中国矿业大学(北京)《高等数学》试卷 2016-2017第二学期期末试题(A)
- 格式:doc
- 大小:437.43 KB
- 文档页数:6
北京市西城区2016— 2017学年度第二学期期末试卷高二数学(理科)2017.7试卷满分:150分考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 曲线1y x=在2x =处切线的斜率为______. 10. 4)12(xx -展开式中的常数项是_______.(用数字作答) 11. 离散型随机变量ξ的分布列为:且2=ξE ,则1p =_________;2p = _________.12. 某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻,则该班联欢会节目演出顺序的编排方案共有_____种.13. 若函数32()f x ax ax x =-+在区间(1,0)-上恰有一个极值点,则a 的取值范围是_____.14. 已知,对于任意x ∈R ,e xax b ≥+均成立.①若e a =,则b 的最大值为__________;②在所有符合题意的b a ,中,a b -的最小值为_________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在数列{}n a 中,11=a ,121++=+n n a nn a ,其中1,2,3,n =.(Ⅰ) 计算2a ,3a ,4a ,5a 的值;(Ⅱ) 根据计算结果,猜想{}n a 的通项公式,并用数学归纳法加以证明.16.(本小题满分13分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求甲投球2次,至少命中1次的概率;(Ⅱ)若甲、乙两人各投球2次,求两人共命中3次的概率.17.(本小题满分13分)已知函数32()3f x x ax =+.(Ⅰ) 若1-=a ,求)(x f 的极值点和极值; (Ⅱ) 求)(x f 在[0,2]上的最大值.18.(本小题满分13分)一个袋中装有黑球,白球和红球共n (*n ∈N )个,这些球除颜色外完全相同. 已知从袋中任意摸出1个球,得到黑球的概率是52. 现从袋中任意摸出2个球. (Ⅰ) 用含n 的代数式表示摸出的2球都是黑球的概率,并写出概率最小时n 的值.(直接写出n 的值)(Ⅱ) 若15=n ,且摸出的2个球中至少有1个白球的概率是74,设X 表示摸出的2个球中红球的个数,求随机变量X 的分布列和数学期望. 19.(本小题满分14分)已知函数2()f x ax bx =+和x x g ln )(=.(Ⅰ) 若1==b a ,求证:()f x 的图象在()g x 图象的上方;(Ⅱ) 若()f x 和()g x 的图象有公共点P ,且在点P 处的切线相同,求a 的取值范围. 20.(本小题满分14分)已知函数()(1)e xf x x =-.(Ⅰ)求()f x 的单调区间;(Ⅱ)证明:当0>a 时,方程()f x a =在区间(1,)+∞上只有一个解;(Ⅲ)设()()ln(1)h x f x a x ax =---,其中0>a .若()0h x ≥恒成立,求a 的取值范围.北京市西城区2016 — 2017学年度第二学期期末试卷高二数学(理科)参考答案及评分标准2017.7一、选择题:本大题共8小题,每小题5分,共40分.1. A ;2.D ;3. C ;4. B ;5. C ;6. D ;7. C ;8. B . 二、填空题:本大题共6小题,每小题5分,共30分.9. 41-; 10. 24; 11. ,4211; 12. 42; 13. 1(,)5-∞-; 14. 0;1e-.注:一题两空的题目,第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解: (Ⅰ) 根据已知,24a =;99a =;416a =;525a =. …………… 4分 (Ⅱ)猜想2n a n =. …………… 6分证明:① 当1=n 时,由已知11=a ;由猜想,2111a ==,猜想成立. …………… 8分②假设当k n =(k ∈*N )时猜想成立,即2k a k =, ……………10分则1+=k n 时, 221)1(1212+=+⨯+=++=+k k kk a k k a k k . 所以,当1n k =+时,猜想也成立. ……………12分 由①和②可知,2n a n =对任意的*n ∈N 都成立. ……………13分 16.(本小题满分13分)解:(Ⅰ)设“甲投球一次命中”为事件A , 则11(),()22P A P A ==. …………… 2分 故甲投球2次至少命中1 次的概率为31()1()()4P A A P A P A -⋅=-=. …………5分(Ⅱ) 设“乙投球一次命中”为事件B .由题意得1()(1)(1)16P B B p p ⋅=--=, ……………7分解得43=p 或45(舍去), 所以31(),()44P B P B ==. ……………8分甲、乙两人各投球2次共命中3次有两种情况:甲中两次,乙中一次;甲中一次,乙中两次. ……………9分甲中两次,乙中一次的概率为1211313()()()()2224432P A P A C P B P B =⨯⨯⨯⨯=.…11分 甲中一次,乙中两次的概率为1211339()()()()2224432C P A P A P B P B =⨯⨯⨯⨯=.…12分事件“甲中两次,乙中一次”与“甲中一次,乙中两次”是互斥的,所以,所求事件概率为93332328+=. 所以甲、乙两人各投2次,共命中3次的概率为38. ……………13分 17.(本小题满分13分)解:(Ⅰ) 当1-=a 时,32()3f x x x =-,2()36f x x x '=-. ……………2分令2()360f x x x '=-=,得0x =或2x =.(f '……………4分所以,函数)(x f 的极大值点为0x =,极大值为0;极小值点为2x =,极小值为4-.……………6分(Ⅱ) 2()363(2)f x x ax x x a '=+=+. ……………7分①当0a =时,()0f x '≥(仅当0x =时,()0f x '=),函数)(x f 是增函数,)(x f 在[0,2]上的最大值为(2)8128f a =+=. ……………8分②当0a >时,在区间(0,)+∞上()0f x '>,函数)(x f 是增函数.)(x f 在[0,2]上的最大值为(2)812f a =+. ……………10分③当0a <时,()f x '与()f x 在区间(0,)+∞上的情况如下:……………11分此时,(0)0f =,(2)812f a =+. 当8120a +>,即203a -<<时,)(x f 在[0,2]上的最大值为(2)812f a =+. 12分当8120a +≤,即23a ≤-时,)(x f 在[0,2]上的最大值为(0)0f =. ………13分 综上,当23a ≤-时,)(x f 在[0,2]上的最大值为0;当23a >-时,)(x f 在[0,2]上的最大值为812a +.18.(本小题满分13分) 解:(Ⅰ) 依题意有n 52个黑球. 记“摸出的2球都是黑球”为事件A , 则225222(1)41055()(1)2525n n C n n n P A C n n n --===--. ……………4分()P A 最小时5=n . ……………5分(Ⅱ) 依题意有21565⨯=个黑球. ……………6分 设袋中白球的个数为x (个),记“从袋中任意摸出两个球至少得到一个白球”为事件B ,则2152154()17xC P B C -=-=,整理得2291200x x -+=,解得5x =或24x =(舍). ……………8分 所以袋中红球的个数为4(个).随机变量X 的取值为0,1,2. ……………9分21121511(0)21C P X C ===;1141121544(1)105C C P X C ===;242152(2)35C P X C ===. X…………12分数学期望114428012211053515EX =⨯+⨯+⨯=. ……………13分 19.(本小题满分14分)解:(Ⅰ) 当1==b a 时,2()f x x x =+.设2()ln h x x x x =+-,0x >. ……………1分则2121(21)(1)()21x x x x h x x x x x +--+'=+-==, ……………2分所以,在区间1(0,)2上()0h x '<,()h x 是减函数;在区间1(,)2+∞上()0h x '>,()h x 是增函数. ……………4分所以,()h x 的最小值为1()2h =31ln 42-,又31ln 042->,所以()0h x >恒成立. 即()f x 的图象在()g x 图象的上方. ……………5分(Ⅱ) 设00(,)P x y ,其中00x >.由已知()2f x ax b '=+,1()g x x'=. 因为在点P 处的切线相同, 所以2000000012,,ln ax b y ax bx y x x +==+=. ……………7分 消去0,b y 得200ln 10ax x +-=.根据题意,方程200ln 10ax x +-=有解. ……………8分设2()ln 1F x ax x =+-,则()F x 在(0,)+∞上有零点.2121()2ax F x ax x x+'=+=, 当0a ≥时,()0F x '>,函数()F x 在(0,)+∞上单调递增. 当1a ≥时,(1)10F a =-≥,110F =+-=≤,()F x 有零点. 当01a ≤<时,(1)10F a =-≤,22(e )e 10F a =+>,()F x 有零点. …11分 当0a <时,令()0F x '=,解得x =(F '与在区间上的情况如下:令302≥,得 312ea ≥-. 此时(1)10F a =-<.所以()F x 有零点. ……………13分 综上,所求a 的取值范围为31[,)2e -+∞. ……………14分20.(本小题满分14分)解:(Ⅰ)由已知()e (1)e e xxxf x x x '=+-=. ……………2分所以,在区间(,0)-∞上()0f x '<,函数()f x 在(,0)-∞上单调递减,在区间(0,)+∞上()0f x '>,函数()f x 在区间(0,)+∞上单调递增. ……………4分 (Ⅱ)设()()(1)e xg x f x a x a =-=--,0a >. ……………5分()e x g x x '=,由(Ⅰ)知,函数()g x 在区间(0,)+∞上单调递增.且(1)0g a =-<,11(1)e(e 1)0a a g a a a a +++=-=->.所以,()g x 在区间(1,)+∞上只有一个零点,方程()f x a =在区间(1,)+∞上只有一个解. ……………8分 (Ⅲ)设()()ln(1)h x f x a x ax =---,0>a ,()h x 定义域为}1|{>x x ,()e (e )[(1)e ]111x x x a a x h x x a x x a x x x '=--=-=-----, ……………9分 令()0h x '=,则(1)e 0xx a --=,由(Ⅱ)知,()(1)e xg x x a =--在区间(1,)+∞上只有一个零点,是增函数, 不妨设()g x 的零点为0x ,则00(1)e 0xx a --=, ……………11分 所以,()h x '与()h x 在区间(0,)+∞上的情况如下:所以,函数()h x 的最小值为0()h x ,00000()(1)e ln(1)x h x x a x ax =----,由00(1)e 0xx a --=,得001e x a x -=,所以00000()e ln ln e e x x x a ah x a ax a a a =⋅--=-. ……………13分依题意0()0h x ≥,即ln 0a a a -≥,解得0e a <≤,所以,a 的取值范围为(0,e]. ……………14分。
北京市西城区2016-2017学年度第二学期期末试卷高一数学参考答案及评分标准2017.7一、选择题:本大题共10小题,每小题4分,共40分.1. A2. B3. B4. B5. D6. A7. C8. D9. C10. C二、填空题:本大题共6小题,每小题5分,共30分.11. [2,2]-; 12.52; 13. 172,45; 14. 73; 15. 59; 16. 4,29.注:一题两空的题目,第一空2分,第二空3分. 三、解答题:本大题共6小题,共80分. 17.(本小题满分13分)(Ⅰ)解:设等差数列{}n a 的公差为d ,则3512616a a a d +=+=, ………………………3分 又因为12a =,解得2d =. ………………………5分 所以1(1)2n a a n d n =+-=. ………………………7分 (Ⅱ)解:因为2a ,m a ,2m a 成等比数列,所以222m m a a a =⋅, ………………………10分即2(2)44m m =⨯,m *∈N ,解得4m =. ………………………13分18.(本小题满分13分)(Ⅰ)解:因为各组的频率之和为1,所以月均用水量在区间[10,12)的频率为 1(0.02520.0750.1000.225)20.1-⨯+++⨯=,所以,图中实数0.120.050a =÷=. ………………………3分 (Ⅱ)解:由图可知, 样本数据中月均用水量低于8吨的频率为(0.0250.0750.225)20.65++⨯=, ………………………5分所以小明所在学校2000名同学家庭中,月均用水量低于8吨的约有0.6520001300⨯=(户). ………………………7分(Ⅲ)解:设“这2名同学中恰有1人所在家庭的月均用水量属于[10,12)组”为事件A , 由图可知, 样本数据中月均用水量在[10,12)的户数为0.0502404⨯⨯=.记这四名同学家庭分别为,,,a b c d ,月均用水量在[12,14]的户数为0.0252402⨯⨯=.记这两名同学家庭分别为,e f , 则选取的同学家庭的所有可能结果为:(,),(,),(,),(,),(,),(,),(,),a b a c a d a e a f b c b d (,),(,),(,),(,),(,),(,),(,),(,),b e b f c d c e c f d e d f e f 共15种, ………………………9分事件A 的可能结果为:(,),(,),(,),(,),a e a f b e b f (,),(,),(,),(,),c e c f d e d f 共8种, ………………………11分 所以8()15P A =. ………………………13分19.(本小题满分13分)(Ⅰ)解:由余弦定理2222cos c a b ab C =+-, ………………………3分 得2149223()164c =+-⨯⨯⨯-=,解得4c =. ………………………5分(Ⅱ)解:(方法一)由1cos 4C =-,(0,π)C ∈,得sin C ==.