八年级数学上册《全等三角形》知识点梳理
- 格式:doc
- 大小:1.97 MB
- 文档页数:4
八年级数学上册知识点全归纳:全等三角形
1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
在学习三角形的全等时,教师应该从实际生活中的图形出
发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第13章基础复习知识点1命题、定理与证明1.一般地,判断某一件事情的语句叫做命题.命题一般由条件和结构两部分组成,可以写成“如果……,那么……”的形式.2.基本事实是在继续学习过程中用来判断其他命题真假的原始依据.3.定理:有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.4.根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.1.下列命题中,是真命题的是()A.无限小数是无理数B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.平行于同一条直线的两条直线平行D.过一点有且只有一条直线与已知直线垂直2.判断命题“如果n<1,那么W−1<0”是假命题,只需举出一个反例.反例中的n可以为()A.-2u−12 C.0D123.把命题“对顶角相等”改写成“如果⋯⋯,那么⋯⋯”的形式:.4.填写下列证明过程中的推理根据:已知:如图所示,AC、BD相交于点O,DF平分∠CDO与AC相交于点F,BE平分∠ABO与AC相交于点E,∠A=∠C.求证:∠1=∠2.证明:∵∠A=∠C(),∴AB∥CD(),∴∠ABO=∠CDO(),又∵DF平分∠CDO,BE平分∠ABO,∴∠1=12∠Cs∠2=12∠B(),∴∠1=∠2().知识点2三角形全等的判定1.能够完全重合的两个三角形是全等三角形,相互重合的顶点是对应顶点,相互重合的边是对应边,相互重合的角是对应角,全等三角形的对应边相等,对应角相等.2.全等三角形的判定条件:①两边及其夹角分别相等的两个三角形全等.简写为S. A.S.(或边角边).②两角及其夹边分别相等的两个三角形全等.简写为A.S. A.(或角边角).③两角分别相等且其中一组等角的对边相等的两个三角形全等.简写为A. A.S.(或角角边).④三边分别相等的两个三角形全等.简写为S.S.S.(或边边边).⑤斜边和一条直角边分别相等的两个直角三角形全等.简写为H.L.(或“斜边直角边”).5.如图,AB=AD,CB=CD,∠B=32°,∠BAD=72°,则∠ACD的度数是()A.102°B.112°C.114°D.1226.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠DB.AC=DFC.AB=EDD.BF=EC7.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.28.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点DB.点CC.点BD.点A9.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙10.如图所示,在Rt△ACD和Rt△BCE中,若AD=BE,DC=EC,则不正确的结论是()A.Rt△ACD≌Rt△BCEB.OA=OBC.E是AC的中点D.AE=BD11.如图,点D在线段BC上,若BC=DE,AC=DC,AB=EC,且∠ACE=180°-∠ABC-2x°,则下列角中,大小为x°的角是()A.∠EFCB.∠ABCC.∠FDCD.∠DFC12.如图,在等腰△ABC中,AB=AC,AB>BC,点D在边BC上,且C B=14,点E、F在线段AD上,满足∠BED=∠CFD=∠BAC,若△B=20,则.△B+△C=()A.18B.15C.12D.913.如图,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个14.如图,AC=DC,BC=EC,请你添加一个适当的条件:,使得△ABC≌△DEC.15.如图,∠1=∠2,∠3=∠4,,则全等三角形有对.16.如图,已知△ABC中,F是高AD和BE的交点,且AD=BD,CD=4,则线段DF的长度为.17.(南通中考)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连结AC并延长到点D,使CD=CA.连结BC并延长到点E,使CE= CB.连结DE,那么量出DE的长就是A、B的距离.为什么?18.如图,在△ABC中,AC=5,中线AD=7,求边AB的取值范围.19.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC.(2)若∠ADO=35°,求∠DOC的度数.20.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB.(2)求两堵木墙之间的距离.21.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE.(2)求∠FAE的度数.(3)求证:CD=2BF+DE.。
BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。
已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。
已知:如图,∠AOB 。
求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。
人教版八年级数学上册第十二章全等三角形知识点归纳12.1全等三角形经过平移、翻折、旋转,能够完全重合的两个图形叫做全等形。
