44.设U=R,集合A={x|x2-x-2=0},B={x|x2+mx+m-1=0}.(1)当m=1时,求(∁R B)∩A;(2)若(∁U A)∩B=⌀,求实数m的取值.x2-x-2=0,即(x+1)(x-2)=0,解得x=-1或x=2.故A={-1,2}.(1)当m=1时,方程x2+mx+m-1=0为x2+x=0,解得x=-1或x=0.故B={-1,0},∁R B={x|x≠-1,且x≠0}.所以(∁R B)∩A={2}.(2)由(∁U A)∩B=⌀可知,B⊆A.方程x2+mx+m-1=0的判别式Δ=m2-4×1×(m-1)=(m-2)2≥0.①当Δ=0,即m=2时,方程x2+mx+m-1=0为x2+2x+1=0,解得x=-1,故B={-1}.此时满足B⊆A.②当Δ>0,即m≠2时,方程x2+mx+m-1=0有两个不同的解,故集合B中有两个元素.又因为B⊆A,且A={-1,2},所以A=B.故-1,2为方程x2+mx+m-1=0的两个解,由根与系数之间的关系可得解得m=-1.综上,m的取值为2或-1.1.4充分条件与必要条件课后巩固1.“四边形是平行四边形”是“四边形是正方形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件“四边形是平行四边形”不一定得出“四边形是正方形”,但由“四边形是正方形”必推出“四边形是平行四边形”,故“四边形是平行四边形”是“四边形是正方形”的必要不充分条件.2.设a,b∈R,则“a>b”是“a2>b2”的()A.充分必要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件a=1,b=-4,满足a>b,此时a2>b2不成立;若a2>b2,如a=-4,b=1,此时a>b不成立.3.的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件当x=1,y=7时,满足但不能满足故为必要不充分条件.4.设集合A={1,a2,-2},B={2,4},则“a=2”是“A∩B={4}”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要“a=2”时,显然“A∩B={4}”;但当“A∩B={4}”时,a可以为-2,故不能推出“a=2”.5.已知p:a≠0,q:ab≠0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≠0,不一定有ab≠0,如b=0时;但是ab≠0则一定需a≠0.6.已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么:(1)s是q的什么条件?(2)p是q的什么条件?∵q⇒s,s⇒r⇒q,∴s是q的充分也是必要条件.(2)∵q⇒s⇒r⇒p,∴p是q的必要条件.7.设x,y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.:如果xy=0,那么,①x=0,y≠0;②x≠0,y=0;③x=0,y=0.于是|x+y|=|x|+|y|.如果xy>0,即x>0,y>0或x<0,y<0,当x>0,y>0时,|x+y|=x+y=|x|+|y|,当x<0,y<0时,|x+y|=-x-y=(-x)+(-y)=|x|+|y|,总之,当xy≥0时,|x+y|=|x|+|y|.必要性:由|x+y|=|x|+|y|及x,y∈R,得(x+y)2=(|x|+|y|)2,即x2+2xy+y2=x2+2|xy|+y2,得|xy|=xy,所以xy≥0,故必要性成立.综上,原命题成立.能力提升1.已知条件p:x>1,条件q:≤1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≤1,得-1≤0,≤0,即x≥1或x<0.所以由p能推出q,反之不成立.故p是q的充分不必要条件.2.已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.:因为a+b=1,所以a+b-1=0.所以a3+b3+ab-a2-b2=(a+b)(a2-ab+b2)-(a2-ab+b2)=(a+b-1)(a2-ab+b2)=0.充分性:因为a3+b3+ab-a2-b2=0,即(a+b-1)(a2-ab+b2)=0,又ab≠0,所以a≠0且b≠0.