……7分由正弦定理sin sin a c A C =,得sin sin a C A c ==. ……………………10分所以cos A ==. 因为πA B C ++=,所以sin sin()B A C =+sin cos cos sin A C A C =+ ………………………12分1()4-+=. ………………………13分(方法二)由1cos 4C =-,(0,π)C ∈,得sin C …………7分 由余弦定理2222cos c a b ab C =+-, 得2124422()4b b =+-⨯⨯⨯-,解得4b =,或5b =-(舍). ………………………10分 由正弦定理sin sin b c B C =,得sin sin b C B c ==………………………13分20.(本小题满分13分)(Ⅰ)解:当1n =时,113a S ==-; ………………………1分 当2n ≥时,125n n n a S S n -=-=-, ………………………3分 因为13a =-符合上式,所以25n a n =-*()n ∈N . ………………………4分 (Ⅱ)解:由(Ⅰ),得2521n n b -=+. ………………………5分 所以12n n T b b b =+++3125(21)(21)(21)n ---=++++++3125(222)n n ---=++++ ………………………6分32(14)14n n --=+-1(41)24n n =-+. ………………………9分(Ⅲ)解:122311111111131335(25)(23)n n a a a a a a n n +=-++++⨯⨯--+++2111111[(1)()()]323352523n n =-+-+-++---11646n =---, ………………………11分 当1n =时,12113a a =,(注:此时1046n <-) 由题意,得13λ≥; ………………………12分当2n ≥时, 因为1046n >-, 所以1223111116n n a a a a a a +<-+++. 因为对于任意正整数n ,都有12231111n n a a a a a a λ++++≤, 所以λ的最小值为13. ………………………13分21.(本小题满分14分)(Ⅰ)解:由2()340f x x x =+-=,解得4x =-,或1x =.所以函数()f x 有零点4-和1. ………………………3分 (Ⅱ)解:(方法1)因为()f x 的图象在直线2y x =+的上方,所以2(21)2ax a x b x +++>+对x ∈R 恒成立.即2220ax ax b ++->对x ∈R 恒成立. ………………………5分所以当0x =时上式也成立,代入得2b >. ………………………8分 (方法2)因为()f x 的图象在直线2y x =+的上方, 所以2(21)2ax a x b x +++>+对x ∈R 恒成立.即2220ax ax b ++->对x ∈R 恒成立. ………………………5分 当0a =时,显然2b >. 当0a ≠时,由题意,得0a >,且2(2)4(2)0a a b ∆=--<, ………………………6分 则24(2)40a b a ->>, 所以4(2)0a b ->,即2b >.综上,2b >. ………………………8分(Ⅲ)解:由题意,得不等式2(21)20ax a x +++<,即(1)(2)0ax x ++<. …………9分当0a =时,不等式化简为20x +<,解得2x <-; ………………………10分当0a ≠时,解方程(1)(2)0ax x ++=,得根12x =-,21x a=-. 所以,当0a <时,不等式的解为:2x <-,或1x a>-; ………………………11分 当102a <<时,不等式的解为:12x a-<<-; ………………………12分 当12a =时,不等式的解集为∅; ………………………13分 当12a >时,不等式的解为:12x a-<<-. ………………………14分综上,当0a <时,不等式的解集为{|2x x <-,或1}x a >-;当0a =时,不等式的解集为{|2}x x <-;当102a <<时,不等式的解集为1{|2}x x a -<<-;当12a =时,不等式的解集为∅;当12a >时,不等式的解集为1{|2}x x a -<<-.22.(本小题满分14分)(Ⅰ)解:36p =,或13. ………………………3分 (Ⅱ)解:由题意,17a =,代入,得212a =,36a =,43a =,58a =,64a =,72a =,81a =,96a =,所以数列{}n a 中的项,从第三项起每隔6项重复一次(注:39a a =), ………5分 故15012348345624()S a a a a a a a a a =+++++++++71224(638421)6384=+++++++++++ 616=.………………………8分(Ⅲ)解:由数列{}n a 的定义,知*n a ∈N .设t 为数列{}n a 中最小的数,即min{}i t a i =∈N *, 又因为当n a 为偶数时,12nn a a +=, 所以t 必为奇数. ………………………9分 设k a t =,则15k a t +=+,252k t a ++=, 所以52t t +≤,解得5t ≤. 所以{1,3,5}t ∈. ………………………10分如果3k a t ==,那么由数列{}n a 的定义,得18k a +=,24k a +=,32k a +=,41k a +=, 这显然与3t =为{}n a 中最小的数矛盾,所以3t ≠. ………………………12分 如果5k a t ==, 当1k =时,5p =;当2k ≥时,由数列{}n a 的定义,得1k a -能被5整除,…,得1a p =被5整除; 所以当且仅当*15()a p r r ==∈N 时,5t =. ………………………13分 这与题意不符.所以当*15()a r r ≠∈N 时,数列{}n a 中最小的数1t =,即符合条件的p 值的集合是*{|r r ∈N ,且r 不能被5整除}. …………………14分。
2016~2017学年度下学期期末考高二数学(理科)试卷本试卷考试内容为:集合、常用逻辑用语,函数与导数,定积分,极坐标参数方程和不等式选讲.分第I 卷(选择题)和第II 卷,共4页,满分150分,考试时间120分钟.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题纸上.2.考生作答时,请将答案答在答题纸上,在本试卷上答题无效.按照题号在各题的答题区域内作答,超出答题区域书写的答案无效.3.答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚(选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号).4.保持答题纸纸面清洁,不破损.考试结束后,将本试卷自行保存,答题纸交回.第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)(1)已知集合{}A=|4x x <,{}B=|21x x >,则( ) A .{}C A B=|4R x x ⋃≤ B .A ∩B={x|1<x <4}C .A B=R ⋃D .A B=φ⋂(2)函数1()2f x x=+-的定义域为( ) A .{x |x 2}≠ B .{x |3x 3x 2}≤≤≠﹣且 C .{x |3x 3}≤≤﹣D . {x |x 3x 3}<﹣或>(3)命题“对任意x ∈R 都有x 2≥1”的否定是( )A .对任意x ∈R ,都有x 2<1B .不存在x ∈R ,使得x 2<1C .存在x 0∈R ,使得x 02≥1D .存在x 0∈R ,使得x 02<1(4)设x R ∈,则“20x -≥”是“11x -≤”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(5)如右图,阴影部分的面积为( )A .2B .2﹣C .D .(6)设33log 10,log 7a b ==,则3a b -=( )A .B .C .D .(7)若a =log 20.5,b=20.5,c=0.52,则a ,b ,c 三个数的大小关系是( )A .a <b <cB .b <c <aC .a <c <bD .c <a <b(8)已知函数()f x 在(﹣∞,+∞)单调递减,且为奇函数.若(1)f =﹣1,则满足﹣1≤(2)f x -≤1的x 的取值范围是( )A .[﹣2,2]B .[﹣1,1]C .[0,4]D .[1,3](9)某网站开展了以核心价值观为主题的系列宣传活动,并将“社会主义核心价值观”作为关键词便于网民搜索.此后,该网站的点击量每月都比上月增长50%,那么4个月后,该网站的点击量和原来相比,增长为原来的( )A .2倍以上,但不超过3倍B .3倍以上,但不超过4倍C .4倍以上,但不超过5倍D .5倍以上,但不超过6倍(10) 函数1x y e --=的图象大致形状是( )A. B. C . D .(11) 函数2()ln(1)f x x x=+-的零点所在区间是( ) A .(,1) B .(1,e ﹣1) C .(e ﹣1,2) D .(2,e )(12) 若函数()h x 的图象与函数()x g x e =的图象关于直线y x =对称,点A 在函数2()f x ax x =-(1x e e≤≤,e 为自然对数的底数)上,A 关于x 轴对称的点'A 在函数()h x 的图象上,则实数a 的取值范围是( )A .11,e e ⎡⎤+⎢⎥⎣⎦ B .11,e e ⎡⎤-⎢⎥⎣⎦ C .11,e e e e ⎡⎤-+⎢⎥⎣⎦ D .1,e e e ⎡⎤-⎢⎥⎣⎦第Ⅱ卷 非选择题(共90分)二、填空题(本大题共4小题,每小题5分,满分20分.)(13) 已知集合2A {112}B {x |x Z x 3}==∈<﹣,,,,,则A ∪B=_____________.(14) 若22x x a -≥对任意的[]0,3x ∈恒成立,则a 的取值范围为_______(15) 已知函数2()sin f x a x x x =-,且(2)1f =,则(2)f -=_______.(16) 设'()f x 是函数()f x 的导数,''()f x 是函数'()f x 的导数,若方程''()f x =0有实数解0x ,则称点(0x ,0()f x )为函数()f x 的拐点.某同学经过探究发现:任何一个三次函数32()f x ax bx cx d =+++(0a ≠)都有拐点,任何一个三次函数都有对称中心,且拐点就是对称中心,设函数32()342g x x x x =-++,利用上述探究结果 计算:1245()()(1)()()3333g g g g g ++++= . 三、解答题(本部分共计6小题,满分70分.解答应写出文字说明,证明过程或演算步骤,请在指定区域内作答,否则该题计为零分.)(17)(本小题满分10分)命题p :不等式2(1)10x a x -++>的解集是R .命题q :函数()(1)x f x a =+在定义域内是增函数.(Ⅰ)若p ⌝为真命题,求a 的取值范围;(Ⅱ)若p q ∧为假命题,p q ∨为真命题,求a 的取值范围.(18)(本小题满分10分)在直角坐标系xOy 中,圆C 的参数方程1cos sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是2sin()3πρθ+=,射线OM :3πθ=与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.(19)(本小题满分12分)已知函数()2f x x =-.(Ⅰ)求不等式2()40f x x +->的解集;(Ⅱ)设()73g x x m =-++,若关于x 的不等式()f x ()g x <的解集非空,求实数m 的取值范围.(20)(本小题满分12分)已知函数31()ln ()2f x x ax x a R =--∈. (Ⅰ)若曲线()y f x =在点()1,(1)f 处的切线经过点,求a 的值; (Ⅱ)若()f x 在(1,2)上存在极值点,求a 的取值范围.(21)(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为3万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:()(010)35k C x x x =≤≤+,若不建隔热层(即0x =),每年能源消耗费用为4万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及()f x 的表达式.(Ⅱ)隔热层修建多厚时,总费用()f x 达到最小,并求最小值.(22)(本小题满分14分)已知函数2()ln ,f x ax x x a R =--∈.(Ⅰ)若0a ≤,证明:函数()f x 在定义域上为单调函数;(Ⅱ)若函数()f x 有两个零点,求实数a 的取值范围.2016~2017学年度下学期期末考高二数学(理科)试卷参考答案一、选择题(本大题共12小题,每小题5分,满分60分.)12. 解析:∵函数h (x )的图象与函数g (x )=e x 的图象关于直线y=x 对称,∴h (x )=lnx ,若函数f (x )=ax ﹣x 2(≤x ≤e ,e 为自然对数的底数)与h (x )=lnx 的图象上存在关于直线y=0对称的点,则函数f (x )=x 2﹣ax (≤x ≤e ,e 为自然对数的底数)与函数h (x )=lnx 的图象有交点,即x 2﹣ax=lnx ,(≤x ≤e )有解,即a=x ﹣,(≤x ≤e )有解,令y=x ﹣,(≤x ≤e ), 则y′=,当≤x <1时,y′<0,函数为减函数,当1<x ≤e 时,y′>0,函数为增函数,故x=1时,函数取最小值1,当x=时,函数取最大值e+,∴实数a 取值范围是[1,e+],故选:A 二、填空题(本大题共4小题,每小题5分,满分20分.)(13) {﹣1,0,1,2} (14) (],1-∞- (15) ﹣9 (16) 20.16.解析:由g (x )=x 3﹣3x 2+4x+2,得:g′(x )=3x 2﹣6x+4,g″(x )=6x ﹣6, 令g″(x )=0,解得:x=1,∴函数g (x )的对称中心是(1,4),∴g (2﹣x )+g (x )=8, 故设1245()()(1)()()3333g g g g g ++++=m , 则5421()()(1)()()3333g g g g g ++++==m , 两式相加得:8×5=2m ,解得:m=20,故答案为:20.三、解答题(本部分共计6小题,满分70分.解答应写出文字说明,证明过程或演算步骤,请在指定区域内作答,否则该题计为零分.)(17)解:(Ⅰ)∵命题p :不等式x 2﹣(a+1)x+1>0的解集是R∴△=(a+1)2﹣4<0,解得﹣3<a <1……………………………………3分∴由p ⌝为真命题或可知3a ≤-或1a ≥.