22 高中数学概率的问题
- 格式:docx
- 大小:62.82 KB
- 文档页数:7
第四章测评(二)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+b e xD.y=a+b ln x2.(2021安徽淮南田家庵校级月考)在建立两个变量y与x的回归模型中,分别选择了4个不同的模型,模型1的相关系数r为0.88,模型2的相关系数r为0.945,模型3的相关系数r为0.66,模型4的相关系数r为0.01,其中拟合效果最好的模型是()A.模型1B.模型2C.模型3D.模型43.设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态曲线如图所示,下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≥t)≥P(Y≥t)D.对任意正数t,P(X≤t)≥P(Y≤t)4.(2021安徽宣城郎溪校级月考)甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( ) A.0.49B.0.42C.0.7D.0.915.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (单位: 万公顷)关于年数x (单位:年)的函数关系较为接近的是( ) A.y=0.2x B.y=0.1x 2+0.1x C.y=0.2+log 4xD.y=2x106.(2021江西抚州南城校级期中)设离散型随机变量X 的分布列为若随机变量Y=X-2,则P (Y=2)等于( ) A.0.3B.0.4C.0.6D.0.77.(2021北京西城校级期中)在一段时间内,甲去博物馆的概率为0.8,乙去博物馆的概率为0.7,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去博物馆的概率是( ) A.0.56B.0.24C.0.94D.0.848.(2021陕西榆林一模)设0<a<12,0<b<12,随机变量ξ的分布列为当a 在0,12内增大时,( ) A.E (ξ)增大,D (ξ)增大 B.E (ξ)增大,D (ξ)减小 C.E (ξ)减小,D (ξ)增大 D.E (ξ)减小,D (ξ)减小二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对某中学的高中女生体重y(单位:kg)与身高x(单位:cm)进行线性回归分析,根据样本数据(x i,y i)(i=1,2,3,…,12),计算得到相关系数r=0.996 2,用最小二乘法近似得到回归直线方程为y^=0.85x-85.71,则以下结论正确的是()A.y与x正相关B.x与y具有较强的线性相关关系,得到的回归直线方程有价值C.若该中学某高中女生身高增加1 cm,则其体重约增加0.85 kgD.若该中学某高中女生身高为160 cm,则可断定其体重为50.29 kg10.(2021福建福州一模)“一粥一饭,当思来之不易”,道理虽简单,但每年我国还是有2 000多亿元的餐桌浪费,被倒掉的食物相当于2亿多人一年的口粮.为营造“节约光荣,浪费可耻”的氛围,某市发起了“光盘行动”.某机构为调研民众对“光盘行动”的认可情况,在某大型餐厅中随机调查了90位来店就餐的客人,制成如下列联表,通过计算得到χ2的值为9.已知P(χ2≥6.635)=0.010,P(χ2≥10.828)=0.001,则下列判断正确的是()A.在该餐厅用餐的客人中大约有66.7%的客人认可“光盘行动”B.在该餐厅用餐的客人中大约有99%的客人认可“光盘行动”C.有99%的把握认为“光盘行动”的认可情况与年龄有关D.在犯错误的概率不超过0.1%的前提下,认为“光盘行动”的认可情况与年龄有关11.(2021新高考Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则下列说法错误的是( ) A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立12.小张从家到公司开车有两条线路,所需时间(单位:分钟)随交通堵塞状况有所变化,其概率分布如表所示,则下列说法正确的是( )A.任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件B.从所需的平均时间看,线路一比线路二更节省时间C.如果要求在45分钟以内从家赶到公司,小张应该走线路一D.若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04 三、填空题:本题共4小题,每小题5分,共20分.13.