因为a2-ab+b2=b2>0,所以a+b-1=0,即a+b=1.综上可得,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.1.5全称量词与存在量词课后巩固1.下列命题中全称量词命题的个数为()①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0B.1C.2D.32.命题“∃x∈R,使得x+1<0”的否定是()A.∀x∈R,均有x+1<0B.∀x∈R,均有x+1≥0C.∃x∈R,使得x+1≥0D.∃x∈R,使得x+1=03.已知命题p:某班所有的男生都爱踢足球,则命题p为()A.某班至多有一个男生爱踢足球B.某班至少有一个男生不爱踢足球C.某班所有的男生都不爱踢足球D.某班所有的女生都爱踢足球p是一个全称量词命题,它的否定是一个存在量词命题.4.下列四个命题中,既是存在量词命题又是真命题的是()A.斜三角形的内角是锐角或钝角B.至少有一个实数x,使x3>0C.任一无理数的平方必是无理数D.存在一个负数x,使>2A,C中的命题是全称量词命题,选项D中的命题是存在量词命题,但是假命题.只有B既是存在量词命题又是真命题.5.已知命题p:∀x>3,x>m成立,则实数m的取值范围是()A.m≤3B.m≥3C.m<3D.m>3x>3,x>m恒成立,即大于3的数恒大于m,所以m≤3.6.命题“有些负数满足不等式(1+x)(1-9x)>0”用“∃”或“∀”可表述为.,所以命题可改写为“∃x<0,(1+x)(1-9x)>0”.x<0,(1+x)(1-9x)>07.已知命题p“∃x≥3,使得2x-1<m”是假命题,则实数m的最大值是.p“∃x≥3,使得2x-1<m”是假命题,所以“∀x≥3,使得2x-1≥m”是真命题,故m≤5.8.用符号“∀”(“∀”表示“任意”)或“∃”(“∃”表示“存在”)表示下面的命题,并判断真假:(1)实数的平方大于或等于0;(2)存在一对实数(x,y),使2x-y+1<0成立.这是全称量词命题,隐藏了全称量词“所有的”.改写后命题为:∀x∈R,x2≥0,它是真命题.(2)改写后命题为:∃(x,y),x∈R,y∈R,2x-y+1<0,它是真命题.如x=0,y=2时,2x-y+1=0-2+1=-1<0成立.能力提升1.“x∈R,关于x的不等式x3+1>0有解”等价于()A.∃x∈R,使得x3+1>0成立B.∃x∈R,使得x3+1≤0成立C.∀x∈R,使得x3+1>0成立D.∀x∈R,使得x3+1≤0成立x∈R,“关于x的不等式x3+1>0有解”为存在量词命题,则根据存在量词命题的定义可知命题等价为∃x∈R,使得x3+1>0成立.2.命题“∀x∈R,x2-2ax+1>0”是假命题,则实数a的取值范围是.,命题“∀x∈R,x2-2ax+1>0”是假命题,可得出二次函数与x轴有公共点, 又由二次函数的性质,可得Δ≥0,即4a2-4≥0,解得a≤-1或a≥1.-∞,-1]∪[1,+∞)3.已知命题p:∀x∈R,x2+(a-1)x+1≥0成立,命题q:∃x∈R,ax2-2ax-3>0不成立,若p假q真,求实数a的取值范围.p:∀x∈R,x2+(a-1)x+1≥0是假命题,所以命题p:∃x∈R,x2+(a-1)x+1<0是真命题,则Δ=(a-1)2-4>0,即(a-1)2>4,故a-1<-2或a-1>2,即a<-1或a>3.因为命题q:∃x∈R,ax2-2ax-3>0不成立,所以命题q:∀x∈R,ax2-2ax-3≤0成立,当a=0时,-3<0成立;当a<0时,必须Δ=(-2a)2+12a≤0,即a2+3a≤0,解得-3≤a<0,故-3≤a≤0.综上所述,-3≤a<-1.所以实数a的取值范围是[-3,-1).。
人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版习题1.2(第24页)练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3(第39页)1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数; (2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320xx -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P POcm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x=, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}U AB =ð,得{2,4,5,6,7,8,9}A B =, 集合A B 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