…………………………………5分 (Ⅱ)∵命题q :函数f (x )=(a+1)x 在定义域内是增函数.∴a+1>1,解得a >0………………………………………………………7分 由p ∧q 为假命题,p ∨q 为真命题,可知p ,q 一真一假,……………9分 当p 真q 假时,由{a|﹣3<a <1}∩{a|a ≤0}={a|﹣3<a ≤0}当p 假q 真时,由{a|a ≤﹣3,或a ≥1}∩{a|a >0}={a|a ≥1}…………11分 综上可知a 的取值范围为:{a|﹣3<a ≤0,或a ≥1}……………………12分(18)解: (I )由cos 2α +sin 2α=1,把圆C 的参数方程1cos sin x y αα=+⎧⎨=⎩化为(x ﹣1)2+y 2=1,………………2分 ∴ρ2﹣2ρcos θ=0,即ρ=2cos θ.……………………………………………4分 (II )设(ρ1,θ1)为点P 的极坐标, 由,解得.……………………………………6分 设(ρ2,θ2)为点Q 的极坐标, 由,解得.…………………8分 ∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.…………………………………………………………………10分(19)解: (Ⅰ)由题意,x ﹣2>4﹣x 2,或x ﹣2<x 2﹣4,由x ﹣2>4﹣x 2得x >2或x <﹣3;由x ﹣2<x 2﹣4得x >2或x <﹣1,………………………………………3分 ∴原不等式的解集为{x|x >2或x <﹣1};………………………………5分 (Ⅱ)原不等式等价于|x ﹣2|+|x+7|<3m 的解集非空,…………………6分 ∵|x ﹣2|+|x+7|≥|x ﹣2﹣x ﹣7|=9(当且仅当2≥x ≥-7时取等号),…8分 ∴3m >9,∴m >3.…………………………………………………………10分(20)解:(Ⅰ)∵,……………………………………1分 ∴,∵,……………………………………2分∴曲线y=f(x)在点(1,f(1))处的切线方程为,…4分代入得a+5=﹣2a﹣1⇒a=﹣2.……………………………6分(Ⅱ)∵为(0,+∞)上的减函数,…………8分又因为f(x)在(1,2)上存在极值,即=0有解∴.………………………………12分(21)解:(Ⅰ)由已知得C(0)=4,∴,∴k=20………………2分∴……………………5分(Ⅱ)由(Ⅰ)知,…………………………7分令f'(x)=0得x=5或………………………………8分∵函数f(x)在[0,5)递减,在[5,10]递增……………………9分∴函数f(x)在x=5取得最小值,最小值为f(5)=35……………11分答:隔热层厚度为5厘米时,总费用最小,最小值为35万元.……12分(22)解:解:(Ⅰ)由f(x)=ax2﹣x﹣lnx,得.………………1分所以当a≤0时,,………………3分函数f(x)在(0,+∞)上单调递减函数………………4分(Ⅱ)由(Ⅰ)知,当a≤0时,函数f(x)在(0,+∞)单调递减,又f(1)=a﹣1<0,………………6分故函数f(x)在(0,+∞)上最多有一个零点.因为函数f(x)有两个零点,所以a>0.………………8分由f(x)=ax2﹣x﹣lnx,得,令g(x)=2ax2﹣x﹣1.因为g(0)=﹣1<0,2a>0,所以函数g(x)在(0,+∞)上只有一个零点,设为x0.当x∈(0,x0)时,g(x)<0,f'(x)<0;当x∈(x0,+∞)时,g(x)>0,f'(x)>0.所以函数f(x)在(0,x0)上单调递减;在(x0,+∞)上单调递增.………10分要使得函数f(x)在(0,+∞)上有两个零点,只需要函数f(x)的极小值f(x0)<0,即.又因为,所以2lnx0+x0﹣1>0,又因为函数h(x)=2lnx+x﹣1在(0,+∞)上是增函数,且h(1)=0,所以x0>1,得.又由,得,所以0<a<1.………………………………………………………………………12分以下验证当0<a<1时,函数f(x)有两个零点.当0<a<1时,,所以.因为,且f(x0)<0.所以函数f(x)在上有一个零点.又因为(因为lnx≤x﹣1),且f(x0)<0.所以函数f(x)在上有一个零点.所以当0<a<1时,函数f(x)在内有两个零点.综上,实数a的取值范围为(0,1).……………………………………………14分。
2016-2017学年北京市西城区高二(下)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(5分)复数等于()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i2.(5分)已知函数f(x)=e﹣x,则f'(﹣1)=()A.B.C.e D.﹣e3.(5分)甲射击命中目标的概率为,乙射击命中目标的概率为.现在两人同时射击目标,则目标被击中的概率是()A.B.C.D.4.(5分)已知函数f(x)在R上可导,其部分图象如图所示,设,则下列不等式正确的是()A.a<f'(1)<f'(2)B.f'(1)<a<f'(2)C.f'(2)<f'(1)<a D.f'(1)<f'(2)<a5.(5分)直线y=x与抛物线y=x2所围成的封闭图形的面积是()A.B.C.D.6.(5分)用1,2,3,4四个数字组成无重复数字的四位数,其中比2000大的偶数共有()A.16个B.12个C.9个D.8个7.(5分)函数在区间[0,π]上的最大、最小值分别为()A.π,0B.C.D.8.(5分)5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A.总存在一个白球,它右侧的白球和黑球一样多B.总存在一个黑球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.(5分)曲线y=在x=2处的切线的斜率为.10.(5分)展开式中的常数项是.11.(5分)离散型随机变量ξ的分布列为:且Eξ=2,则p1=;p2=.12.(5分)某班举行的联欢会由5个节目组成,节目演出顺序要求如下:节目甲不能排在第一个,并且节目甲必须和节目乙相邻,则该班联欢会节目演出顺序的编排方案共有种.13.(5分)若函数f(x)=ax3﹣ax2+x在区间(﹣1,0)上恰有一个极值点,则a的取值范围是.14.(5分)已知,对于任意x∈R,e x≥ax+b均成立.①若a=e,则b的最大值为;②在所有符合题意的a,b中,a﹣b的最小值为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)在数列{a n}中,a1=1,,其中n=1,2,3,….(Ⅰ)计算a2,a3,a4,a5的值;(Ⅱ)根据计算结果,猜想{a n}的通项公式,并用数学归纳法加以证明.16.(13分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为.(Ⅰ)求甲投球2次,至少命中1次的概率;(Ⅱ)若甲、乙两人各投球2次,求两人共命中3次的概率.17.(13分)已知函数f(x)=x3+3ax2.(Ⅰ)若a=﹣1,求f(x)的极值点和极值;(Ⅱ)求f(x)在[0,2]上的最大值.18.(13分)一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是.现从袋中任意摸出2个球.(Ⅰ)用含n的代数式表示摸出的2球都是黑球的概率,并写出概率最小时n的值.(直接写出n的值)(Ⅱ)若n=15,且摸出的2个球中至少有1个白球的概率是,设X表示摸出的2个球中红球的个数,求随机变量X的分布列和数学期望.19.(14分)已知函数f(x)=ax2+bx和g(x)=lnx.(Ⅰ)若a=b=1,求证:f(x)的图象在g(x)图象的上方;(Ⅱ)若f(x)和g(x)的图象有公共点P,且在点P处的切线相同,求a的取值范围.20.(14分)已知函数f(x)=(x﹣1)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当a>0时,方程f(x)=a在区间(1,+∞)上只有一个解;(Ⅲ)设h(x)=f(x)﹣aln(x﹣1)﹣ax,其中a>0.若h(x)≥0恒成立,求a的取值范围.2016-2017学年北京市西城区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(5分)复数等于()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【解答】解:复数=.故选:A.2.(5分)已知函数f(x)=e﹣x,则f'(﹣1)=()A.B.C.e D.﹣e【解答】解:根据题意,函数f(x)=e﹣x,则f′(x)=﹣e﹣x,则f′(﹣1)=﹣e﹣(﹣1)=﹣e;故选:D.3.(5分)甲射击命中目标的概率为,乙射击命中目标的概率为.现在两人同时射击目标,则目标被击中的概率是()A.B.C.D.【解答】解:设事件A表示“甲射击命中目标”,事件B表示“乙射击命中目标”,则P(A)=,P(B)=,目标被击中的对立事件是甲、乙二人都没有击中,∴目标被击中的概率:p=1﹣[1﹣P(A)][1﹣P(B)]=1﹣=.∴目标被击中的概率是.故选:C.4.(5分)已知函数f(x)在R上可导,其部分图象如图所示,设,则下列不等式正确的是()A.a<f'(1)<f'(2)B.f'(1)<a<f'(2)C.f'(2)<f'(1)<a D.f'(1)<f'(2)<a【解答】解:由图象可知,函数的增长越来越快,故函数在该点的斜率越开越大,∵,∴f′(1)<a<f′(2),故选:B.5.(5分)直线y=x与抛物线y=x2所围成的封闭图形的面积是()A.B.C.D.【解答】解:由,可得交点的坐标为(0,0),A(1,1),∴所求的封闭图形的面积为S=(x﹣x2)dx=(x2﹣x3)=﹣=,故选:C.6.(5分)用1,2,3,4四个数字组成无重复数字的四位数,其中比2000大的偶数共有()A.16个B.12个C.9个D.8个【解答】解:根据题意,要求的四位数比2000大,则其首位数字必须是2、3、4中一个,则分3种情况讨论:①、首位数字为2时,其个位数字必须为4,将1、3全排列,安排在中间两个数位,有A22=2种情况,即此时有2个比2000大的偶数,②、首位数字为3时,其个位数字必须为2或4,有2种情况,将剩下的2个数字全排列,安排在中间两个数位,有A22=2种情况,即此时有2×2=4个比2000大的偶数,③、首位数字为4时,其个位数字必须为2,将1、3全排列,安排在中间两个数位,有A22=2种情况,即此时有2个比2000大的偶数,则一共有2+4+2=8个比2000大的偶数,故选:D.7.(5分)函数在区间[0,π]上的最大、最小值分别为()A.π,0B.C.D.【解答】解:函数,∴f′(x)=1﹣cos x;令f′(x)=0,解得cos x=,又x∈[0,π],∴x=;∴x∈[0,)时,f′(x)<0,f(x)单调递减;x∈(,π]时,f′(x)>0,f(x)单调递增;且f()=﹣sin=﹣1,f(0)=0,f(π)=π;∴函数f(x)在区间[0,π]上的最大、最小值分别为π和﹣1.故选:C.8.(5分)5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A.总存在一个白球,它右侧的白球和黑球一样多B.总存在一个黑球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个【解答】解:5为奇数,4为偶数,故总存在一个黑球,它右侧的白球和黑球一样多,故选:B.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.(5分)曲线y=在x=2处的切线的斜率为﹣.【解答】解:∵y=∴y′=﹣则y′=﹣∴曲线y =在x =2处的切线的斜率为﹣. 故答案为:﹣ 10.(5分)展开式中的常数项是 24 . 【解答】解:展开式的通项公式为 T r +1=•24﹣r•(﹣1)r •x 4﹣2r,令4﹣2r =0,求得r =2,可得常数项是24, 故答案为:24.11.(5分)离散型随机变量ξ的分布列为:且E ξ=2,则p 1=;p 2=.【解答】解:∵E ξ=2,∴由离散型随机变量ξ的分布列,得:,解得,P 2=.故答案为:,.12.(5分)某班举行的联欢会由5个节目组成,节目演出顺序要求如下:节目甲不能排在第一个,并且节目甲必须和节目乙相邻,则该班联欢会节目演出顺序的编排方案共有 42 种.【解答】解:根据题意,节目甲不能排在第一个,则甲必须排在第二、三、四、五的位置, 分2种情况讨论:①、若甲排在第二、三、四的位置, 甲的排法有3种,由于节目甲必须和节目乙相邻,乙可以排在甲之前或之后,有2种情况,对于剩下的3个节目,进行全排列,安排在剩余的3个空位中,有A 33=6种情况, 则此时有3×2×6=36种编排方案;②、若甲排在第五的位置,甲的排法只有1种,由于节目甲必须和节目乙相邻,乙只能排在甲之前,即第四个位置,有1种情况,对于剩下的3个节目,进行全排列,安排在前面3个空位中,有A33=6种情况,则此时有1×1×6=6种编排方案;则该班联欢会节目演出顺序的编排方案共有36+6=42种;故答案为:42.13.(5分)若函数f(x)=ax3﹣ax2+x在区间(﹣1,0)上恰有一个极值点,则a的取值范围是(﹣∞,﹣).【解答】解:由题意,f′(x)=3ax2﹣2ax+1,a=0显然不成立;a≠0时,对称轴为x=∉(﹣1,0),f′(x)在(﹣1,0)为单调函数,当f′(﹣1)f′(0)<0即5a+1<0时,函数f(x)在区间(﹣1,0)上恰有一个极值点,解得:a<﹣,a∈(﹣∞,﹣),故答案为:(﹣∞,﹣).14.(5分)已知,对于任意x∈R,e x≥ax+b均成立.①若a=e,则b的最大值为0;②在所有符合题意的a,b中,a﹣b的最小值为﹣.【解答】解:①若a=e,则对于任意x∈R,e x≥ex+b均成立,即为b≤e x﹣ex恒成立,由y=e x﹣ex的导数为y′=e x﹣e,当x>1时,y′>0,函数y递增;当x<1时,y′<0,函数y递减.可得x=1处,函数y取得最小值,且为0,则b≤0,即b的最大值为0;②对于任意x∈R,e x≥ax+b均成立,即有b≤e x﹣ax恒成立,由y=e x﹣ax的导数为y′=e x﹣a,当a≤0时,y′>0恒成立,函数y递增,无最小值;当a>0时,当x>lna时,y′>0,函数y递增;当x<lna时,y′<0,函数y递减.可得x=lna处,函数y取得最小值,且为a﹣alna,则b≤a﹣alna,即a﹣b≥alna,由f(a)=alna的导数为f′(a)=lna+1,可得a>时,f′(a)>0,f(a)递增;0<a<时,f′(a)<0,f(a)递减.可得a=时,f(a)取得最小值﹣.则a﹣b的最小值为﹣.故答案为:0,﹣.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)在数列{a n}中,a1=1,,其中n=1,2,3,….(Ⅰ)计算a2,a3,a4,a5的值;(Ⅱ)根据计算结果,猜想{a n}的通项公式,并用数学归纳法加以证明.