(2021四川成都武侯校级模拟)已知某产品的销售额y (单位:万元)与广告费用x (单位:万元)之间的关系如表所示,若销售额与广告费用之间的回归直线方程为y ^=6.5x+a ^,预计当广告费用为6万元时的销售额约为 万元.14.一个袋子内装有除颜色不同外其余完全相同的3个白球和2个黑球,从中不放回地任取两次,每次取一球,在第一次取到的是白球的条件下,第二次也取到白球的概率是 .15.(2021福建福州期中)已知随机变量ξ服从二项分布,即ξ~B6,12,则E (2ξ+3)= ,D (2ξ+3)= .16.(2021浙江杭州期中)已知随机变量ξ的分布列如表所示,若P (ξ≤x )=34,则实数x 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021山东模拟)短视频已成为很多人生活中娱乐不可或缺的一部分,很多人喜欢将自己身边的事情拍成短视频发布到网上,某人统计了发布短视频后1~8天的点击量(单位:万次)的数据并进行了初步处理,得到下面的散点图及一些统计量的值.其中t i =x i 2.某位同学分别用两种模型:①y ^=b ^x 2+a ^,②y ^=d ^x+c ^进行拟合. (1)根据散点图,比较模型①,②的拟合效果,应该选择哪个模型?(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程;(在计算回归系数时精确到0.01) (3)预测该短视频发布后第10天的点击量是多少.附:b ^=∑i=1n(x i -x)(y i -y)∑i=1n (x i -x)2,a ^=y −b ^x .18.(12分)(2021陕西模拟)为了调查某校学生对学校食堂的某种食品的喜爱是否与性别有关,随机对该校100名性别不同的学生进行了调查,得到如下列联表.(1)请将上述列联表补充完整;(2)判断是否有99.9%的把握认为是否喜爱某种食品与性别有关?(3)用分层抽样的方法在喜爱某种食品的学生中抽6人,现从这6名学生中随机抽取2人,求恰好有1名男生喜爱某种食品的概率.附:χ2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.19.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值为代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8≤Z≤212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间[187.8,212.2]的产品件数,利用①的结果,求E(X).附:√150≈12.2.若Z~N(μ,σ2),则P(μ-σ≤Z≤μ+σ)≈0.683,P(μ-2σ≤Z≤μ+2σ)≈0.954.20.(12分)(2021四川自贡模拟)在一次产品质量抽查中,发现某箱5件产品中有2件次品.(1)从该箱产品中随机抽取1件产品,求抽到次品的概率;(2)从该箱产品中依次不放回随机抽取2件产品,求抽出的2件产品中有次品的概率P;(3)若重复进行(2)的试验10次,则出现次品次数的期望是10P,请问上述结论是否正确?请简要说明理由.21.(12分)(2021新高考Ⅰ)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.22.(12分)小明在某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前54单没有奖励,超过54单的部分每单奖励20元.(1)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式.(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的频率分布直方图,其中当某天的派送量指标在m-15,m 5(m=1,2,3,4,5)时,日平均派送量为50+2m单,若将频率视为概率,回答下列问题:①估计这100天中的派送量指标的平均数(同一组中的数据用该组区间的中点值为代表);②根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列及数学期望.请利用数学期望帮助小明分析他选择哪种薪酬方案比较合适?并说明你的理由.参考答案第四章测评(二)1.D 结合题中散点图,由图象的大致走向判断,此函数应该是对数函数模型,故应该选用的函数模型为y=a+b ln x.2.B 在4个不同的回归模型中,模型2的相关系数r=0.945最大,所以拟合效果最好.