经过平移、翻折、旋转,能够完全重合的两个三角形叫作全等三角形。
全等用符号“≌”表示,读作“全等于”。
例1、△ABC≌△DEF读作:三角形ABC全等于三角形DEF。
把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
用“≌”表示两个图形全等的时候,必须把对应的顶点写在对应的位置上。
例2、已知△ABC≌△DEF,那么就说明:①点A对应点D,点B对应点E,点C对应点F②∠A=∠D,∠B=∠E,∠C=∠F③AB=DE,AC=DF,BC=EF用“全等于”这个词表示两个图形全等的时候,顶点不一定有一一对应关系。
例3、已知△ABC全等于△DEF,那么点A不一定对应D,点A也可能对应点E或者点F 。
全等三角形的性质:①对应边相等②对应角相等③角平分线、中线、高分别对应相等④周长相等⑤面积相等12.2三角形全等的判定全等三角形的判定依据:①三边对应相等的两个三角形全等,简称“边边边”或“SSS ”。
②两边一夹角对应相等的两个三角形全等,简称“边角边”或“SAS ”。
③两角一夹边对应相等的两个三角形全等,简称“角边角”或“ASA ”。
④两角一对边对应相等的两个三角形全等,简称“角角边”或“AAS ”。
⑤一条斜边和一条直角边对应相等的两个直角三角形全等,简称“斜边直角边”或“HL ”。
温馨提示:“SSA ”和“AAA ”不能证明两个三角形全等。
全等三角形的证明格式:SSS 、SAS 、ASA 、AAS 的证明格式: HL 的证明格式:在△ABC 与△DEF 中 在Rt △ABC 与Rt △DEF 中∵{ 条件1条件2条件3∵{条件1条件2 ∴△ABC ≌△DEF (条件) ∴△ABC ≌△DEF (HL )12.3角的平分线的性质如果从一个角的顶点引出一条射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线。
让知识带有温度。
八年级数学上册《三角形全等的判定》知识点总结整
理
八年级数学上册《三角形全等的判定》学问点总结
1、三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。
(2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。
(3)“边边边”简称“SSS”,三边对应相等的两个三角形全等(“边边边”或“SSS”)。
(4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的判定都能证明直角三角形全等.
斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”).
留意:两边一对角(SSA)和三角(AAA)对应相等的`两个三角形不肯定全等。
小练习
第1页/共2页
千里之行,始于足下。
1、已知AB=AD,∠BAE=∠DAC ,要使∠ABC∠∠ADE,可补充的条件是______
核心考点: 全等三角形的判定
2、王师傅在做完门框后,经常在门框上斜钉两根木条,这样做的数学原理是______
核心考点: 三角形的稳定性
3、将两根钢条AA’、BB’的中点O连在一起, 使AA’、BB’可以围着点O自由旋转, 就做成了一个测量工件, 则A’B’的长等于内槽宽AB, 那么判定∠OAB∠∠OA’B’的理由是______
文档内容到此结束,欢迎大家下载、修改、丰富并分享给更多有需要的人。
第2页/共2页。
千里之行,始于足下。
八年级数学上册《三角形全等的判定》知识点
总结
三角形全等的判定是数学中非常重要的一部分,它通过观察以及一定的几何定理来判断两个三角形是否全等。
根据边和角的关系,我们可以有以下几个判定方法。
1. SSS判定法(边边边)
SSS判定法是通过三边的长度来判断两个三角形是否全等。
如果两个三角形的三条边长度分别相等,则这两个三角形是全等的。
2. SAS判定法(边角边)
SAS判定法是通过两边的长度和它们之间夹角的大小来判断两个三角形是否全等。
如果两个三角形的两边的长度相等,并且这两边夹角的大小也相等,则这两个三角形是全等的。
3. ASA判定法(角边角)
ASA判定法是通过两个角和它们之间的边的长度来判断两个三角形是否全等。
如果两个三角形的两个角相等,并且它们夹着的边的长度也相等,则这两个三角形是全等的。
4. AAS判定法(角角边)
AAS判定法是通过两个角和它们对应的边的长度来判断两个三角形是否全等。
如果两个三角形的两个角相等,并且它们对应的边的长度也相等,则这两个三角形是全等的。
除了上述判定法,还有一些特殊情况需要注意:
第1页/共2页
锲而不舍,金石可镂。
5. RHS判定法(正弦定理)
如果两个三角形的一个角相等,而这个角的两边分别和另一个三角形的两
个边成正比,则这两个三角形是全等的。
总的来说,通过这些判定方法,我们可以判断两个三角形是否全等,从而
解决与全等三角形相关的各种问题。
在解题时,我们可以根据题目提供的条件,选择合适的判定方法进行判断,进而得出结论。
三角形三条中线的交于一点,这一点叫做“三角形的重心〞。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
∠1=∠2=∠BAC.要区分三角形的“角平分线〞与“角的平分线〞,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心〞。
要求会的题型:①三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度“等积法〞,将三角形的面积用两种方式表达,求出未知量。
三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性三角形的内角1. 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。