【解答】解:(Ⅰ)根据题意,数列{a n}中,a1=1,,则a2=×a1+1=4,a3=×a2+1=9,a4=×a3+1=16,a5=×a4+1=25,(Ⅱ)有(Ⅰ)可以猜测:a n=n2,用数学归纳法证明:①、当n=1时,a1=12=1,即n=1时,a n=n2成立,②、假设n=k(k≥1)时,结论成立,即a k=k2,n=k+1时,a k+1=×a k+1=(k+1)2,即n=1时,结论也成立,根据①②可得:a n=n2成立.16.(13分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为.(Ⅰ)求甲投球2次,至少命中1次的概率;(Ⅱ)若甲、乙两人各投球2次,求两人共命中3次的概率.【解答】解:(Ⅰ)由题意,甲投球2次,都没有命中的概率为•=,故甲至少命中1次的概率为1﹣=.(Ⅱ)∵乙投球2次均未命中的概率为(1﹣p)•(1﹣p)=,∴p=.若甲、乙两人各投球2次,求两人共命中3次,则甲只有一次没有命中、乙2次全部命中,或乙只有一次没有命中、甲2次全部命中.而甲只有一次没有命中、乙2次全部命中的概率为••(1﹣)•=,而乙只有一次没有命中、甲2次全部命中的概率为••=,故两人共命中3次的概率为+=.17.(13分)已知函数f(x)=x3+3ax2.(Ⅰ)若a=﹣1,求f(x)的极值点和极值;(Ⅱ)求f(x)在[0,2]上的最大值.【解答】解:(Ⅰ)a=﹣1时,f(x)=x3﹣3x2,f′(x)=3x2﹣6x=3x(x﹣2),令f′(x)>0,解得:x>2或x<0,令f′(x)<0,解得:0<x<2,故f(x)在(﹣∞,0)递增,在(0,2)递减,在(2,+∞)递增;故x=0是极大值点,极大值是f(0)=0,x=2是极小值点,极小值是f(2)=﹣4;(Ⅱ)f′(x)=3x2+6ax=3x(x+2a),a≥0时,f′(x)≥0,f(x)在[0,2]递增,故f(x)max=f(2)=12a+8;﹣1<a<0时,﹣2<2a<0,令f′(x)>0,解得:x>﹣2a,令f′(x)<0,解得:0<x<﹣2a,故f(x)在[0,﹣2a)递减,在(﹣2a,2]递增,若a=﹣时,f(x)max=0;若﹣1<a<﹣时,f(0)>f(2),可得f(x)max=f(0)=0;若﹣<a<0时,f(0)<f(2),可得f(x)max=f(2)=12a+8;a≤﹣1时,2a≤﹣2,f(x)在[0,2]递减,故f(x)max=f(0)=0.18.(13分)一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是.现从袋中任意摸出2个球.(Ⅰ)用含n的代数式表示摸出的2球都是黑球的概率,并写出概率最小时n的值.(直接写出n的值)(Ⅱ)若n=15,且摸出的2个球中至少有1个白球的概率是,设X表示摸出的2个球中红球的个数,求随机变量X的分布列和数学期望.【解答】解:(Ⅰ)依题意有个黑球,记“摸出的2球都是黑球”为事件A,则P(A)===∴P(A)最小时n=5.(Ⅱ)依题意有=6个黑球,设袋中白球的个数为x个,记“从袋中任意摸出两个球到少得到一个白球”为事件B,则P(B)=1﹣=,整理,得:x2﹣29x+120=0,解得x=5或x=24(舍),∴袋中红球的个数为4个,机变量X的取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)=,∴X的分布列为:EX=.19.(14分)已知函数f(x)=ax2+bx和g(x)=lnx.(Ⅰ)若a=b=1,求证:f(x)的图象在g(x)图象的上方;(Ⅱ)若f(x)和g(x)的图象有公共点P,且在点P处的切线相同,求a的取值范围.【解答】解:(Ⅰ)证明:若a=b=1,即有f(x)=x2+x,令h(x)=f(x)﹣g(x)=x2+x﹣lnx,h′(x)=2x+1﹣==,x>0,当x>时,h′(x)>0,h(x)递增;当0<x<时,h′(x)<0,h(x)递减.可得h(x)在x=处取得极小值,且为最小值,且h()=+﹣ln>0,即有h(x)>0恒成立,则f(x)的图象在g(x)图象的上方;(Ⅱ)设P的坐标为(m,n),f(x)=ax2+bx的导数为f′(x)=2ax+b,g(x)=lnx的导数为g′(x)=,可得2am+b=,且n=am2+bm=lnm,消去b,可得am2+1﹣2am2=lnm,可得a=(m>0),令u(m)=(m>0),则u′(m)=,当m>时,u′(m)>0,u(m)递增;当0<m<时,u′(m)<0,u(m)递减.可得u(m)在m=处取得极小值,且为最小值,且u()==﹣,则a≥﹣,故a的取值范围是[﹣,+∞).20.(14分)已知函数f(x)=(x﹣1)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当a>0时,方程f(x)=a在区间(1,+∞)上只有一个解;(Ⅲ)设h(x)=f(x)﹣aln(x﹣1)﹣ax,其中a>0.若h(x)≥0恒成立,求a的取值范围.【解答】解:(Ⅰ)由已知f′(x)=e x+(x﹣1)e x=xe x,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,故f(x)在(﹣∞,0)递减,在(0,+∞)递增;(Ⅱ)设g(x)=f(x)﹣a=(x﹣1)e x﹣a,a>0,g′(x)=xe x,由(Ⅰ)知,函数g(x)在区间(0,+∞)递增,且g(1)=﹣a<0,g(a+1)=ae a+1﹣a=a(e a+1﹣1)>0,故g(x)在(1,+∞)上只有1个零点,方程f(x)=a在区间(1,+∞)上只有1个解;(Ⅲ)设h(x)=f(x)﹣aln(x﹣1)﹣ax,a>0,h(x)的定义域是{x|x>1},h′(x)=xe x﹣﹣a=[(x﹣1)e x﹣a],令h′(x)=0,则(x﹣1)e x﹣a=0,由(Ⅱ)得g(x)=(x﹣1)e x﹣a在区间(1,+∞)上只有1个零点,是增函数,不妨设g(x)的零点是x0,则(x0﹣1)﹣a=0,故h′(x),h(x)在区间(0,+∞)上的情况如下:∴函数h(x)的最小值是h (x0),h(x 0)=(x0﹣1)﹣aln(x0﹣1)﹣ax0,由(x0﹣1)﹣a=0,得x0﹣1=,故h(x0)=•﹣aln=a﹣alna,由题意h(x0)≥0,即a﹣alna≥0,解得:0<a≤e,故a的范围是(0,e].。
2015—2016学年第二学期期末考试《高等数学(A)Ⅱ》答案及评分标准一、填空题(每题3分,共15分)1. }{32,-2. π53. 32 4. 2 5. 1 二、选择题(每题3分,共15分)1. B2. D3. B4. C5. A三、计算题(每题 7分,共49分)1. xy xy x e y x y e z )( 3++=' 解:, xy xy y e y x x ez )(33++=' 1113--='∴e z x ),( 5分,111--='e z y),(,dy e dx e dy z dx z dz y x 113--+='+'=故 2. 234x z x y ='=', 解:,},,{341=∴T 切向量 314211-=-=-z y x 故切线方程为 , 013241=-+-+-)()(z y x 法平面方程为分,即01234=-++z y x3. ⎰⎰⎰⋅=4020 2 2d d d r z r r r I πθ解:⎰⎰-=2022204 )d (d r r r πθ⎰=πθ201564 d 15128π= 4. ⎰⎰+++=OB AO ds y x ds y x I )()( 2244解:⎰⎰+=302104dy y xdx 303102312y x +=11= 5. 2112212111=+=⋅⋅+=∞→+∞→)(lim /)/(lim n n n n n n n n ρ 解: ,2=∴R 时当2-=x ,收敛级数∑∞=-1)1(n n n ,时当2=x ,发散级数∑∞=11n n ,),[22-故收敛域为 6. x ye x y y +='原方程化为解: ,x y u =令,x x u eu d d 11=则原方程化为 x xu e u d d ⎰⎰=⇒-1,C x e u +=-⇒-ln ,)ln ln( ln C x x y C x e x y ---=+=--即,故所求通解为 四、综合题(每题 10分,共20分) 1. 2222x x e Q y x e P yy -=+=sin cos ,令解:,则x x e x Q y x e y P y y -=∂∂+=∂∂cos cos ,4, ⎰⎰+=⇒D y x y x I d d )(4y y x x xd )(d x ⎰⎰+=3104⎰=10218 d x x 1036x =6= 2. 0652=++r r 特征方程为解:, 3221-=-=⇒r r 、, x x C C Y y y y 3221065--+==+'+''e e 的通解为故b ax y +=*设特解,76656-=++x b a ax y *代入原方程得把 ,⎩⎨⎧-=+=⇒7656b a a 6 21-==⇒b a 、,2-=⇒x y *,23221-++=--x C e C y x x e 故所求通解为五、证明题 ( 8分))!()!()!()!()!()!(n n n n n 22212222≤+++ 证: 141122121211222<=++=⋅+++=∞→∞→)()(lim )!()!()]!([])!)[((lim n n n n n n n n n n n ρ又 收敛级数∑∞=∴122n n n n )!()!( ,收敛故级数∑∞=+++1222221n n n )!()!()!()!(。
XX 大学2016—2017学年度第二学期考试试卷A 卷高等数学1—2注意事项:1. 请考生在下列横线上填写姓名、学号和年级专业。
2 .请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
4. 满分100分,考试时间120分钟专业 学号 姓名_________________一.填空题(共24分,每小题3分)1.设函数x y z =,则__________________________=dz .2.方程333z e xyz e -=确定()y x z z ,=,则__________________=∂∂x z. 3. 曲线t t x sin -=,t y cos 1-=,2sin 2tz =在π=t 处切线方程为_________________________________________. 4. 函数2u x y z =+在点(2,1,0)M 处最大的方向导数为__________________. 5. 交换二次积分222(,)y y I dy f x y dx =⎰⎰的积分次序,得__________________=I .6.设平面曲线)10(:2≤≤=x x y L ,则曲线积分__________________=⎰ds x L.7. 幂级数∑∞=12n n n x n的收敛域是 ________________________.8. 微分方程022=+'-''y y y 的通解为___________________________.二、选择题(共12分,每小题3分)1. 设曲面2232y x z +=在点)5 , 1 , 1(M 处的切平面方程为064=+-+λz y x ,则λ=( ).(A) 15- (B) 0 (C) 5- (D) 52. 函数),(y x f 在点),(y x 处可微是函数),(y x f 在该点处存在偏导数的( ). (A) 必要条件 (B) 充分条件(C) 充要条件 (D) 既非充分又非必要条件3. 设曲线L 是单位圆周122=+y x 按逆时针方向,则下列曲线积分不等于零的是( ).(A) ds y L⎰ (B) ds x L⎰ (C) dx y xdy L⎰+ (D) ⎰+-L y x ydxxdy 224. 下列级数中收敛的是( ).(A) ∑∞=122n n n (B) ∑∞=+12n n n(C) ∑∞=+1)2121(n n n (D) ∑∞=133n n n三、解答题:(共59分)1.(7分)求二元函数()3132,23---=y x xy y x f 的极值. 2. (7分)设函数2,x z f x y y ⎛⎫= ⎪⎝⎭,其中()v u f ,具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2 , .3.(7分)计算二重积分dxdy xy D⎰⎰2,其中D 是由圆周422=+y x 与y 轴所围成的右半区域.4.(7分)将函数())1ln(x x f +=展成1-x 的幂级数,并写出可展区间5.(7分)计算曲面积分(2)I xy x y z dS ∑=+++⎰⎰,其中∑为平面1x y z ++=在第一卦限中的部分.6. (8分) 求微分方程x xe y y y 223=+'-''的通解.7. (8分)计算曲线积分()()y d y xy dx yx x I L⎰+-+-=2322其中L 为曲线22x x y -=从)0,2(A 到)0,0(O 的弧段. 8.(8分)利用高斯公式计算曲面积分()()d xdy x z dzdx y dydz x I ⎰⎰∑-+++=33332,其中∑为由上半球面224y x z --=与锥面22y x z +=围成的空间闭区域的整个边界曲面的外侧.四.(5分)设()f x 是在(,)-∞+∞内的可微函数, 且()()f x f x α'<, 其中01α<<. 任取实数0a , 定义1ln (),1,2,3n n a f a n -==.证明:级数11()n n n a a ∞-=-∑绝对收敛.高等数学1--2 参考答案与评分标准一、填空题(共24分,每小题3分) 1. dy xy ydx y dz x x 1ln -+= 2. 3z z yz x e xy ∂=∂- 3.2022-=-=-z y x π4.5. 2(,)xI dx f x y dy =⎰⎰6.()11127. )21, 21[- 8. )sin cos (21x c x c e y x +=二、选择题(共12分,每小题3分) 1. C 2. B 3. D 4. D 三、解答题(共64分) 1. (7分)解: 令⎪⎩⎪⎨⎧=-==-=022022y x f x y f yx 得驻点⎩⎨⎧==00y x ,⎩⎨⎧==22y x 2 分 x f xx 2-=,2=xy f ,2-=yy f 4 分 在(0,0)处, 2 , 2 , 0-===C B A04 2<-=-B AC , ∴(0,0)为非极值点. 5 分在(2,2)处 2 , 2 , 04-==<-=C B A04 2>=-B AC ∴ 1)2 , 2(=f 为函数),(y x f 的极大值. 7 分2.