故选B.3.D 由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12, P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错误;因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错误;对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错误;对任意正数t ,P (X ≤t )≥P (Y ≤t ),故D 正确.故选D.4.B 甲、乙两人各进行1次射击,两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是C 21×0.7×0.3=0.42. 故选B.5.D 将(1,0.2),(2,0.39),(3,0.78)代入y=0.2x ,当x=3时,y=0.6,和0.78相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=0.1x 2+0.1x ,当x=2时,y=0.6,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=0.2+log 4x ,当x=2时,y=0.7,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=2x 10,当x=1时,y=0.2,当x=2时,y=0.4,与0.39相差0.01,当x=3时,y=0.8,和0.78相差0.02.综合以上分析,选用函数关系y=2x 10较为接近. 故选D.6.A 由离散型随机变量X 的分布列得0.2+0.1+0.1+0.3+m=1,解得m=0.3,因为随机变量Y=X-2,所以P (Y=2)=P (X=4)=0.3.故选A.7.C 根据题意,设甲去博物馆为事件A ,乙去博物馆为事件B ,则P (A )=0.8,P (B )=0.7,则P (A )=0.2,P (B )=0.3,两人都不去博物馆的概率P (AB )=0.2×0.3=0.06,则甲乙两人至少有一个去博物馆的概率P=1-P (AB )=0.94.故选C.8.D 由题意可得E (ξ)=-12+b=-a ,D (ξ)=(-1+a )2×12+(0+a )2×a+(1+a )2×b=-a+122+54.当a 在0,12内增大时,E (ξ)减小,D (ξ)减小.故选D.9.ABC 由于回归直线方程中x 的系数为0.85>0,因此y 与x 正相关,故A 正确;根据相关系数r=0.9962接近1,故B 正确;由回归直线方程中系数的意义可得身高x 每增加1cm,其体重约增加0.85kg,故C 正确;当某女生的身高为160cm 时,其体重估计值是50.29kg,而不是确定值,故D 错误.故选ABC. 10.AC 因为χ2的值为9,且P (χ2≥6.635)=0.010,P (χ2≥10.828)=0.001,因为9>6.635,但9<10.828,所以有99%的把握认为“光盘行动”的认可情况与年龄有关,或者说,在犯错误的概率不超过1%的前提下,认为“光盘行动”的认可情况与年龄有关,所以选项C 正确,选项D 错误;由表可知认可“光盘行动”的人数为60人,所以在该餐厅用餐的客人中认可“光盘行动”的比例约为6090×100%≈66.7%,故选项A 正确,选项B 错误.故选AC.11.ACD 由已知得P (甲)=16,P (乙)=16, P (丙)=56×6=536,P (丁)=66×6=16,P (甲丙)=0≠P (甲)P (丙),P (甲丁)=16×6=136,P (乙丙)=16×6=136≠P (乙)P (丙),P (丙丁)=0≠P (丙)P (丁).由于P (甲丁)=P (甲)·P (丁)=136,根据相互独立事件的性质,知事件甲与丁相互独立,故B 正确,A,C,D 错误.12.BD “所需时间小于50分钟”与“所需时间为60分钟”是互斥而不对立事件,A 错误; 线路一所需的平均时间为30×0.5+40×0.2+50×0.2+60×0.1=39分钟,线路二所需的平均时间为30×0.3+40×0.5+50×0.1+60×0.1=40分钟,所以线路一比线路二更节省时间,B 正确;线路一所需时间小于45分钟的概率为0.7,线路二所需时间小于45分钟的概率为0.8,小张应该选线路二,故C 错误;所需时间之和大于100分钟,则线路一、线路二的时间可以为(50,60),(60,50)和(60,60)三种情况, 概率为0.2×0.1+0.1×0.1+0.1×0.1=0.04,故D 正确.