【新教材】人教统编版高中数学A版必修第一册第五章教案教学设计+课后练习及答案5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|ax=x2},B={0,1,2},若A⊆B,则实数a的取值个数为()A.3B.2C.1D.02.下列不等式中,正确的是()A.若a>b,则a2>b2B.若a>b,则c﹣a<c﹣bC.若a>b,c>d,e>f,则ace>bdfD.若a>b,c>d,e>f,则ac>bd>ef3.已知P=a2+2b+3,Q=﹣b2+4a﹣2,则P,Q的大小关系是()A.P>Q B.P<Q C.P≥Q D.P≤Q4.若实数a,b满足ab>0,则a2+b2+12ab+1的最小值为()A.2B.3C.4D.55.若方程x2+(1﹣k)x﹣2(k+1)=0的一个根在区间(2,3)内,则实数k的取值范围是()A.(3,4)B.(2,3)C.(1,3)D.(1,2)6.已知对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),则幂函数y=x a的图象是()A.B.C.D.7.函数f(x)=x﹣3+e x的零点所在的区间是()A.(0,1)B.(1,3)C.(3,4)D.(4,+∞)8.下列式子成立的是()A.a√−a=√−a3B.a√−a=−√−a3C.a√−a=√a3D.a√−a=−√a3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),下列命题中正确的是()A.f(x1+x2)=f(x1)•f(x2)B.f(x1•x2)=f(x1)+f(x2)C.f(x1)−f(x2)x1−x2>0D.f(x1+x22)<f(x1)+f(x2)210.已知α是第三象限角,则α2可能是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角高一年级数学学科假期作业使用日期:假期作业1编辑:校对:审核:11.已知扇形的周长是6cm ,面积是2cm 2,下列选项正确的有( ) A .圆的半径为2cm B .圆的半径为1cm C .圆心角的弧度数是1 D .圆心角的弧度数是212.下列各式中正确的是( )A .若角α和β的终边关于x 轴对称,sin α=sin βB .若角α和β的终边关于y 轴对称,cos α=cos βC .若角α和β的终边关于原点对称,tan α=tan βD .若角α和β的终边相同,cos (π+α)=cos (π﹣β) 三、填空题:本题共4小题,每小题5分,共20分.13.已知sin(π2+θ)=−45,θ是第二象限角,则tan θ= .14.若tan α=12,则sinα−cosαsinα−2cosα= .15.如图所示,某学校要在长为8米,宽为6米的一块矩形地面上进行绿化,计划四周种花卉,花卉带的宽度相同,均为x 米,中间植草坪.为了美观,要求草坪的面积大于矩形土地面积的一半,则x 的取值范围为 .16.已知函数f(x)={1x ,x ≥1x 3,x <1,若关于x 的方程f (x )=k 有两个不同零点,则k 的取值范围是 .四、解答题:本题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合A ={x ||x ﹣2|≤1},B ={x|x+1x−2>0}.(1)求A ∩B ; (2)求(∁R A )∪B .18.设m 为实数,函数y =(m +1)x 2﹣mx +m ﹣1,分别根据以下条件求实数m 的取值范围. (1)方程y =0有实根; (2)不等式y >0的解集为∅.19.若正实数x ,y 满足2x +y +a =xy . (1)若a =0,求x +y 的最小值; (2)若a =6,求xy 的最小值20.