(7分) 解:2121f xy f yx z '+'=∂∂ 3分)21(212f xy f yy y x z '+'∂∂=∂∂∂ ])([ 22])([11222212221221112x f yx f xy f x x f y x f y f y ''+-''+'+''+-''+'-= 223122113212221f y x f y x f yx f x f y ''+''-''-'+'-= 7 分3. (7分) 解:⎰⎰⎰⎰--=224 0222y Dxdx dy y dxdy xy3分⎰--=2 2 22)4(21dy y y 5 分 1564)4(2 0 42=-=⎰dy y y 7 分4. (7分) 解:10(1)ln(1)1n n n x x n ∞+=-+=+∑ 11≤<-x 1 分)211ln(2ln )]1(2ln[)1ln(-++=⋅-+=+x x x 3分10)21(1)1(2ln +∞=∑-+-+=n n n x n∑∞=++-+-+=011)1(2)1()1(2ln n n n n x n 6分1211≤-<-x ⇒ 31≤<-x 7分5.(7分)解::1z x y ∑=--dS ∴== 2分(2DI xy ∴=+⎰⎰4分1102xDdx xydy dxdy -=⎰5分()13202xx x dx =-+6分=7分6.(8分)解 (1)先求微分方程023=+'-''y y y 的通解Y特征方程 0232=+-r r 即 0)1)(2(=--r r ,21=r ,12=rx x e c e c Y 221+= 3 分(2)求原方程的一个特解*y 2 =λ 是特征方程的根,故设 x x e bx ax e b ax x y 222)()(+=+=*5分令bx ax x Q +=2)(,则b ax x Q +='2)(,a x Q 2)(=''将)(x Q ',)(x Q ''代入方程x x Q p x Q ='++'')()2()(λ 得 x b ax a =++22则 ⎩⎨⎧=+=1212b a a , 解之得⎪⎩⎪⎨⎧==021b a , x xe y 221=*7 分 所求通解 x x x xe e c e c y 222121++= 8 分7.(8分) 解:⎰++-+-OAL dy y xy dx yx x )2()(322dxdy x y dxdy y Px Q DD)()(22⎰⎰⎰⎰+=∂∂-∂∂= 3 分 ⎰⎰⋅=θd ρd cos 2 0220 ρρθπ5 分⎰==20 443cos 4ππθθd 6 分dy y xy dx yx x I OA ⎰+-+--=)2()(43322π 7 分2434320-=-=⎰ππxdx 8 分8. (8分) 解:由高斯公式dV z y x I )333(222⎰⎰⎰Ω++= 3 分2244 03 sin d d r dr ππθφφ=⎰⎰⎰ 6 分192(152π=- 8 分9.(5分)解:对任意设2n ≥,由拉格朗日中值定理,有111212121'()ln ()ln (),()n n n n n n n n n n f a a f a f a a a a a f ξαξ----------=-=-<-2 分其中1n ξ-介于1n a -与2n a -之间. 于是有11101,2,.n n n a a a a n α---<-= 3分 又级数1101n n a a α∞-=-∑收敛, 由比较审敛法知级数11()n n n a a ∞-=-∑绝对收敛.5分。
中国传媒大学2015─2016学年第二学期期末考试试卷(A 卷)参考答案与评分标准考试科目: 高等数学A (下) 课程编码: 123002 考试班级: 2015级工科及网工与自动化 考试方式: 闭卷5小题, 每小题3分, 共15分)1.过点(,,)203-并与直线x y z x y z -+-=+-+=⎧⎨⎩247035210垂直的平面的方程为161411650x y z ---= .2. 函数f x y xyx y x y x y (,)(,)(,)(,)(,)=+≠=⎧⎨⎪⎩⎪20000022在点(0,0)处所具有的分析性质(连续、偏导数存在、可微)是 偏导数存在 . 3. 设Ω是由222z x y =+及0z a =>所围的闭区域,将22()f x y dv Ω+⎰⎰⎰化成柱面坐标下的三次积分式为 220()a ard rdr f r dz πθ=⎰⎰⎰ .4. 设C 为平面上从点11(,)A x y 到点22(,)B x y 的有向曲线弧,函数()f x 是连续函数,则积分()Cf x dx =⎰ 21()x x f x dx ⎰ .5. 设∑是柱面224x y +=介于13z ≤≤之间的部分曲面,它的法向指向含oz 轴的一侧,则=_____ 0__ .4小题, 每小题3分, 共12分)1. 函数(,)f x y 在点00(,)x y 处连续,且两个偏导数0000(,),(,)x y f x y f x y 存在是(,)f x y 在该点可微的( A )(A).必要条件,但不是充分条件 (B).充分条件,但不是必要条件 (C).充分必要条件 (D).既不是充分条件,也不是必要条件 2. 设22()DI x y dxdy =+⎰⎰,其中D 由222x y a +=所围成,则I =( B )(A).22400a d a rdr a πθπ=⎰⎰ (B).2240012a d r rdr a πθπ⋅=⎰⎰(C).2230023a d r dr a πθπ=⎰⎰ (D).224002a d a adr a πθπ⋅=⎰⎰3. 设Ω是由2223,1xy z z x +==-所围的有界闭区域,且(,,)f x y z 在Ω上连续,则(,,)f x y z dv Ω=⎰⎰⎰( C )(A).10(,,)dz f x y z dx ⎰ (B).222112034(,,)x x y dx f x y z dz -+⎰⎰(C).2221113(,,)x x y dy f x y z dz --+⎰⎰(D).222132112(,,)x y x dx f x y z dz +--⎰⎰4. 设∑为球面2222x y z a ++=在z h ≥部分,0h a <<,则zdS∑=⎰⎰( D )(A). 22200a h d πθ-⎰⎰(B). 20d πθ⎰ (C). 20d πθ⎰ (D). 20d πθ⎰2小题,每小题9分,共18分) 1.(本小题9分)求质点沿椭圆22:44L x y +=的逆时针方向绕行一周时,力(3)(2)F y x i y x j =++-u r r r所做的功.解:LW F ds =⋅⎰u r rÑ, (3分)设L 所围区域为D ,由格林公式LW F ds =⋅⎰u r r Ñ(3)(2)Ly x dx y x dy =++-⎰Ñ(2)Ddxdy =-⎰⎰4π=-. (9分)2.(本小题9分)设向量场3322()()(33)A x yz i y zx j xyz x z y z k =++++--u r r r r ,∑是由平面1,2,3x y x y z ==++=及坐标面围成立体的整个边界曲面,求A u r通过∑外侧的流量.解:设∑所围立体为Ω,由高斯公式流量A d S ∑Φ=⋅⎰⎰u r u rÒ (3分)3322()()(33)x yz dydz y zx dzdx xyz x z y z dxdy ∑=++++--⎰⎰Ò P Q R dv x y z Ω⎡⎤∂∂∂=++⎢⎥∂∂∂⎣⎦⎰⎰⎰xydv Ω=⎰⎰⎰ (5分)1230x yxdx ydy dz --⎰⎰⎰73=. (9分)2小题,每小题8分,共16分) 1.(本小题8分) 讨论函数z x y x y x x =-+++233322的极值.解:由⎪⎩⎪⎨⎧=+-==+++=03301266222x y z x xy x z y x ,得驻点-⎛⎝ ⎫⎭⎪1212, (4分) D z z z z x y x xy xx xy yxyy==++-1262666D -⎛⎝ ⎫⎭⎪=-<121260,(6分)点-⎛⎝ ⎫⎭⎪1212,非极值点,故函数z 无极值. (8分)2.(本小题8分)设(,)f xy 为连续函数,交换二次积分110111(,)(,)(,)dx f x y dy fx y dy f x y dy -++⎰⎰的积分次序.解:原式211(,)ydy f x y dx -=⎰ (8分)2小题,每小题10分,共20分) 1.(本小题10分)求级数()∑∞=++⋅⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+21)1ln(ln 111ln n n n n n n n n 的和. 解:记 ()()u n n n n n n nn =+⎛⎝ ⎫⎭⎪+⎡⎣⎢⎢⎤⎦⎥⎥⋅++ln ln ln 11111,于是有()()u n n n n n =-++1111ln ln (5分)所以1111112ln 23ln33ln34ln 4ln (1)ln(1)n S n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭=-++122111ln ()ln()n n (8分) 故和 S S n n ==→∞lim ln 122.(10分)2.(本小题10分)设f x ()在[,]-L L 内有连续的导函数,且f L f L ()()-=.已知f x ()展成以2L 为周期的傅立叶级数的系数为a a b n n n 0123,,,,,,=⋅⋅⋅.试用a a b n n 0,,表示'f x ()的傅立叶系数A A B n n n 0123,,,,,,=⋅⋅⋅.解:由傅立叶系数的计算公式A L f x x L f x L L L L0110='==--⎰()d ()(3分) A L f x n xLx L f x n x L n L f x n xL xn L L LLLL='=+---⎰⎰112()cos d ()cos ()sin d ππππ==⋅⋅⋅n Lb n n π,,,,123 (7分)B L f x n xLx L f x n x L n L f x n xL xn L L LLLL='=----⎰⎰112()sin d ()sin ()cos d ππππ=-=⋅⋅⋅n La n n π,,,,123 (10分)2小题,共19分) 1.(本小题9分)设幂级数∑∞=0n nn x a ,∑∞=0n n n x b 的收敛半径分别为21,R R ,()21,m in R R R =,证明:当R x <时,幂级数()0n n n n a b x ∞=+∑绝对收敛.证:对于任意R x < ,由于()11,R R x -∈,()22,R R x -∈所以∑∞=0n nn x a ,∑∞=0n n n x b 绝对收敛. ( 4分)又()n n n n n n n x b x a x b a +≤+, ( 6分) 由比较判别法知()∑∞=+0n n n n x b a 绝对收敛。
一、填空题(每小题3分,共15分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ . 答案:)1ln(x -解:x e u f u -==1)(2,)1ln(2x u -=,)1ln(x u -=.2、已知a 为常数,1)12(lim 2=+-+∞→ax xx x ,则=a . 答案:1解:a xba x ax x x x x x x x -=+-+=+-+==∞→∞→∞→1)11(lim )11(1lim 1lim 022.3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim.答案:4解:4)]1()1([)]1()31([lim0=-+--+→x f x f f x f x4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 答案:2解:)(x f '有3个零点321,,ξξξ:4321321<<<<<<ξξξ,)(x f ''有2个零点21,ηη:4132211<<<<<<ξηξηξ,))((12)(21ηη--=''x x x f ,显然)(x f ''符号是:+,-,+,故有2个拐点.5、=⎰xx 22cos sin .答案:C x x +-cot tan解:C x x xdxx dx dx x x x x x x dx +-=+=+=⎰⎰⎰⎰cot tan sin cos cos sin sin cos cos sin 22222222.二、选择题(每小题3分,共15分)答案: 1、 2、 3、 4、 5、 。
1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.答案:A2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0 ,0 ,cos 1)(2x x x xx f 的(A) 跳跃间断点; (B) 连续点;(C) 振荡间断点; (D) 可去间断点. 答案:D3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在; (D) )(x f 在0x 处的左导数与右导数必有一个不存在.答案:B4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''=''; (D) )()(Q C Q R '='.答案:D5、若函数)(x f '存在原函数,下列错误的等式是:(A))()(x f dx x f dxd⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.答案:B三、计算题(每小题6分,共60分) 1、设x x f xx-=--422)2(,求)2(+x f . 答案:42)2(42--=++x x f xx解:令2-=x t ,则2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f tt t tt t , (3分)于是42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f xxx xx . (6分)2、计算)1cos(lim n n n -+∞→.解:nn n n n n ++=-+∞→∞→11coslim )1cos(lim (3分)11010cos 1111cos lim =++=++=∞→nn n . (6分) 3、求极限)21(lim 222nn nn n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , (3分)而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→nn n n n , 所以1)21(lim 222=++++++∞→nn n n n n n n . (6分) 4、求极限xx x x cos sec )1ln(lim 20-+→.答案:1解:xx x x x x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ (4分) 1sin lim cos )1(1lim020=+=→→xxx x x x . (6分)5、求函数xx y 1sin=的导数.