故选BD.13.48 ∵x =15×(0+1+2+3+4)=2,y =15×(10+15+20+30+35)=22, ∴a ^=22-6.5×2=9,则y ^=6.5x+9,取x=6,得y ^=6.5×6+9=48.14.12 记事件A :第一次取得白球, 事件B :第二次取得白球.则P (B|A )=P(AB)P(A)=3×25×435=12.15.9 6 ∵随机变量ξ~B 6,12,∴E (ξ)=6×12=3,D (ξ)=6×12×12=32.则E (2ξ+3)=2E (ξ)+3=9,D (2ξ+3)=22D (ξ)=6.16.[2,3) 由随机变量ξ的分布列,结合P (ξ≤x )=34,得P (ξ≤x )=P (ξ=-2)+P (ξ=0)+P (ξ=2)=14+14+14=34,故实数x 的取值范围是[2,3). 17.解(1)由散点图可知,模型①效果更好.(2)∵t i =x i 2,∴y ^=b ^t+a ^,∵b ^=∑i=18(t i -t)(y i -y)∑i=18(t i-t)2=686.83570≈0.19,∴a ^=y −b ^t =5-0.19×25.5≈0.16,∴y ^=0.19x 2+0.16.(3)由(2)可知,令x=10,则y ^=0.19×100+0.16=19.16.预测该短视频发布后第10天的点击量是19.16万次.18.解(1)完成列联表如下:(2)由(1)得χ2=100×(20×10-30×40)250×50×60×40=503≈16.667>10.828,所以有99.9%的把握认为是否喜爱某种食品与性别有关.(3)用分层抽样的方法在喜爱某种食品的学生中抽6人,则其中男生有20×660=2(人),女生有4人.则从这6名学生中随机抽取2人有C 62=15(种)结果,其中恰好有1名男生喜爱某种食品有C 21C 41=8(种)结果,故所求的概率P=815.19.解(1)这500件产品质量指标值的样本平均数x 和样本方差s 2分别为 x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200, s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N (200,150),因为σ=√150≈12.2,从而P (187.8≤Z ≤212.2)=P (200-12.2≤Z ≤200+12.2)≈0.683.②由①知,一件产品的质量指标值位于区间[187.8,212.2]的概率约为0.683,依题意知X~B (100,0.683),所以E (X )=100×0.683=68.3.20.解(1)从该箱产品中随机抽取1件产品,抽到次品的概率为25.(2)从该箱产品中依次不放回随机抽取2件产品,抽出的2件产品中有次品的概率P=1-35×24=710.(3)正确.若重复进行(2)的试验10次,则出现次品的次数X~B 10,710,所以出现次品的次数E (X )=10×710=7=10P.21.解(1)X=0,20,100. P (X=0)=1-0.8=0.2=15,P (X=20)=0.8×(1-0.6)=45×25=825,P (X=100)=0.8×0.6=45×35=1225.所以X 的分布列为(2)若小明先回答A 类问题,期望为E (X ).则E (X )=0×15+20×825+100×1225=2725.若小明先回答B类问题,Y为小明的累计得分, Y=0,80,100,P(Y=0)=1-0.6=0.4=25,P(Y=80)=0.6×(1-0.8)=35×15=325,P(Y=100)=0.6×0.8=35×45=1225.E(Y)=0×25+80×325+100×1225=2885.因为E(X)<E(Y),所以小明应选择先回答B类问题.22.解(1)甲方案中派送员日薪y与送单数n的函数关系式为y=100+n,n∈N,乙方案中派送员日薪y与送单数n的函数关系式为y={140,n≤54,n∈N,20n-940,n≥55,n∈N.(2)①(0.1×1+0.3×1.5+0.5×1+0.7×1+0.9×0.5)×0.2=0.44.②X甲的分布列为所以E(X甲)=152×0.2+154×0.3+156×0.2+158×0.2+160×0.1=155.4. X乙的分布列为所以E(X乙)=140×0.5+180×0.2+220×0.2+260×0.1=176.由以上的计算结果可以看出,E(X甲)<E(X乙),即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案.。
高中数学概率统计难题集
1. 排列组合
1. 某班有10个男生和8个女生,从中选择5位同学参加一次数学竞赛,其中必须至少有2名男生和3名女生参赛。
求参赛人员的组合数。
2. 概率计算