比较下列各题中两个值的大小(1)lg0.6,lg0.8;(2)log0.56,log0.54;(3)log m5,log m7.21.已知α是锐角,且f(α)=sin(π−α)cos(2π−α)tan(−α−π) tan(π+α)sin(−π−α).(1)化简f(α);(2)若cos(α−32π)=−15,求f(α)的值.22.某市乘出租车计费规定:2公里以内5元,超过2公里不超过8公里的部分按每公里1.6元计费,超过8公里以后按每公里2.4元计费.(1)写出乘出租车所走公里数x与乘车费y的函数关系y=f(x).(2)若甲、乙两地相距10公里,则乘出租车从甲地到乙地共需要支付乘车费为多少元?(1)求实数a,b的值;假期作业1答案1.解:由题意可得,当a≠0时,A={a,0},B={0,1,2},若A⊆B,,则a=1或a=2,当a=0时,A={0},满足条件,综上可得,a=0,1,2共3个.故选:A.2.解:A.a>b得不出a2>b2,比如a=2,b=﹣3,∴该选项错误;B.∵a>b,∴﹣a<﹣b,∴c﹣a<c﹣b.该选项正确;C.a>b,c>d,e>f得不出ace>bdf,比如,a=1,b=﹣2,c=2,d=﹣3,e=2,f=1,∴该选项错误;D.a>b,c>d,e>f得不出ac>bd>ef,比如,a=1,b=﹣6,c=1,d=﹣2,e=6,f=1.故选:B.3.解:P=a2+2b+3,Q=﹣b2+4a﹣2,则P﹣Q=a2+2b+3﹣(﹣b2+4a﹣2)=(a﹣2)2+(b+1)2,∵(a﹣2)2≥0,(b+1)2≥0,∴P﹣Q≥0,∴P≥Q,故选:C.4.解:因为ab>0,则a2+b2+12ab+1≥2ab+12ab+1,当且仅当a=b时取等号,≥2√2ab⋅12ab+1=3,当且仅当2ab=12ab且a=b时取等号,即a=b=√22时取等号,此时取得最小值3.故选:B.5.解:若方程x2+(1﹣k)x﹣2(k+1)=0有两相等的实根,则△=(1﹣k)2+8(k+1)=0,解得:k=﹣3,此时x=﹣2,不在区间(2,3)内,令f(x)=x2+(1﹣k)x﹣2(k+1),若方程x2+(1﹣k)x﹣2(k+1)=0有两不相等的实根,且一个根在区间(2,3)内,则f(2)f(3)<0,即(4﹣4k)(10﹣5k)<0,解得:k∈(1,2),故选:D.6.解:∵对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),∴﹣1=log a3,∴a=13,故幂函数y=xa=√x3,它的图象如图D所示,故选:D.7.解:根据函数f(x)=x﹣3+e x的解析式,所以f(0)=0﹣3+1=﹣2<0,f(1)=1﹣3+e>0,f(3)=3﹣3+e3>0,f(4)=4﹣3+e4>0,所以f(0)•f(1)<0,故函数的零点所在的区间为(0,1).故选:A.8.解:要使a√−a有意义,则a<0,∴a√−a=−√−a⋅a2=−√−a3.故选:B.9.解:2x1⋅2x2=2x1+x2,所以A成立,2x1+⋅2x2≠2x1⋅x2,所以B不成立,函数f(x)=2x,在R上是单调递增函数,若x1>x2则f(x1)>f(x2),则f(x1)−f(x2)x1−x2>0,若x1<x2则f(x1)<f(x2),则f(x1)−f(x2)x1−x2>0,故C正确f(x1+x22)<f(x1)+f(x2)2说明函数是凹函数,而函数f(x)=2x是凹函数,故D正确故选:ACD.10.解:因为α是第三象限角,所以2k π+π<α<2k π+3π2,k ∈Z ,∴k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,α2是第二象限角;当k 为奇数时,α2是第四象限角,故选:BD .11.解:设扇形半径为r ,圆心角弧度数为α, 则由题意得{2r +αr =612αr 2=2,解得:{r =1α=4,或{r =2α=1,可得圆心角的弧度数是4,或1.故选:ABC .12.解:由角α和β的终边关于x 轴对称,可知β=﹣α+2k π(k ∈Z ),故sin α=﹣sin β,故A 错误;角α和β的终边关于y 轴对称,可知β=π﹣α+2k π(k ∈Z ),cos α=﹣cos β,故B 错误; 角α和β的终边关于原点对称,可知β=π+α+2k π(k ∈Z ),得tan α=tan β,故C 正确; 角α和β的终边相同,可知β=α+2k π(k ∈Z ),得cos α=cos β,又cos (π+α)=﹣cos α,cos (π﹣β)=﹣cos β,∴cos (π+α)=cos (π﹣β),故D 正确. 