答案:)11cos 1(21sin xx x xy x -=']1sin 1ln )1(1[cos 2ln 1sin x x x x x ex x+-=)1sin 1ln 1cos 1(21sin xx x x x x x +-=. (6分)6、求曲线12ln =-+x y y x 在点)1,1(处的法线方程. 答案:02=-+y x解: 方程两边对x 求导得:02ln =-'+'+y yy xy , 将)1,1(),(=y x 代入得法线斜率1)1(1-='-=y k , (3分) 从而法线方程为:)1(11-⋅-=-x y , 即: 02=-+y x . (6分)7、求曲线12134+-=x x y 的凹凸区间和拐点. 答案:曲线在区间]0,(-∞和),1[+∞是凹的,在区间]1,0[是凸的.拐点为)1,0(,)34,1(.解:(1)),()(+∞-∞∈C x f ,(2)2332)(x x x f -=', )1(666)(2-=-=''x x x x x f , (3)0)(=''x f ,得01=x ,12=x . 1)0(=f ,34)1(=f . (3分)(5) 曲线的拐点为)1,0(、)3,1(.(6) 曲线在区间]0,(-∞和),1[+∞是凹的,在区间]1,0[是凸的. (6分) 8、计算⎰+xx dx)1(3. 答案:C x x +-66arctan 66 俞诗秋解:⎰⎰⎰+===+=+==)1(6 ])(1[)()1(2352636366t t dtt x x dx x x dx x t t x (3分) ⎰⎰⎰+=-=+-+=2221 6 611)1( 6t dtdt dt t t . C x x C t t +-=+-=66arctan 66arctan 66. (6分)9、计算⎰xdx e x 2sin .答案:C x x e x +-)2cos 2sin 21(104 解:⎰⎰⎰+-=-=xdx e x e x d e xdx e x x x x 2cos 212cos 212cos 212sin (3分)⎰⎰-+-=+-=xdx e x e x e x d e x e x x x x x 2sin 412sin 412cos 212sin 412cos 21,∴C x x e xdx e x x +-=⎰)2cos 2sin 21(1042cos . (6分)10、设某商品的需求函数为P Q 5100-=,其中Q P ,分别表示需求量和价格,试求当总收益达到最大时,此时的需求弹性,并解释其经济意义.答案:1)10(=η,当总收益达到最大时,价格上涨%1,需求则相应减少%1.俞诗秋 解:总收益函数为25100)5100()(P P P P PQ P R -=-==,令010100)(=-='P P R ,得3=P ,而05)10(<-=''R ,可见, 当10=P 时, 总收益达到最大. (3分) 此时需求弹性151005)10(1010=-=-===P P P PdP dQ Q P η, (5分)说明,当总收益达到最大时,价格上涨%1,需求则相应减少%1. (6分)四、证明题(每小题5分,共10分)1、证明方程1=x xe 在区间)1,0(内有且只有一个实根. 证明:显然]1,0[1)(C xe x f x ∈-=,由于01)0(<-=f ,01)1(>-=e f ,由零点定理知,)1,0(∈ξ..t s 0)(=ξf ,即1=ξξe ; (3分) 又因0)1()(>+='x e x x f ,)1,0(∈x ,知]1,0[)(↑x f ,所以方程1=x xe 在区间)1,0(内有且只有一个实根ξ. (5分)2、设)(x f 在闭区间]2,1[连续,在开区间)2,1(可导,且)1(8)2(f f =,证明在)2,1(内必存在一点ξ,使得)()(3ξξξf f '=.证明: 令3)()(x x f x F =,623)(3)()(xx f x x f x x F -'=', 显然]2,1[)(C x F ∈,)2,1()(D x F ∈,且)2(8)2()1()1(F f f F ===, 由罗尔定理知:)2,1(∈∃ξ,..t s 0)(='ξF ,所以)()(3ξξξf f '=.。
下学期期末考试试卷答案课程名称:《高等数学A Ⅱ》 (试卷编号:E )一、填空题(本大题共9小题10空,每空2 分,共 20分)1.2-2. 221,,333⎛⎫- ⎪⎝⎭3.2154. (){}22,12x y xy ≤+< 5. 36. 23,137. xy xye xye +(或“()1xy xy e +”) 8.3 9. 收敛二、单项选择题(选择正确答案的字母填入括号,本大题共6小题,每小题3 分,共18 分)三、判断题(选择正确答案的字母填入括号,正确的打“√”,错误的打“×”。
本大题共5小题,每小题2分,共10分)四、计算题(本大题共5小题,每小题6分,共30分)1.解:因为22sin y zxe y x x∂=-∂,22cos y z x e y x y ∂=+∂, ――――――――2分所以(),02zx ππ∂=∂,()2,0z y ππ∂=∂, ――――――――2分 于是,所求全微分22dz dx dy ππ=+ ――――――――2分 2.解:dz z du z dv fdx u dx v dx x∂∂∂=++∂∂∂ ――――――――2分 11x v u e x=⋅+⋅+ ――――――――2分()111x x x e x=++++ ――――――――2分3.解:积分区域(){}2,1D x y xy x =≤≤≤≤所以210x Dxyd dx σ=⎰⎰⎰ ――――――――2分25122x x dx dx ⎛⎫==- ⎪⎝⎭⎰⎰ ――――――――2分1360161212x x ⎛⎫=-= ⎪⎝⎭ ――――――――2分4.解:积分区域(){}2,,01,1,11x y z z xy x Ω=≤≤≤≤-≤≤所以21111xxzdxdydz dx dy xzdz -Ω=⎰⎰⎰⎰⎰⎰ ――――――――2分2121112xxz dx dy -=⎰⎰ 21112x xdx dy -=⎰⎰ ――――――――2分 21112x xy dx -⎛⎫= ⎪⎝⎭⎰ 21122x x dx -⎛⎫=- ⎪⎝⎭⎰ 1231=46x x -⎛⎫- ⎪⎝⎭ 13=- ――――――――2分5.解:由11limlim 1n n n na n a n ρ+→∞→∞+===,得级数的收敛半径 1R =, ――――――――3分在1x =-处,幂级数成为()()111231n nn n n ∞=-=-+-++-+∑L L ,由()lim 10nn n →∞-≠知该级数发散;在1x =处,幂级数成为1n n ∞=∑,由lim 0n n →∞=∞≠知该级数发散。
A北京市 2016-2017 学年高二下学期期末试卷(理科数学)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每个小题给出的四个选项中,只有一个符合题目 要求的.1.在复平面内,复数 z=对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.在(x+2)4 的展开式中,x 2 的系数为( ) A .24 B .12 C .6 D .43.已知函数 f (x )=ln2x ,则 f′(x )=( )A .B .C .D .4.将一枚均匀硬币随机投掷 4 次,恰好出现 2 次正面向上的概率为( )A .B .C .D .5.函数 f (x )=﹣ x 2+lnx 的极值点是()A .x=﹣1B .x=﹣C .x=1D .x=6.5 名大学生被分配到 4 个地区支教,每个地区至少分配 1 人,其中甲乙两名同学因专业相同,不能分配 在同一地区,则不同的分配方法的种数为( ) A .120 B .144 C .216 D .2407.设 a ,b ,c 是正整数,且 a ∈[70,80),b ∈[80,90),c ∈[90,100],当数据 a ,b ,c 的方差最小时, a+b+c 的值为( ) A .252 或 253 B .253 或 254 C .254 或 255 D .267 或 2688.已知函数 f (x )=e x +ax ﹣2,其中 a ∈R ,若对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣ 1 2 1 2 2 1x •f(x )<a (x ﹣x )成立,则 a 的取值范围是( ) 1 2 1 2 A .[1,+∞) B .[2,+∞) C .(﹣∞,1]D .(﹣∞,2]二、填空题:本大题共 6 个小题,每小题 5 分.、共 30 分.9.函数 f (x )=cosx ,则 f′()= .10.定积分dx 的值为 .11.设(2x+1)3=a x 3+a x 2+a x+a ,则 a +a +a +a = .3 2 1 0 0 1 2 312.由数字 1,2 组成的三位数的个数是 (用数字作答).13.在平面几何里,有勾股定理“设△ABC 的两边 AB ,AC 互相垂直,则 AB 2+AC 2=BC 2”,拓展到空间,类比 平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥 ﹣BCD 的三个侧面 ABC 、ACD 、ADB 两两互相垂直,则 .”14.研究函数f(x)=的性质,完成下面两个问题:①将f(2)、f(3)、f(5)按从小到大排列为;②函数g(x)=(x>0)的最大值为.三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.15.在数列{a}中,a=1,a=n•a,n=2,3,4,….n1n n﹣1(Ⅰ)计算a,a,a,a的值;2345(Ⅱ)根据计算结果,猜想{a}的通项公式,并用数学归纳法加以证明.n16.已知函数f(x)=x3+3x2﹣9x;(1)求f(x)的单调区间;(2)若函数f(x)在区间[﹣4,c]上的最小值为﹣5,求c的取值范围.17.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如表,假设三个科目的考试甲是否成绩合格相互独立.科目A科目B科目C甲(Ⅰ)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X.求X的分布列和数学期望.18.口袋中装有2个白球和n(n≥2,n∈N*)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.(Ⅰ)用含n的代数式表示1次摸球中奖的概率;(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;(Ⅲ)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.19.已知函数f(x)=x2e x﹣b,其中b∈R.(Ⅰ)证明:对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤;1212(Ⅱ)讨论函数f(x)的零点个数(结论不需要证明).20.设L为曲线C:y=e x在点(0,1)处的切线.(Ⅰ)证明:除切点(0,1)之外,曲线C在直线L的上方;(Ⅱ)设h(x)=e x﹣ax+ln(x+1),其中a∈R,若h(x)≥1对x∈[0,+∞)恒成立,求a的取值范围.北京市2016-2017学年高二下学期期末试卷(理科数学)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,求出在复平面内,复数z对应的点的坐标,则答案可求.【解答】解:z==则在复平面内,复数z对应的点的坐标为:(,,),位于第一象限.故选:A.2.在(x+2)4的展开式中,x2的系数为()A.24B.12C.6D.4【考点】二项式系数的性质.【分析】直接根据二项式的展开式的通项公式即可求出.【解答】解:(x+2)4的展开式的通项公式为T=C r•24﹣r•x r,r+14令r=2,故展开式中x2的系数为C2•22=24,4故选:A.3.已知函数f(x)=ln2x,则f′(x)=()A.B.C.D.【考点】导数的运算.【分析】根据复合函数的导数公式进行求解即可.【解答】解:∵f(x)=ln2x,∴f′(x)===,故选:D4.将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】将一枚均匀硬币随机投掷4次,利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出恰好出现2次正面向上的概率.【解答】解:将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为:p==.故选:B.5.函数f(x)=﹣x2+lnx的极值点是()A.x=﹣1B.x=﹣C.x=1D.x=【考点】利用导数研究函数的极值.【分析】求出原函数的导函数,确定出函数的单调区间,由此求得函数的极值点.【解答】解:由f(x)=﹣x2+lnx,得f′(x)=(x>0),当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.∴函数f(x)在(0,1)上为增函数,在(1,+∞)上为减函数.∴函数f(x)=﹣x2+lnx的极值点为x=1.故选:C.6.5名大学生被分配到4个地区支教,每个地区至少分配1人,其中甲乙两名同学因专业相同,不能分配在同一地区,则不同的分配方法的种数为()A.120B.144C.216D.240【考点】排列、组合及简单计数问题.【分析】先求出没有限制要求的5名大学生被分配到4个地区支教,每个地区至少分配1人的种数,再排除甲乙两名同学分配在同一地区的种数,问题得以解决.【解答】解:5个人分成满足题意的4组只有1,1,1,2,即只有一个单位有2人,其余都是1人,故有C2A4=240种,54其中甲乙两名同学分配在同一地区的方法为C1A3=24种,43故甲乙两名同学因专业相同,不能分配在同一地区,则不同的分配方法的种数为240﹣24=216种,故选:C.7.设a,b,c是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据a,b,c的方差最小时,a+b+c的值为()A.252或253B.253或254C.254或255D.267或268【考点】极差、方差与标准差.【分析】设=,则数据a,b,c的方差s2=≥[(a﹣b)2+(b﹣c)2+(a﹣c)2],设a=b+m,c=b+n,则s2≥[m2+n2+(m+n)2],应该使得b=85,而当m+n=0,﹣1,1时,s2有可能取得最小值.【解答】解:设=,1 s s 1 s s则数据 a ,b ,c 的方差s 2=[(a ﹣b )2+(b ﹣c )2+(a ﹣c )2], 设 a=b+m ,c=b+n ,则 s 2≥[m 2+n 2+(m+n )2],= ≥取 b=85,当 m+n=0,﹣1, 时, 2 有可能取得最小值,m=﹣16,n=15 时, 2 取得最小值取 b=84,当 m+n=0,﹣1, 时, 2 有可能取得最小值,m=﹣15,n=16 时, 2 取得最小值== ..