2. 在一副有52张牌的扑克牌中,从中随机抽出5张牌,求抽到四张皇后的概率。
3. 离散型随机变量
3. 一批零件的质量服从正态分布,均值为80,标准差为5。
从中随机抽取一个零件,求质量小于75的概率。
4. 连续型随机变量
4. 一家餐厅餐桌到达的时间符合指数分布,平均每10分钟有一桌。
求在20分钟内没有餐桌到达的概率。
5. 相关性分析
5. 一对骰子同时抛掷,求两个骰子的和为7的概率。
这些难题涵盖了高中数学概率统计的不同概念和技巧,希望能
够提供给学生们一些有趣而具有挑战性的练题。
尝试解答这些问题,不断提升自己的数学思维能力和解题技巧。
> 注意:以上问题解析仅供参考,具体解答可能与题目提供的
信息有关。
在实际解题过程中,请根据题目给出的条件和公式进行
思考和推导,以获得正确的答案。
以上就是一份高中数学概率统计难题集的文档,希望对你有所
帮助!。
专练51 随机事件的概率与古典概型一、选择题1.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为( ) A.112 B.16 C.14D.132.一道竞赛题,A ,B ,C 三人可解出的概率依次为12,13,14.若三人独立解答,则仅有1人解出的概率为( )A.124B.1124C.1724D .1 3.在一个不透明的容器中有6个小球,其中有4个黄球,2个红球,它们除颜色外完全相同.如果一次随机取出2个球,那么至少有1个红球的概率为( )A.25B.35C.715D.8154.(多选)甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是( )A .甲获胜的概率为16B .甲不输的概率为12C .乙输的概率为23D .乙不输的概率为565.[2020·全国卷Ⅰ]设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A.15B.25C.12D.45 6.[2020·全国卷Ⅱ]在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A .10名B .18名C .24名D .32名7.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( )A.29B.14C.718D.1128.一个箱子中装有4个白球和3个黑球,若一次摸出2个球,则摸到的球颜色相同的概率是( )A.17B.27C.37D.479.(多选)甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若甲同学必选物理,则下列说法正确的是( )A .甲、乙、丙三人至少一人选化学与全选化学是对立事件B .甲同学不同的选法共有15种C .已知乙同学选了物理,则乙同学选技术的概率是16D .乙、丙两名同学都选物理的概率是949二、填空题10.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.11.某校开设5门不同的选修课程,其中3门理科类和2门文科类.某同学从中任选2门课程学习,则该同学选到文科类选修课程的概率是________.12.[2020·江苏卷]将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.[能力提升]13.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,小球从上方的通道口落下后,将与层层小木块碰撞,最后掉入下方的某一个球槽内.若小球下落过程中向左、向右落下的机会均等,则小球最终落入③号球槽的概率为( )A.332B.1564C.532D.51614.“仁义礼智信”为儒家“五常”,由孔子提出“仁、义、礼”,孟子延伸为“仁、义、礼、智”,董仲舒扩充为“仁、义、礼、智、信”.将“仁义礼智信”排成一排,“仁”排在第一位,且“智、信”相邻的概率为( )A.110B.15C.310D.2515.三名旅游爱好者商定在疫情结束后前往武汉、宜昌、黄冈3个城市旅游,如果三人均等可能地前往上述3个城市之一,那么他们恰好选择同一个城市的概率是________.16.某机构有项业务是测试手机电池的续航时间,现有美国产的iPhone 和中国产的小米、华为、OPPO 四种品牌的手机需要测试,其中华为有Mate40和P40两种型号,其他品牌的手机都只有一种型号.已知每款手机的测试时间都为1个月,测试顺序随机,每款手机测试后不再测试,同一品牌的两个型号不会连续测试.在未来4个月内,测试的手机都是国产手机的概率为________.