故选:CD . 二、填空题13.解:已知sin(π2+θ)=−45=cos θ,θ是第二象限角,∴sin θ=√1−cos 2θ=35,则tan θ=sinθcosθ=−34,故答案为:−34. 14.解:因为tan α=12, 则sinα−cosαsinα−2cosα=tanα−1tanα−2=12−112−2=13.故答案为:13.15.解:设花卉带宽度为xm (0<x <3),则中间草坪的长为(8﹣2x )m ,宽为(6﹣2x )m , 根据题意可得:(8﹣2x )(6﹣2x )>12×8×6,整理得:x 2﹣7x +6>0, 即(x ﹣6)(x ﹣1)>0,解得0<x <1或x >6.x >6不合题意,舍去. 故所求花卉带宽度的范围为(0,1).故答案为:(0,1).16.解:作出f (x )的函数图象如图所示:∵f (x )=k 有两个不同解, ∴0<k <1.故答案为:(0,1).17.解:(1)∵A ={x |1≤x ≤3},B ={x |x <﹣1或x >2},∴A ∩B ={x |2<x ≤3}; (2)∵∁R A ={x |x <1或x >3}, ∴(∁R A )∪B ={x |x <1或x >2}.18.解:(1)由题意可得(m +1)x 2﹣mx +m ﹣1=0有根, 当m +1=0即m =﹣1时,x ﹣2=0即x =2满足题意, 当m +1≠0时,△=m 2﹣4(m ﹣1)(m +1)≥0,解得,−2√33≤m ≤2√33且m ≠﹣1, 综上,−2√33≤m ≤2√33,(2)由题意可得,(m +1)x 2﹣mx +m ﹣1≤0恒成立,当m +1=0时,显然不成立, {m +1≠0m 2−4(m +1)(m −1)≤0, 解得,m ≥2√33或m ≤−2√33,综上,m ≥2√33或m ≤−2√33.19.解:(1)当a =0时,2x +y =xy 即2y+1x=1,∴x +y =(x +y )(1x +2y )=3+yx +2xy ≥3+2√2,当且仅当yx =2x y且2y+1x=1即x =1+√2,y =√2+2时取等号,故x +y 的最小值3+2√2,(2)∵a =6,∴2x +y =xy ﹣6≥2√2xy ,当且仅当2x =y 且2x +y =xy ﹣6即x =3,y =6时取等号, 解得,xy ≥18,即xy 的最小值18.20.解:(1)由f (x )=lgx 为增函数,可知f (0.6)<f (0.8),即lg 0.6<lg 0.8; (2)由f (x )=log 0.5x 为减函数,可知f (6)<f (4),即log 0.56<log 0.54; (3)令f (x )=log m x ,当0<m <1时,函数f (x )为减函数,由5<7,可知log m 5>log m 7; 当m >1时,函数f (x )为增函数,由5<7,可知log m 5<log m 7. 21.解:(1)f (α)=sin(π−α)cos(2π−α)tan(−α−π)tan(π+α)sin(−π−α)=sinαcosα(−tanα)sinαtanα=−cos α.(2)∵cos (α−32π)=﹣sin α=−15,∴sin α=15,可得cos α=2√55,∴f (α)=﹣cos α=−2√55. 22.解:(1)设乘出租车走x 公里,车费为y 元,由题意得y ={5,0<x ≤25+1.6(x −2),2<x ≤814.6+2.4(x −8),x >8即y ={5,0<x ≤21.8+1.6x ,2<x ≤82.4x −4.6,x >8,(2)因为甲、乙两地相距10公里,即x =10>8,所以车费y =2.4×10﹣4.6=19.4(元).所以乘出租车从甲地到乙地共需要支付乘车费为19.4元.。