2. 直角三角形两个锐角的关系直角三角形的两个锐角互余〔相加为90°〕。
有两个角互余的三角形是直角三角形。
三角形的外角1. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。
2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于与它不相邻的任何一个内角。
多边形1. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。
多边形的边与它邻边的延长线组成的角叫做外角。
连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
一个n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.3. 正多边形各角相等,各边相等的多边形叫做正多边形。
〔两个条件缺一不可,除了三角形以外,因为假设三角形的三内角相等,那么必有三边相等,反过来也成立〕要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.将边数带入公式即可。
多边形的内角和1. n边形的内角和定理n边形的内角和为2. n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。
八年级数学上册《全等三角形》知识点解析八年级数学上册《全等三角形》知识点解析在现实学习生活中,相信大家一定都接触过知识点吧!知识点有时候特指教科书上或考试的知识。
为了帮助大家掌握重要知识点,下面是店铺收集整理的八年级数学上册《全等三角形》知识点解析,欢迎大家分享。
八年级数学上册《全等三角形》知识点解析1一、定义1.全等形:形状大小相同,能完全重合的两个图形.2.全等三角形:能够完全重合的两个三角形.二、重点1.平移,翻折,旋转前后的图形全等.2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.3.全等三角形的判定:SSS三边对应相等的两个三角形全等【边边边】SAS两边和它们的夹角对应相等的两个三角形全等【边角边】ASA两角和它们的夹边对应相等的两个三角形全等【角边角】AAS两个角和其中一个角的对边开业相等的两个三角形全等【边角边】HL斜边和一条直角边对应相等的两个三角形全等【斜边,直角边】4.角平分线的性质:角的平分线上的点到角的两边的距离相等.5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.八年级数学上册《全等三角形》知识点解析2全等三角形定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
通过上面对全等三角形知识点的讲解学习,相信同学们对全等三角形的知识已经能很好的掌握了吧,后面我们进行更多知识点的巩固学习。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
八年级数学《全等三角形》知识点(精编)知识点一、全等形概念:能够完全重合的两个图形,叫做全等形。
说明:(1) 全等形只关注两图形的形状和大小,与图形的位置无关。
(2) 判断两图形是否是全等形,可通过平移,翻折、旋转等方法。
(3) 全等形可以是任何图形,全等图形的形状一定相同。
知识点二、全等三角形1、概念:能够完全重合的两个三角形叫做全等三角形。
说明:全等三角形是特殊的全等形,它关注的也是两个三角形的形状和大小是否完全一样,与位置无关。
2、表示方法:≌ 读作“全等于”(其中“-”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小相等)书写规范:=ABC≌=A'B'C ,通常把表示对应顶点的字母写在对应的位置上。
3、相关概念:把两个全等的三角形叠合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角。
****找对应点、对应边的方法:(1) 在两个全等三角形中,最长边对最长边,最短边对最短边;最大角对最大角,最小角对最小角。
(2) 公共边必为对应边,公共角必为对应角。
(3) 对顶角必为对应角。
(4) 对应角所对的边是对应边,两个对应角所夹的边也是对应边。
(5) 对应边所对的角是对应角,两条对应边所夹的角也是对应角。
(6) 对应顶点所对的边是对应边,或两对应顶点所夹的边也是对应边。
(7) 还可根据全等三角形的表示形式,如△ABC≌△DEF 找对应边和对应角。
知识点三、全等三角形的性质1、性质1、全等三角形的对应边相等,对应角相等。
性质2、全等三角形的对应角的角平分线、对应边上的高、对应边上的中线、周长、面积,也都相等。
2、全等三角形的性质应用:可证两条线段相等,或者角相等。
第十二章《全等三角形 》 知识点归纳一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形.2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等.SSS(2)两角和它们的夹边对应相等的两个三角形全等。
ASA(3)两角和其中一角的对边对应相等的两个三角形全等.AAS(4)两边和它们的夹角对应相等的两个三角形全等。
SAS(5)斜边和一条直角边对应相等的两个直角三角形全等.HL4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:角的内部到角的两边的距离相等的点在角的平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1。
确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