专练51 随机事件的概率与古典概型1.C 先后抛掷两颗骰子,有36种结果,其中两次朝上的点数之积为奇数的结果有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9种,所求概率为936=14,故选C.2.B 记A ,B ,C 三人分别解出题为事件A ,B ,C ,则仅有1人解出题的概率P =P (A B-C -)+P (A -B C -)+P (A -B -C )=12×23×34+12×13×34+12×23×14=1124.故选B.3.B 解法一:从6个小球中一次随机取出2个球包含的基本事件总数n =C 26=15,其中至少有1个红球包含的基本事件个数m =C 14C 12+C 22=9,因此至少有1个红球的概率P =m n =915=35.故选B. 解法二:从6个小球中一次随机取出2个球包含的基本事件总数n =C 26=15,其中全部是黄球包含的基本事件个数是C 24=6,因此至少有1个红球包含的基本事件个数是15-6=9,因此至少有1个红球的概率P =915=35.故选B.解法三:设“一次随机取出2个球,至少有1个红球”为事件A ,则P (A )=1-P (A -)=1-C 24C 26=1-615=35,故选B. 4.AD ∵甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,∴甲获胜的概率为1-12-13=16,故A 正确;甲不输的概率为1-13=23,故B 不正确;乙输的概率为1-13-12=16,故C 不正确;乙不输的概率为12+13=56,故D 正确.故选AD.5.A 从O ,A ,B ,C ,D 中任取3点的情况有(O ,A ,B ),(O ,A ,C ),(O ,A ,D ),(O ,B ,C ),(O ,B ,D ),(O ,C ,D ),(A ,B ,C ),(A ,B ,D ),(B ,C ,D ),(A ,C ,D ),共有10种不同的情况,由图可知取到的3点共线的有(O ,A ,C )和(O ,B ,D )两种情况,所以所求概率为210=15.故选A.6.B 由题意得第二天订单不超过1600份的概率为1-0.05=0.95,故第一天积压订单加上第二天的新订单不超过1600+500=2100份的概率为0.95,因为超市本身能完成1200份订单配货,所以需要志愿者完成的订单不超过2100-1200=900份的概率为0.95,因为900÷50=18,所以至少需要18名志愿者,故选B.7.C 依题意,基本事件的总数为6×6=36,第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的有(6,1),(6,2),(6,3),(6,6),(5,1),(5,5),(4,1),(4,2),(4,4),(3,1),(3,3),(2,1),(2,2),(1,1),共14种情况,所以所求的概率P =1436=718,故选C.8.C 从箱子中一次摸出2个球共有C 27=21种情况,颜色相同的有C 24+C 23=9种情况,∴摸到的球颜色相同的概率P =921=37,故选C.9.BD 甲、乙、丙三人至少一人选化学与全不选化学是对立事件,故A 错误;由于甲同学必选物理,故只需从剩下的6门学科中任选2门即可,则甲同学不同的选法共有C 26=15种,故B 正确;由于乙同学选了物理,则乙同学选技术的概率是C 15C 26=13,故C 错误;乙、丙两名同学各自选物理的概率均为C 26C 37=37,故乙、丙两名同学都选物理的概率是37×37=949,故D 正确.故选BD.10.910解析:从五位大学毕业生甲、乙、丙、丁、戊中录用三人,则有C 35=10种录用方法,设“甲或乙被录用”为事件A ,则事件A -表示“甲乙两人都没有被录用”,则P (A -)=110,所以甲或乙被录用的概率为1-110=910.11.710解析:从5门不同的选修课程中任选2门课程学习所包含的基本事件总数n =C 25=10,该同学选到文科类选修课程包含的基本事件个数m =C 22+C 13C 12=7,因此该同学选到文科类选修课程的概率P =m n =710.12.19解析:将一颗质地均匀的正方体骰子先后抛掷2次,向上的点数共有36种情况,其中点数和为5的情况有(1,4),(2,3),(3,2),(4,1),共4种,则所求概率为436=19.13.D 若小球下落过程中向左、向右落下的机会均等,则P 左=P 右=12,小球最终落入③号球槽经过5次选择,其中向左3次、向右2次,则所求概率P =C 35×123×122=516,故选D.14.A “仁义礼智信”排成一排,任意排有A 55种排法,其中“仁”排在第一位,且“智、信”相邻的排法有A 22A 33种,故所求概率P =A 22A 33A 55=110.故选A. 15.19解析:由题知三人的选择情况共有33=27种,其中恰好选择同一个城市的情况有3种,所以所求概率P =327=19.16.17解析:在未来4个月内,测试的手机有如下两种情况:①当华为手机出现两次时,有C 22C 23A 22A 23=36种情况;②当华为手机出现一次时,有C 12A 44=48种情况. 故共有36+48=84种情况.而其中未来这4个月中测试的手机都是国产手机的情况有A 22A 23=12(种),故所求概率P=1284=17.。