高中数学人教A版(2019)必修一第二章第三节分式不等式一、单选题(共7题;共14分)1.(2分)不等式xx−1<0的解集为()A.(-∞,0)B.(−∞,0)∪(0,+∞) C.(0,1)D.(-∞,1)2.(2分)下列不等式中,与不等式x+8x2+2x+3<2解集相同的是()A.(x+8)(x2+2x+3)<2B.(x+8)<2(x2+2x+3)C.1x2+2x+3<2x+8D.x2+2x+3x+8>123.(2分)不等式3x−12−x≥1的解集是()A.{x|34≤x≤2}B.{x|34≤x<2}C.{x|x≤−34或x>2}D.{x|x<2}4.(2分)若不等式2x 2+x+12x+1>a在区间[0,1]上有解,则实数a的取值范围是()A.a<√2−12B.a<1C.a<43D.a<2√2−125.(2分)不等式2−3xx−1>0的解集为()A.(−∞,34)B.(−∞,23)C.(−∞,23)∪(1,+∞)D.(23,1)6.(2分)若a<1,则关于x的不等式2x+ax+1<1的解集为()A.{x|−1<x<1−a}B.{x|x>1−a}C.{x|a<x<1}D.{x|x>1−a或x<−1}7.(2分)与不等式x−3x−2≤0同解集的不等式是()A.(x−3)(x−2)≤0B.x2−5x+6(x−2)2≤0C.x 2−x−6x2−4≥0D.(x−3)2(x−2)≤0二、填空题(共10题;共10分)8.(1分)不等式x3x−2>2的解集是9.(1分)不等式1x−1>1的解集为 . 10.(1分)不等式5x−2≤1的解集是 11.(1分)不等式x−1x <0的解集为 12.(1分)不等式1x−1<1的解集是 . 13.(1分)当m >12时,关于x 的分式不等式x−m+1x+m <0的解区间为 .14.(1分)不等式x+12x−1≤0 的解集是 . 15.(1分)不等式 1x<2 的解集为 . 16.(1分)若关于 x 的不等式 ax −b <0 的解集是 (1,+∞) ,则关于 x 的不等式ax+bx+5>0 的解集是 .17.(1分)不等式2x−7x−1≤1的解集是 . 三、解答题(共1题;共5分)18.(5分)解关于x 的不等式:2x−a−2x−2≤1(a ∈R) .答案解析部分1.【答案】C【解析】【解答】由xx−1<0,得x(x−1)<0,得0<x<1,所以不等的解集为(0,1)。
【新教材】人教统编版高中数学A版必修第一册第五章教案教学设计+课后练习及答案5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
2019版数学精品资料(人教版) 人教A 版必修1课本例题习题改编1.原题(必修1第七页练习第三题(3))判断下列两个集合之间的关系:A={}{}|410|20,x x x N B x x m m N ++∈==∈是与的公倍数,, 改编 已知集合4x x M xN N **⎧⎫=∈∈⎨⎬⎩⎭且10,集合40x N x Z ⎧⎫=∈⎨⎬⎩⎭,则( )A .M N =B .N M ⊆C .20x MN x Z ⎧⎫=∈⎨⎬⎩⎭ D .40x MN x N *⎧⎫=∈⎨⎬⎩⎭解:{}20,M x x k k N *==∈, {}40,N x x k k Z ==∈,故选D .2.原题(必修1第十二页习题1.1B 组第一题)已知集合A={1,2},集合B 满足A ∪B={1,2},则这样的集合B 有 个.改编1 已知集合A 、B 满足A ∪B={1,2},则满足条件的集合A 、B 有多少对?请一一写出来.解:∵A ∪B={1,2},∴集合A ,B 可以是:∅,{1,2};{1},{1,2};{1},{2};{2},{1,2};{2},{1};{1,2},{1,2};{1,2},{1};{1,2},{2};{1,2},∅.则满足条件的集合A 、B 有9对. 改编2 已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个 解:子集个数有2n个,真子集个数有21n-个 改编3 满足条件{}{}1,21,2,3A =的所有集合A 的个数是 个解:3必须在集合A 里面,A 的个数相当于2元素集合的子集个数,所以有4个.3.原题(必修1第十三页阅读与思考“集合中元素的个数”)改编 用C(A)表示非空集合A 中的元素个数,定义⎩⎨⎧<-≥-=*C(B)C(A)当C(A),C(B)C(B)C(A)当C(B),C(A)B A ,若{}{}02)ax ax)(x (x x B ,1,2A 22=+++==,且1B A =*,则由实数a 的所有可能取值构成的集合S = .解:由{}2C(A)1,2A ==得,而1B A =*,故3C(B)1C(B)==或.由02)ax ax )(x (x 22=+++得02)ax (x 0ax )(x 22=++=+或. 当1C(B)=时,方程02)ax ax )(x(x 22=+++只有实根0x =,这时0a =.