八年级上册数学全等三角形知识点八年级上册数学全等三角形知识点1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
⑸对应角:全等三角形中互相重合的角叫做对应角。
2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。
3.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等。
⑵边角边():两边和它们的夹角对应相等的两个三角形全等。
⑶角边角():两角和它们的夹边对应相等的两个三角形全等。
⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。
4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等。
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。
5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证。
⑶经过分析,找出由已知推出求证的途径,写出证明过程。
数学学习方法总结课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴〞.课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.初中提高数学成绩诀窍数学不能只依靠上课听得懂很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。
八年级上册数学全等三角形知识点总结
1. 三角形的边与角的关系:任意两边之和大于第三边,任意两角的和小于180°。
2. 全等三角形定义:如果两个三角形的对应的三边和三个内角都相等,则这两个三角形全等。
3. 全等三角形的性质:
- 对应的三边相等:若两个三角形全等,则对应的三边相等。
- 对应的三个角相等:若两个三角形全等,则对应的三个角相等。
- 对应的等角对应的边相等:若两个三角形全等,则对应的等角对应的边相等。
- 直角三角形的斜边相等:若两个直角三角形的两直角相等且一边对应相等,则两个直角三角形全等。
- 几何体的面与体全等条件:若两个几何体的对应面全等,且它们相应的边垂直,则两个几何体全等。
4. 全等三角形的判定方法:
- SSS判定法:如果两个三角形的三边分别相等,则这两个三角形全等。
- SAS判定法:如果两个三角形的一对边和它们之间的夹角分别相等,则这两个三角形全等。
- ASA判定法:如果两个三角形的一对角和它们夹着的两边分别相等,则这两个三角形全等。
- RHS判定法:如果两个直角三角形的斜边和一条直角边分别相等,则这两个直角三角形全等。
5. 全等三角形的应用:
- 用全等三角形的判定法判断两个三角形是否全等。
- 在平面几何问题中,利用全等三角形的性质推导出结论或解决问题。
例如,求线段的长、角的度数等。
八年级数学上册“第十二章全等三角形”必背知识点一、全等三角形的基本概念1. 全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2. 对应边和对应角:全等三角形中互相重合的边和角分别称为对应边和对应角。
3. 对应顶点:全等三角形中互相重合的顶点称为对应顶点。
二、全等三角形的性质1. 对应边相等:全等三角形的对应边相等。
2. 对应角相等:全等三角形的对应角相等。
3. 其他性质:全等三角形的周长和面积也相等;对应边上的高、中线、角平分线分别相等;对应角的三角函数值相等。
三、全等三角形的判定定理全等三角形的判定定理是本章的核心内容,主要包括以下几种:1. SSS(边边边):三边分别相等的两个三角形全等。
2. SAS(边角边):两边和它们的夹角分别相等的两个三角形全等。
3. ASA(角边角):两角和它们的夹边分别相等的两个三角形全等。
4. AAS(角角边):两个角和其中一个角的对边分别相等的两个三角形全等。
5. HL(直角三角形的斜边、直角边):在直角三角形中,斜边和一条直角边分别相等的两个直角三角形全等。
四、找全等三角形的方法1. 从结论出发:看要证明相等的两条线段 (或角)分别在哪两个可能全等的三角形中。
2. 从已知条件出发:看已知条件可以确定哪两个三角形相等。
3. 综合考虑:从条件和结论综合考虑,看它们能一同确定哪两个三角形全等。
4. 添加辅助线:若上述方法均不行,可考虑添加辅助线,构造全等三角形。
五、角平分线的性质1. 性质定理:角平分线上的点到角的两边的距离相等。
2. 逆定理:角的内部到角的两边距离相等的点在角的平分线上。
六、注意事项1. 在应用判定定理时,必须注意对应边和对应角的对应关系,不能随意搭配。
2. 证明两个三角形全等时,必须明确写出判定定理的依据,并写出完整的证明过程。
3. 注意区分全等三角形和相似三角形的判定条件,不要混淆。
通过掌握以上知识点,可以更好地理解和应用全等三角形的相关概念和性质,解决与全等三角形相关的问题。