∴a+b+c=79+85+90=254,或 a+b+c=79+84+90=253. 故选:B .8.已知函数 f (x )=e x +ax ﹣2,其中 a ∈R ,若对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣ 1 2 1 2 2 1x •f(x )<a (x ﹣x )成立,则 a 的取值范围是( ) 1 2 1 2 A .[1,+∞) B .[2,+∞) C .(﹣∞,1] D .(﹣∞,2]【考点】利用导数研究函数的单调性.【分析】将不等式变形为:< 恒成立,构造函数 h (x )= ,转会为当 x <x12时,h (x )<h (x )恒成立,为了求 a 的范围,所以需要构造函数,可通过求导数,根据单调性来求它的1 2范围.【解答】解:∵对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣x •f(x )<a (x ﹣x )成立,1212211212∴不等式等价为< 成立,令 h (x )=,则不等式等价为当 x <x 时,h (x )<h (x )恒成立,1212即函数 h (x )在(0,+∞)上为增函数;h (x )=,则 h′(x )=≥0 在(0,+∞)上恒成立;∴xe x ﹣e x +2﹣a ≥0;即 a ﹣2≤xe x ﹣e x 恒成立, 令 g (x )=xe x ﹣e x ,∴g′(x )=xe x >0; ∴g (x )在(0,+∞)上为增函数; ∴g (x )>g (0)=﹣1; ∴2﹣a ≥1; ∴a ≤1.∴a 的取值范围是(﹣∞,1].A故选:C二、填空题:本大题共 6 个小题,每小题 5 分.、共 30 分.9.函数 f (x )=cosx ,则 f′()= ﹣ .【考点】导数的运算.【分析】求函数的导数,根据函数的导数公式代入直接进行计算即可. 【解答】解:∵f (x )=cosx ,∴f′(x )=﹣sinx ,f′()=﹣sin =﹣ ,故答案为:﹣10.定积分dx 的值为 .【考点】定积分.【分析】根据定积分的性质,然后运用微积分基本定理计算定积分即可.【解答】解:dx=2 x 2dx=2× x 3 = .故答案为: .11.设(2x+1)3=a x 3+a x 2+a x+a ,则 a +a +a +a = 27 . 321123【考点】二项式系数的性质.【分析】令 x=1 可得 a +a +a +a 的值.123【解答】解:令 x=1,a +a +a +a =33=27,0 1 2 3故答案为:2712.由数字 1,2 组成的三位数的个数是 8 (用数字作答). 【考点】排列、组合及简单计数问题. 【分析】直接根据分步计数原理可得.【解答】解:每一位置都有 2 种排法,故有 23=8 种, 故答案为:813.在平面几何里,有勾股定理“设△ABC 的两边 AB ,AC 互相垂直,则 AB 2+AC 2=BC 2”,拓展到空间,类比 平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥﹣BCD 的三个侧面 ABC 、ACD 、ADB 两两互相垂直,则 △S A BC2 △+S ACD △+S ADB 22=S△BCD2 .”【考点】类比推理.【分析】从平面图形到空间图形的类比【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:△S ABC 故答案为:2+S22=S2.△S ABC△ACD△+S ADB△BCD 2+S△ACD△+SADB22=S△BCD2.14.研究函数f(x)=的性质,完成下面两个问题:①将f(2)、f(3)、f(5)按从小到大排列为f(5)<f(2)<f(3);;②函数g(x)=(x>0)的最大值为e.【考点】利用导数研究函数的单调性.【分析】①利用导数判断在(0,e)递增,(e,+∞)递减得出f(3)>f(5),运用作差判断f(2)﹣f (5),f(2)﹣f(3)即可得出大小.②构造函数ln(g(x))=lnx(x>0),令h(x)=lnx(x>0),运用导数求解极大值,得出h(x)的极大值为h(e)=lne=,结合对数求解即可.【解答】解:①∵函数f(x)=,∴f′(x)=,f′(x)==0,x=e,f′(x)=,>0,x∈(0,e)f′(x)=<0,x∈(e,+∞)∴在(0,e)递增,(e,+∞)递减∴f(3)>f(5),∵f(2)﹣f(5)===>0∴f(2)>f(5)∵f(2)﹣f(3)==<0∴f(3)>f(2)故答案:f(5)<f(2)<f(3);②∵函数g(x)=(x>0),∴ln(g(x))=lnx(x>0)(令 h (x )= lnx (x >0),h′(x )=h′(x )=h′(x )=(1﹣lnx )=0,x=e(1﹣lnx )<0,x >e(1﹣lnx )>0,0<x <e∴h (x )= lnx (x >0),在(0,e )递增,在(e ,+∞)递减,h (x )的极大值为 h (e )= lne= ,∴函数 g (x )=(x >0)的最大值为 e ,故答案为:e三、解答题:本大题共 6 小题,共 80 分,解答应写出文字说明、证明过程或演算步骤. 15.在数列{a }中,a =1,a =n•a ,n=2,3,4,….n1nn ﹣1(Ⅰ)计算 a ,a ,a ,a 的值;2 3 4 5(Ⅱ)根据计算结果,猜想{a }的通项公式,并用数学归纳法加以证明.n【考点】数学归纳法;归纳推理. 【分析】(Ⅰ)利用已知条件通过 n=2,3,4,5 直接计算 a ,a ,a ,a 的值,2345(Ⅱ)根据(Ⅰ)的计算结果,猜想的通{a }项公式,用数学归纳法的证明步骤直接证明即可.n【解答】解:(Ⅰ)a =1,a =n•a ,1 n n ﹣1可得 n=2 时,a =2;n=3 时,a =6;2 3a =24,a =120 4 5(Ⅱ)猜想 a =n!.n证明:①当 n=1 时,由已知,a =1!=1,猜想成立.1②假设当 n=k (k ∈N *)时猜想成立,即 a =k!.k则 n=k+1 时,a =(k+1)a =(k+1)k!=(k+1)!.k+1 k所以 当 n=k+1 时,猜想也成立.根据 ①和 ②,可知猜想对于任何 n ∈N *都成立16.已知函数 f (x )=x 3+3x 2﹣9x ; (1)求 f (x )的单调区间;(2)若函数 f (x )在区间[﹣4,c]上的最小值为﹣5,求 c 的取值范围. 【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; 2)通过讨论 c 的范 围,求出函数的最小值,从而求出 c 的具体范围. 【解答】解:(1)函数 f (x )的定义域是 R , f′(x )=3x 2+6x ﹣9,令 f′(x )>0,解得:x >1 或 x <﹣3,令f′(x)<0,解得:﹣3<x<1,∴f(x)在(﹣∞,﹣3)递增,在(﹣3,1)递减,在(1,+∞)递增;(2)由f(﹣4)=20结合(1)得:c≥1时,函数f(x)在[﹣4,c]上的最小值是f(1)=﹣5,﹣4<c<1时,函数f(x)在区间[﹣4,c]上的最小值大于﹣5,故c的范围是[1,+∞).17.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如表,假设三个科目的考试甲是否成绩合格相互独立.科目A科目B科目C甲(Ⅰ)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X.求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)记“甲至少有一个科目考试成绩合格”为事件M,利用对立事件概率计算公式能求出甲至少有一个科目考试成绩合格的概率.(Ⅱ)由题意得X的可能取值为0,1,2,3,分别求出相应的概率,由此能出X的分布列和EX.【解答】解:(Ⅰ)记“甲至少有一个科目考试成绩合格”为事件M,则P()=(1﹣)(1﹣)(1﹣)=,∴甲至少有一个科目考试成绩合格的概率:P(M)=1﹣P()=1﹣.(Ⅱ)由题意得X的可能取值为0,1,2,3,P(X=0)=(1﹣)(1﹣)(1﹣)=,P(X=1)=++(1﹣)×,P(X=3)=,,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)=∴X的分布列为:123X0PEX==.18.口袋中装有2个白球和n(n≥2,n∈N*)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.(Ⅰ)用含n的代数式表示1次摸球中奖的概率;(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;(Ⅲ)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.【考点】古典概型及其概率计算公式.【分析】(Ⅰ)设“1次摸球中奖”为事件A,利用互斥事件概率加法公式能求出用含n的代数式表示1次摸球中奖的概率.(Ⅱ)由(Ⅰ)得若n=3,则1次摸球中奖的概率为p=,由此能求出3次摸球中,恰有1次中奖的概率.(Ⅲ)设“1次摸球中奖”的概率为p,则3次摸球中,恰有1次中奖的概率为f(p)=3p3﹣6p2+3p,(0<p <1),由此利用导数性质能求出当f(p)取得最大值时,n的值.【解答】解:(Ⅰ)设“1次摸球中奖”为事件A,则P(A)==.(Ⅱ)由(Ⅰ)得若n=3,则1次摸球中奖的概率为p=,∴3次摸球中,恰有1次中奖的概率为P(1)=3(Ⅲ)设“1次摸球中奖”的概率为p,则3次摸球中,恰有1次中奖的概率为:f(p)==3p3﹣6p2+3p,(0<p<1),∵f′(p)=9p2﹣12p+3=3(p﹣1)(3p﹣1),∴当p∈(0,)时,f(p)取得最大值,令=,解得n=2或n=1(舍),∴当f(p)取得最大值时,n的值为2.19.已知函数f(x)=x2e x﹣b,其中b∈R.=3×=.(Ⅰ)证明:对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤1212(Ⅱ)讨论函数f(x)的零点个数(结论不需要证明).【考点】利用导数研究函数的单调性.【分析】(Ⅰ)利用导数转化为求解最大值,最小值的差证明.;(Ⅱ)根据最大值为;f(﹣2)=分类当b<0时,当b=0时,当b=﹣b,f(x)的最小值为:﹣b,时,当0<b<时,当b>时,判断即可.【解答】解:(Ⅰ)f(x)的定义域R,且f′(x)=x(x+2)e x,令f′(x)=0则x=0,或x=﹣2,12f′(x)=x(x+2)e x,x(﹣∞,﹣2)﹣2 f′(x)+0(﹣2,0)﹣f(x)增函数极大值减函数﹣b,∴f(x)在区间(﹣∞,0]上的最大值为;f(﹣2)=∵x∈(﹣∞,0],∴f(x)=x2e x﹣b≥﹣b,∴f(x)的最小值为:﹣b,∴对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤f(x)﹣f(x)≤;1212最大值(Ⅱ)f′(x)=x(x+2)e x,函数f(x)=x2e x﹣b,当b<0时,函数f(x)=x2e x﹣b>0恒成立,函数f(x)的零点个数为:0当b=0时,函数f(x)=x2e x,函数f(x)的零点个数为:1当b=时,函数f(x)的零点个数为;2,当0<b<时,函数f(x)的零点个数为:3,当b>时,函数f(x)的零点个数为:1,20.设L为曲线C:y=e x在点(0,1)处的切线.(Ⅰ)证明:除切点(0,1)之外,曲线C在直线L的上方;(Ⅱ)设h(x)=e x﹣ax+ln(x+1),其中a∈R,若h(x)≥1对x∈[0,+∞)恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f′(0),从而求出切线方程即可;(Ⅱ)求出h(x)的导数,通过讨论a的范围,单调函数的单调区间,从而求出a的具体范围即可.【解答】解:(Ⅰ)设f(x)=e x,则f′(x)=e x,∴f′(0)=1,L的方程是y=x+1,令g(x)=f(x)﹣(x+1),则除切点之外,曲线C在直线L的上方等价于g(x)>0,(x∈R,x≠0),g(x)满足g(0)=0,且g′(x)=f′(x)﹣1=e x﹣1,当x<0时,g′(x)<0,故g(x)递减,当x>0时,g′(x)>0,故g(x)递增,∴g(x)>g(0)=0,∴除切点(0,1)之外,曲线C在直线L的上方;﹣a,(Ⅱ)h(x)的定义域是{x|x>﹣1},且h′(x)=e x+①a≤2时,由(Ⅰ)得:e x≥x+1,∴h′(x)=e x+﹣a≥x+1+﹣a≥2﹣a≥0,∴h(x)在[0,+∞)递增,∴h(x)≥h(0)=1恒成立,符合题意;②a>2时,由x∈[0,+∞),且h′(x)的导数h″(x)=≥0,∴h′(x)在区间[0,+∞)递增,∵h′(0)=2﹣a<0,h′(lna)=>0,于是存在x∈(0,+∞),使得h′(x)=0,00∴h(x)在区间(0,x)上递减,在区间(x,+∞)递增,00∴h(x)<h(0)=1,此时,h(x)≥1不会恒成立,不合题意,综上,a的范围是(﹣∞,2].。
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,yR,且xyo,则(A)- (B)(C) (-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t= ,s的最小值为(B)t= ,s的最小值为(C)t= ,s的最小值为(D)t= ,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设aR ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