当3C(B)=时,必有0a ≠,这时0ax )(x 2=+有两个不相等的实根a x 0,x 21-==,方程02)ax (x 2=++必有两个相等的实根,且异于a x 0,x 21-==,有0,8a Δ2=-=∴22a ±=,可验证均满足题意,∴{}22,0,22-=S.4.原题(必修1第二十三页练习第二题)改编1 小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是解:先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,后段比前段下降得快,答案选C.改编 2 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t的函数,其图象可能是()解:汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s与t的函数图象上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的.答案:A.5.原题(必修1第二十四页习题1.2A组第七题)画出下列函数的图象:(1)F(x)=改编设函数D(x)= 则下列结论错误的是()A.D(x)的值域为{0,1} B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数解:由已知条件可知,D(x)的值域是{0,1},选项A正确;当x是有理数时,-x也是有理数,且D(-x)=1,D(x)=1,故D(-x)=D(x),当x是无理数时,-x也是无理数,且D(-x)=0,D(x)=0,即D(-x)=D(x),故D(x)是偶函数,选项B正确;当x是有理数时,对于任一非零有理数a,x+a是有理数,且D(x+a)=1=D(x), 1,x0,x⎧⎨⎩为有理数,为无理数,0,x01,x>0;≤⎧⎨⎩,当x 是无理数时,对于任一非零有理数b,x+b 是无理数,所以D(x+b) =D(x)=0,故D(x)是周期函数,(但不存在最小正周期),选项C 不正确;由实数的连续性易知,不存在区间I,使D(x)在区间I 上是增函数或减函数,故D(x)不是单调函数,选项D 正确. 答案:C .6.原题(必修1第二十四页习题1.2A 组第十题)改编 已知集合{}{}1,2,3,1,2,3,4A B ==.定义映射:f A B →,则满足点(1,(1)),(2,(2)),(3,(3))A f B f C f 构成ABC ∆且=AB BC 的映射的个数为.解:从A 到B 的映射有3464=个,而其中要满足条件的映射必须使得点A 、B 、C 不共线且=AB BC ,结合图形可以分析得到满足(3)(1)(2)f f f =≠即可,则满足条件的映射有114312m C C =⋅=个.7.原题(必修1第二十五页习题 1.2B 组第二题)画出定义域为{}38,5x x x -≤≤≠且,值域为{}12,0y y y -≤≤≠的一个函数的图像,(1)将你的图像和其他同学的比较,有什么差别吗?(2)如果平面直角坐标系中点P (x,y )的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图像上?改编 若函数()y f x =的定义域为{}38,5x x x -≤≤≠,值域为{}12,0y y y -≤≤≠,则()y f x =的图象可能是( )ABCD解:根据函数的概念,任意一个x 只能有唯一的y 值和它对应,故排除C ;由定义域为{}38,5x x x -≤≤≠排除A 、D,选B.8.原题(必修1第二十五页习题1.2B 组第三题)函数[x]f(x)=的函数值表示不超过x 的最大整数,例如,4]5.3[-=-;2]1.2[=;当(]35.2, -∈x 时,写出函数f(x)的解析式,并作出函数的图象. 改编 1 对于任意实数x ,符号[x]表示x 的整数部分,即[x]是不超过x 的最大整数,例如2[2]=;2]1.2[=;3]2.2[-=-.函数[x]y =叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,则]26[log ]3[log ]2[log ]1[log 3333++++ 的值为 .解:由题意得,∵130=, 31=3,92=3,2733=.