专题12.5全等三角形的判定(ASA 与AAS)(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】三角形全等的判定方法——角边角(ASA)(1)基本事实:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).(2)书写格式:如图,在△ABC 和△'''A B C 中,A A AB A B B B '∠=∠⎧⎪''=⎨⎪'∠=∠⎩ABC A B C '''∴∆≅∆【知识点二】三角形全等的判定方法——角角边(AAS)(1)基本事实:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)(2)三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.【知识点三】判定方法的选择(1)选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SAS SSS(2)如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.第二部分【题型展示与方法点拨】【题型1】用ASA 和AAS 证明三角形全等【例1】(23-24七年级下·四川成都·期中)如图,点C 、E 在BF 上,BE CF =,AB FD ,A D ∠=∠.(1)求证:ABC DFE △≌△;(2)若50B ∠=︒,145BED ∠=︒,求D ∠的度数.【变式1】(22-23八年级上·湖北武汉·期中)一块三角形玻璃被摔成如图所示的四块,小江想去买一块形状、大小与原来一样的玻璃,但是他只想带去其中的两块,则这两块玻璃的编号可以是()A .①②B .②④C .③④D .①④【变式2】(22-23八年级上·福建龙岩·期中)如图,已知AC 与BF 相交于点E ,AB CF ∥,点E 为BF 中点,若9CF =,5AD =,则BD =.【题型2】用ASA 和AAS 证明三角形全等与三角形全等性质综合求值【例2】(22-23八年级上·广东深圳·期末)如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连CF .(1)求证:CF AB ∥;(2)若70A ∠=︒,35F ∠=︒,BE AC ⊥,求BED ∠的度数.【变式1】(23-24七年级下·重庆·期中)如图,在ABC 中,,AD BC CE AB ⊥⊥,垂足分别是D 、E ,AD 、CE 交于点H .已知10,6AE CE BE ===,则CH 的长度为()A .2B .3C .4D .5【变式2】(23-24七年级下·吉林长春·期中)如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,且2CD BD =,点E 、F 在线段AD 上.CFD BED BAC ∠=∠=∠,ABC 的面积为18,则ABE 与CDF 的面积之和.【题型3】添加条件证明三角形全等【例3】(2023·广东·模拟预测)如图,AC BC DC EC AC BC ⊥⊥=,,,请添加一个条件,使ACE BCD ≌△△.(1)你添加的条件是______(只需添加一个条件);(2)利用(1)中添加的条件,求证:ACE BCD ≌△△.【变式1】(23-24七年级下·重庆·期中)如图,在ABC 和BDE 中,再添两个条件不能..使ABC 和BDE 全等的是()A .AB BD =,AE DC=B .AB BD =,DE AC =C .BE BC =,E C ∠=∠D .EAF CDF ∠=∠,DE AC=【变式2】(23-24八年级上·北京平谷·期末)如图,在ABC 和CDE 中,若90ACB CED ∠=∠=︒,且AB CD ⊥,请你添加一个适当的条件,使ABC CDE △≌△.添加的条件是:(写出一个即可).【题型4】灵活运用SSS、SAS、ASA、AAS 证明三角形全等【例4】(22-23七年级下·河北保定·期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ∥.(1)ECD 与FBD 全等吗?请说明你的理由;(2)若6AD =,2DF =,BDF V 的面积为3,请直接写出AEC △的面积.【变式1】(2024·河北邯郸·二模)ABC 如图所示,甲、乙两个三角形中和ABC 全等的是()A .只有甲B .只有乙C .甲和乙D .都不是【变式2】(23-24八年级上·江苏常州·阶段练习)如图,在下列各组条件中,能够判断ABC 和DEF 全等的有.①AB DE =,AC DF =,BC EF =;②AB DE =,BC EF =,B E ∠=∠;③A D ∠=∠,B E ∠=∠,AB DE =;④A D ∠=∠,AB DE =,BC EF =.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2023·四川凉山·中考真题)如图,点E F 、在BC 上,BE CF =,B C ∠=∠,添加一个条件,不能证明ABF DCE △△≌的是()A .A D ∠=∠B .AFB DEC ∠=∠C .AB DC =D .AF DE=【例2】(2024·江苏盐城·中考真题)已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.2、拓展延伸【例1】(23-24八年级上·河北邢台·期中)在ABC 中,D 是BC 的中点.(1)如图1,在边AC 上取一点E ,连接ED ,过点B 作BM AC 交ED 的延长线于点M ,求证:CE BM =.(2)如图2,将一直角三角板的直角顶点与点D 重合,另两边分别与AC AB ,相交于点E ,F ,求证:CE BF EF +>.【例2】(22-23八年级上·全国·期末)如图1,直线l BC ⊥于点B ,90ACB ∠=︒,点D 为BC 中点,一条光线从点A 射向D ,反射后与直线l 交于点E (提示:作法线).(1)求证:BE AC =;(2)如图2,连接AB 交DE 于点F ,连接FC 交AD 于点H ,AC BC =,求证:CF AD ⊥;(3)如图3,在(2)的条件下,点P 是AB 边上的动点,连接5ABD PC PD S = ,,,2CH =,求PC PD +的最小值.。
八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
提示:在BC上取一点F使得BF=BA,连结EF。
(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。