⾼数下期末考试试卷及答案(精选.)2017学年春季学期《⾼等数学Ⅰ(⼆)》期末考试试卷(A )注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地⽅⼀、单项选择题(8个⼩题,每⼩题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填⼊下表中.1.已知a 与b都是⾮零向量,且满⾜-=+a b a b ,则必有(). (A)-=0a b (B)+=0a b (C)0?=a b (D)?=0a b 2.极限2222001lim()sinx y x y x y →→+=+( ).(A) 0(B) 1 (C) 2 (D)不存在 3.下列函数中,df f =?的是( ).(A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数(C )(,)f x y =(D )(,)e x y f x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ).(A )驻点与极值点(B )驻点,⾮极值点(C )极值点,⾮驻点(D )⾮驻点,⾮极值点 5.设平⾯区域2 2:(1)(1)2D x y -+-≤,若1d 4D x y I σ+=,2DI σ=,则有(). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=??(). (A) l (B) l 3 (C) l 4 (D) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则().(A)该级数收敛 (B)该级数发散(C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是(). (A )若级数1 nn a∞=∑发散,则级数21nn a∞=∑也发散(B )若级数21nn a∞=∑发散,则级数1nn a∞=∑也发散(C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛⼆、填空题(7个⼩题,每⼩题2分,共14分).1.直线3426030x y z x y z a -+-=??+-+=?与z 轴相交,则常数a 为 .2.设(,)ln(),y f x y x x=+则(1,0)y f '=______ _____.3.函数(,)f x y x y =+在(3,4)处沿增加最快的⽅向的⽅向导数为 .4.设22:2D x y x +≤,⼆重积分()d Dx y σ-??= .5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω+在柱⾯坐标系下的三次积分为 .6.幂级数11(1)!nn n x n ∞-=-∑的收敛域是 . 7.将函数21,0()1,0x f x x x ππ--<≤??=?+<≤??以2π为周期延拓后,其傅⾥叶级数在点x π=处收敛于 .三峡⼤学试卷纸教学班号序号学号姓名…………………….……答题不要超过密封线………….………………………………三、综合解答题⼀(5个⼩题,每⼩题7分,共35分,解答题应写出⽂字说明、证明过程或演算步骤) 1.设(,)x u xf x y =,其,u y ??.解: 2.求曲⾯e 3z z xy ++=在点(2,1,0)处的切平⾯⽅程及法线⽅程.解:3.交换积分次序,并计算⼆次积分0sin d d xyx y yππ.解:4.设Ω是由曲⾯1,,===x x y xy z 及0=z 所围成的空间闭区域,求23d d d I xy z x y z Ω=.解:5.求幂级数11n n nx∞-=∑的和函数()S x ,并求级数12nn n ∞=∑的和.解:三峡⼤学试卷纸教学班号序号学号姓名…………………….……答题不要超过密封线………….………………………………四、综合解答题⼆(5个⼩题,每⼩题7分,共35分,解答题应写出⽂字说明、证明过程或演算步骤)1.从斜边长为1的⼀切直⾓三⾓形中,求有最⼤周长的直⾓三⾓形.解2.计算积分22()d Lx y s +?,其中L 为圆周22x y ax += (0a >).解:3.利⽤格林公式,计算曲线积分2I xy x x xy y =+++??,其中L 是由抛物线2y x =和2x y =所围成的区域D 的正向边界曲线.4.计算d x S ∑,∑为平⾯1=++z y x 在第⼀卦限部分.解:5.利⽤⾼斯公式计算对坐标的曲⾯积分d d d d d d x y y z z x S++蝌,其中∑为圆锥⾯222z x y =+介于平⾯0z =及1z =之间的部分的下侧. 解:三峡⼤学试卷纸教学班号序号学号姓名…………………….……答题不要超过密封线………….………………………………xO 2y x =2x y =y D2017学年春季学期《⾼等数学Ⅰ(⼆)》期末考试试卷(A)答案及评分标准⼀、单项选择题(8个⼩题,每⼩题2分,共16分)1.已知a 与b 都是⾮零向量,且满⾜-=+a b a b ,则必有(D ) (A)-=0a b ; (B)+=0a b ; (C)0?=a b ; (D)?=0a b .2.极限2222001lim()sin x y x y x y →→+=+ ( A ) (A) 0; (B) 1; (C) 2; (D)不存在. 3.下列函数中,d f f =?的是( B );(A ) (,)f x y xy =;(B )00(,),f x y x y c c =++为实数;(,)f x y =(D )(,)e x yf x y +=.4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( B ).(A )驻点与极值点;(B )驻点,⾮极值点;(C )极值点,⾮驻点;(D )⾮驻点,⾮极值点. 5.设平⾯区域D :2 2(1)(1)2x y -+-≤,若1d 4D x y I σ+=,2DI σ=,3DI σ=,则有( A )(A )123I I I <<;(B )123I I I >>;(C )213I I I <<;(D )312I I I <<.6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=??(D ) (A) l ; (B) l 3; (C) l 4; (D) l 12.7.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( C )(A)该级数收敛; (B)该级数发散;(C)该级数可能收敛也可能发散; (D) 该级数绝对收敛. 8.下列四个命题中,正确的命题是( D )(A )若级数1nn a∞=∑发散,则级数21n∞=∑也发散;(B )若级数21nn a∞=∑发散,则级数1nn a∞=∑也发散;(C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛;(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛.⼆、填空题(7个⼩题,每⼩题2分,共14分).1.直线3426030x y z x y z a -+-=??+-+=?与z 轴相交,则常数a 为 3 。
课程名称:高等数学(二、二)(期末试卷)答案要求:1.答案一律写在答题纸上,写在其它位置无效 2.答题纸单独收,与试卷和草稿纸分开。
一、填空题(每空3分,共15分) 1.微分方程()460yxy y ''-+=的通解中含任意常数的个数为 4 个.2. 以函数2y x Cx =+为通解的一阶微分方程为2xy x y'=+.3. 若级数1n n u ∞=∑的部分和为21n ns n =+,则级数1n n u ∞=∑的和s = 2 .4. 为使级数()11np n n∞=-∑条件收敛,则常数p 的取值范围为01p <≤.5. 设幂级数1nn n a x ∞=∑的收敛区间为()3,3-,则幂级数()111n n n na x ∞-=-∑的收敛区间为()2,4-.二、单项选择题(每小题3分,共15分) 1.设,,xxx e e-是某二阶线性非齐次微分方程的三个特解,则该微分方程的通解为( D ).(A) 12xy C x C e =+; (B) 123x x y C x C e C e -=++;(C) ()12x x y C x C e e -=+-; (D) ()()12x x y C e x C e x x -=-+-+. 2.将微分方程()21yy y '''-=降为一阶微分方程时,做变量代换y p '=,则( C ).(A) y p '''=; (B) dp y ydy ''=; (C) dp y p dy ''=; (D) dp y x dx''=. 3.微分方程23y y x '''-=的特解形式为( B ).(其中,,a b c 为常数)(A)*2y ax bx c =++; (B) ()*2y x ax bx c =++;(C) ()*y x ax b =+; (D) ()*22y x ax bx c =++. 4.若级数1nn u∞=∑收敛,则必收敛的级数为( A ).(A) ()11n n n u u ∞+=+∑ (B )()11nn n u n ∞=-∑ (C )21n n u ∞=∑ (D )()2121n n n u u ∞-=-∑5. 级数()1113n n n -∞=-∑的和s =( A ).(A)14 ; (B) 13 ; (C) 12; (D) 1 . 三、判断下列常数项级数是否收敛?若收敛,是条件收敛还是绝对收敛(每小题7分,共21分) 1.13n n n ∞=∑ ; 解:由正项级数的比值判别法11131lim lim 133n n n n n nu n u n ++→∞→∞+=⋅=<,所以该级数收敛,又因是正项级数,收敛的正项级数绝对收敛。
中国矿业大学(北京)《高等数学A1》试卷(A 卷)得分:一、填空题(每空3分,共30分)1.极限=-++--→213lim21x x x x x ___62-________ 2、若⎪⎩⎪⎨⎧=≠=0,00,sin 12x x x x y 则=)0('y 13、设x x y 44cos sin -=,则=)()(x y n __)22cos(2πk x n +-_ _________ 4、,1)('x e f x += 则)(x f C x x +ln5、函数2(3)4(1)x y x -=-的斜渐近线是454-=x y6、设)(x y y =由sin()51xy x y +-=所确定,则=')0(y 47、2cos 1)sin 1ln(limxdt t t t xx -+⎰→=218、=⎪⎭⎫⎝⎛++⎰-22||cos 1sin ππdx x x x 42π9、设Γ—函数=Γ)(s ⎰∞+--01dx x e s x 在 0>s 时收敛。
10、θρ2=相应于θ从0到π2的弧与极轴所围成图形面积为 3163π二、计算(每小题6分,共12分)1、计算 42cos 2lim n n n x ⎪⎭⎫ ⎝⎛-∞→解: 因为.212lim 1cos 1lim 1)cos 2ln(lim)cos2ln(lim 2442424224x n n x n n xn n x nx n ==-=-=-(4分)所以,原式=.2)cos2ln(lim 224x nx n e e=- (2分)2、设()y y x =是由方程33cos sin x a t y a t⎧=⎨=⎩确定的函数,求22,dy d ydx dx 解:t t t a tt a dt dx dt dy dx dy tan )sin (cos 3cos sin 3//22-=-== (3分))(sin cos 31)sin (cos 3sec //42222t t a t t a x dt dx dt dx dy d dx y d =--=⎪⎭⎫ ⎝⎛= (3分) 三、(6分)用对数求导法求解:设123152(3)(5),(5)(2)(4)x x y x x x +-=>++,求'y解:).4ln(21)2ln(5)5ln(31)3ln(2ln +-+--++=x x x x y (2分).)4(2125)5(3132'+-+--++=x x x x y y (3分) 所以,='y 123152(3)(5)215133(5)22(4)(2)(4)x x x x x x x x ⎛⎫+-+-- ⎪+-++⎝⎭++(1分)四、计算题(共14分) 1. (7分)计算 ⎰xdx arccos解:分部积分,.1arccos 1)1(21arccos 1arccos arccos 2222C x x x xx d x x x xdxx x xdx +--=---=-+=⎰⎰⎰ (每行评分标准:3分、2分、2分)2. (7分)设2()t f x dt -=,求dx xx f ⎰2)( 解:.2)('xex f x-=且.0)2(=f (2分)[][].11)210(2)(')(2)(2)(2202020202020-==-=⎪⎭⎫ ⎝⎛-==--⎰⎰⎰⎰ee dx e dx xf x x x f xd x f dx xx f x x (5分)五、(8分) 已知bx ax x x f ++=23)(在1-=x 处有极值2,试确定系数并求出函数的极值,拐点,单调区间和凹凸区间。
中国矿业大学(北京) 2016-2017 学年 第2 学期
《高等数学A2》试卷( A 卷)
得分:
1. 设(2,1,1)=-a , (1,1,2)=-b , 则=⨯a b .
2. 直线
213
211
x y z ---==
与平面240x y z -++=的夹角为 . 3. 曲面2222321x y z ++=在点(1,2,2)-处的法线方程为 . 4. 设函数22(,)2f x y x y y +-
=, 则(,)f x y 在点(2,3)处增长最快的方向与x 轴正向的夹角α= .
5. 设函数(,)z z x y =由方程sin 3z x y z e +-=确定, 则d z = .
6.
(,)(0,0)lim
x y →= . 7. 2
2
2
d d y x
x e y -=⎰⎰ .
8. 设{}222(,)|r y D x y x r =+≤, 则2
2
2
01lim
cos()d d r
x y r D e x y x y r π-→-=⎰⎰ .
9. 设曲线2:(0L y x x =≤≤, 则d L
x s =⎰ .
10. 设2
1,0
()1
,0f x x x x ππ
--≤⎧=⎨+<≤<⎩, 则()f x 以2π为周期的Fourier 级数在点π处收敛于 .
二、(8分)求直线240
2290x y z x y z -+=⎧⎨---=⎩在平面1x y z -+=上投影直线的方程.
三、(8分)设(,)y
z f xy e =, 其中f 具有二阶连续偏导数, 求z
x
∂∂和2z y x ∂∂∂.
四、(8分)求二元函数33(,)3f x y a y y x x --= (0)a >的极值.
五、(9分)计算曲线积分33()sin d (cos )d x L
x y y x e y x y e -++⎰, 其中L
为沿着半圆周
0)x a >=从点(0,)A a 到点(0,)B a -的弧段.
六、(9分)设Ω
是由曲面z =与22z y x =+所围成的区域, 计算三重积分d d d x y z z Ω
⎰⎰⎰.
七、(8分)计算曲面积分
2232d d d d (9)d d y z yz z x z x x y z ∑
++-⎰⎰, 其中∑为曲面2
2
1z x y ++= (12)z ≤≤取下侧.
八、(10分)
设函数(,)(,)0,((0,0)(0,)),0x y xy f x y x y ≠=⎧
⎪=⎨⎪⎩
, 证明:
(1). (0,0)x f 和(0,0)y f 存在;
(2). (,)x f x y 和(,)y f x y 在点(0,0)处不连续; (3). (,)f x y 在点(0,0)处可微.
九、(10分)求幂级数221n n x n ∞
=-∑的收敛域及和函数()S x , 并求数项级数2
21
(1)3
n
n n ∞
=-∑的和S .
3sin (x BA
y y e +-⎰2
d d cos )a
a
x y --⎰ 2y -和2z x =+。