∴原式中共有2个0,6个1,18个2,故原式=422181602=⨯+⨯+⨯.改编2 已知函数f (x )=x -[x ], 其中[x ]表示不超过实数x 的最大整数. 若关于x 的方程f (x )=kx +k 有三个不同的实根, 则实数k 的取值范围是 .111111111111A.[1,)(,]B.(1,][,)C.[,)(,1]D.(,][,1)243243342342- -⋃ - -⋃ - -⋃ - -⋃解:画出f(x)的图象(如右图), 与过定点(-1, 0)的直线y=kx+k=k(x+1) 有三个不同的公共点, 利用数形结合的办法, 可求得直线斜率k 的取值范围为111(1,][,)243- -⋃ . 答案:B .改编3 对于任意实数x ,符号[]x 表示x 的整数部分,即[]x 是不超过x 的最大整数.这个函数[]x 叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么,(1)[]2log 1+[]2log 2+[]2log 3+[]2log 4+……+[]2log 1024= (2)设()[][],1,3f x x x x ⎡⎤=⋅∈⎣⎦,则()f x 的值域为解:(1)[]2log 1=0,[]2log 2=[]2log 3=1,[]2log 4=[]2log 5=[]2log 6=[]2log 7=2,[]2log 8=[]2log 9=……=[]2log 15=3,[]2log 16=[]2log 17=……=[]2log 31=4,…… []2log 512=[]2log 512=……=[]2log 1023=9,[]2log 1024=10,则原式=234912223242++92+10⨯+⨯+⨯+⨯⨯,用“错位相减法”可以求出原式的值为8204.(2)[)[]()[)[]()1,21,1;2,2.52,4x x f x x x f x ∈==∈==时,时,;[)[]()[]()2.5,32,5;33,9x x f x x x f x ∈=====时,时,;故[]1,3x ∈时()f x 的值域为{}1,4,5,9答案:(1)8204; (2){}1,4,5,9.改编4 函数()[][]2,2f x x x x ⎡⎤=∈-⎣⎦,的值域为 .解:当[)2,1x ∈--时,[]2x =-,(]()[]22,4,2{2,3,4}x f x x -∈=-∈;当[)1,0x ∈-时,[]1x =-,(]()[]0,1,{01}x f x x -∈=-∈,;当[)0,1x ∈时,[]0x =,()0f x =;当[)1,2x ∈时,[]1x =,()[]=1f x x =;当=2x 时,()[]4=4f x =;∴值域为{0,12,3,4},.答案:{0,12,3,4},. 9.原题(必修1第三十六页练习第1题(3))判断下列函数的奇偶性:x1x f(x )2+=.改编 关于函数0)(x x1x lg f(x)2≠+=,有下列命题:①其图象关于y 轴对称;②当0x >时,f(x)是增函数;当0x <时,f(x)是减函数;③f(x)的最小值是lg2;④f(x)在区间),2(),0,1(+∞-上是增函数;⑤f(x)无最大值,也无最小值.其中所有正确结论的序号是 .解: 0)(x x 1x lg f(x)2≠+=为偶函数,故①正确;令x 1x u(x)2+=,则当0x >时,x 1x u(x)+=在)1,0(上递减,在),1[+∞上递增,∴②错误;③④正确;⑤错误.答案:①③④.10.原题(必修1第三十九页复习参考题B 组第三题)已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.改编 已知定义在[-2, 2]上的偶函数f (x )在区间[0, 2]上是减函数, 若f (1-m )<f (m ), 则实数m 的取值范围是 .解:由偶函数的定义, (1)(|1|)()(||)f m f m f m f m -=-⎧⎨=⎩, 又由f (x )在区间[0, 2]上是减函数, 所以10|||1|2m m m ≤<- ≤2⇒ -1≤<.答案:12m -1≤<. 11.原题(必修1第四十四页复习参考题A 组第四题)已知集合A={x|2x =1},集合B={x|ax=1},若B ⊆A ,求实数a 的值.改编 已知集合A={x|x-a=0},B={x|ax-1=0},且A∩B=B ,则实数a 等于 。