如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。
精心整理第十一章全等三角形11.1全等三角形(1)形状、大小相同的图形能够完全重合;(2)全等形:能够完全重合的两个图形叫做全等形;(3)全等三角形:能够完全重合的两个三角形叫做全等三角形;(4)平移、翻折、旋转前后的图形全等;(5)对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6)对应角:全等三角形中相互重合的角叫做对应角;(7)对应边:全等三角形中相互重合的边叫做对应边;(8)全等表示方法:用“ ”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)(9)全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;11.2三角形全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:①三边对应相等的两个三角形全等;(“边边边”或“SS”S)②两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”)③两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”)④两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”)⑤斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“HL”)(3)证明三角形全等:判断两个三角形全等的推理过程;(4)经常利用证明三角形全等来证明三角形的边或角相等;(5)三角形的稳定性:三角形的三边确定了,则这个三角形的形状、大小就确定了;(用“SSS”解释)11.3角的平分线的性质(1)角的平分线的作法:课本第19页;(2)角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3)证明一个几何中的命题,一般步骤:①明确命题中的已知和求证;②根据题意,画出图形,并用数学符号表示已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程;(4)性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释)(5)三角形的三条角平分线相交于一点,该点为内心;第十二章轴对称12.1轴对称(1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么就称这个图形是轴对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(2)两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;(3)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(4)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
苏科版八年级数学上册知识点总结归纳苏教版八年级数学上册(义务教育教科书)知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。
2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。
二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。
理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。
2、全等三角形的周长相等、面积相等。
3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。
三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
4、边边边公理(SSS) 有三边对应相等的两个三角形全等。
5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。
2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。
3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。
第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
八年级数学上册第十二章全等三角形知识点汇总单选题1、如图,已知点A、D、C、F在同一条直线上,∠B=∠E =90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是()A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF答案:D分析:根据题目给的条件可知道直角边和直角,因为需用“HL”的方法判定Rt△ABC≌Rt△DEF,故只能添上斜边这一条件,即可解答.解:∵∠B=∠E=90°,AB=DE,∴添加条件AC=DF,根据“HL”即可判定Rt△ABC≌Rt△DEF;或添加条件AD=CF,也可得出AC=DF,根据“HL”即可判定Rt△ABC≌Rt△DEF,故D正确.故选:D.小提示:本题主要考查了利用“HL”判定三角形全等,掌握三角形全等的判定是解题的关键.2、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°答案:B分析:由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD =∠CBE=70°即可.解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,{CE=BDBC=CB,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.小提示:本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.3、如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.那么判定△ABC≌△ADC的理由是()A.SASB.SSSC.ASAD.AAS答案:A分析:已知条件是∠ACD=∠ACB,CD=CB,AC=AC,据此作出选择.解:在△ADC与△ABC中,{CD=CB∠ACD=∠ACBAC=AC.∴△ADC≌△ABC(SAS).故选:A.小提示:此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、为了测量工件的内径,设计了如图所示的工具,点O为卡钳两柄的交点,且有OA=OB=OC=OD,只要量得CD之间的距离,就可知工件的内径AB.其数学原理是利用△AOB≌△COD,判断的依据是()A.SSSB.SASC.ASAD.AAS答案:B分析:利用“边角边”证明△ABO和△CDO全等,根据全等三角形对应边相等解答.解:在△ABO和△CDO中{OA=OC ∠AOB=COD OB=OD∴△ABO≌△CDO(SAS)故选B小提示:本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.5、观察下列作图痕迹,所作线段CD为△ABC的角平分线的是()A.B.C .D .答案:C 分析:根据角平分线画法逐一进行判断即可.A :所作线段为AB 边上的高,选项错误;B :做图痕迹为AB 边上的中垂线,CD 为AB 边上的中线,选项错误;C :CD 为∠ACB 的角平分线,满足题意。
八年级上册数学全等三角形知识点
八年级上册数学主要学习了三角形的全等知识。
1. 全等三角形的定义:在两个三角形中,如果它们的对应的三边完全相等,那么称这两个三角形为全等三角形。
2. 全等三角形的判定条件:两个三角形全等的条件有以下六种情况:
- SSS(边边边)判定法:两个三角形的三边全部相等;
- SAS(边角边)判定法:两个三角形的两边和夹角相等;
- ASA(角边角)判定法:两个三角形的两个角和夹边相等;
- AAS(角角边)判定法:两个三角形的两个角和夹边的对应角相等;
- RHS(直角斜边)判定法:两个三角形的两个直角边和斜边相等;
- HL(hypotenuse leg)判定法:两个三角形的斜边和一个锐角边相等。
3. 全等三角形的性质:
- 三个内角相等;
- 对应边相等;
- 对应角相等;
- 若两个角相等,则对边也相等。
4. 全等三角形的应用:
- 解决几何问题时可以利用全等三角形的性质推导出某些角或边的大小关系,从而求解其他未知量;
- 在图形的证明中,可以利用全等三角形来证明某些结论。
这些就是八年级上册数学中关于全等三角形的主要知识点。
通过学习这些知识,可以
帮助我们解决与全等三角形相关的问题,并在几何证明中灵活运用全等三角形的性质。
第十二章第十二章 全等三角形全等三角形全等三角形一、知识框架知识框架::二、知识概念知识概念::1.基本定义基本定义基本定义::⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解理解::①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质基本性质基本性质::⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解理解::①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(3)全等三角形的周长相等、面积相等。
(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定定理全等三角形的判定定理全等三角形的判定定理::⑴边边边(SSS ):三边对应相等的两个三角形全等. ⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.4.证明两个三角形全等的基本思路证明两个三角形全等的基本思路证明两个三角形全等的基本思路::5.角平分线角平分线角平分线::⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法证明的基本方法证明的基本方法::⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题学习全等三角形应注意以下几个问题学习全等三角形应注意以下几个问题::(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。
八年级数学上册《全等三角形》知识点梳理
八年级数学上册《全等三角形》知识点梳理
在学习新知识的同时,既要及时跟上老师步伐,也要及时复习巩固,知识点要及时总结,这是做其他练习必备的前提,下面为大家总结了全等三角形知识点梳理,仔细阅读哦。
一、知识网络
二、基础知识梳理
(一)、基本概念
1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
应的位置上。
切记不要弄错。
2、对全等三角形判定方法理解错误;
3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定势的消极影响。
四、典例赏析
你会做吗?
有了上文为大家总结的全等三角形知识点梳理,大家及时提前复习,在考试中一定能取得好成绩。