高中数学概率与统计的常见问题解析与实例概率与统计是高中数学中的一门重要的数学分支,也是我们日常生活中经常遇到的问题。
在学习概率与统计时,同学们常常会遇到一些困惑和难题。
本文将针对高中数学概率与统计中的常见问题进行解析,并通过实例来说明解题的方法和技巧。
一、概率问题1. 事件的概率计算概率是指某个事件发生的可能性大小。
在计算事件的概率时,我们需要考虑事件的样本空间和事件的发生数。
例如,某班级有30名学生,其中10名男生和20名女生。
现从中随机抽取一名学生,求该学生是男生的概率。
解析:该问题中的样本空间为该班级的所有学生,共30个人。
事件A为该学生是男生,发生数为10。
因此,事件A的概率为10/30=1/3。
2. 多个事件的概率计算当涉及多个事件时,我们需要考虑这些事件之间的关系,如并、或、互斥等。
例如,某班级有30名学生,其中10名男生和20名女生。
现从中随机抽取两名学生,求这两名学生都是男生的概率。
解析:该问题中的样本空间为该班级的所有学生,共30个人。
事件A为第一名学生是男生,事件B为第二名学生是男生。
由于事件A和事件B是相互独立的,所以这两个事件同时发生的概率为事件A的概率乘以事件B的概率,即10/30 *9/29 = 3/29。
二、统计问题1. 数据的收集和整理在统计问题中,数据的收集和整理是非常重要的。
例如,某班级的学生进行了一次数学测验,得分如下:80,85,90,75,95,85,80,70,90,85。
现在需要计算这组数据的平均分。
解析:首先,我们需要将这组数据按照从小到大的顺序进行排列:70,75,80,80,85,85,85,90,90,95。
然后,将这些数据相加并除以数据的个数,即可得到平均分:(70+75+80+80+85+85+85+90+90+95)/10 = 845/10 = 84.5。
2. 数据的分析和解读在统计问题中,我们经常需要对数据进行分析和解读。
例如,某班级进行了一次数学测验,得分如下:80,85,90,75,95,85,80,70,90,85。
(名师选题)2023年人教版高中数学第十章概率经典大题例题单选题1、掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A .1999B .11000C .9991000D .12答案:D每一次出现正面朝上的概率相等都是12,故选D. 2、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( )A .249B .649C .17D .27答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.3、在一次试验中,随机事件A ,B 满足P(A)=P(B)=23,则( )A .事件A ,B 一定互斥B .事件A ,B 一定不互斥C .事件A ,B 一定互相独立D .事件A ,B 一定不互相独立答案:B分析:根据互斥事件和独立事件的概率的定义进行判断即可>1,与0≤P(A+B)≤1矛盾,所以P(A+B)≠若事件A,B为互斥事件,则P(A+B)=P(A)+P(B)=43P(A)+P(B),所以事件A,B一定不互斥,所以B正确,A错误,由题意无法判断P(AB)=P(A)P(B)是否成立,所以不能判断事件A,B是否互相独立,所以CD错误,故选:B4、甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有..一次准确预报的概率为()A.0.8B.0.7C.0. 56D.0. 38答案:D解析:利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7,所以在一次预报中两站恰有一次准确预报的概率为:P=0.8×(1−0.7)+(1−0.8)×0.7=0.38.故选:D.5、当P(A)>0时,若P(B|A)+P(B̅)=1,则事件A与B的关系是()A.互斥B.对立C.相互独立D.无法判断答案:C分析:根据条件概率的公式,化简原式,再根据相互独立事件的性质即可得出结论.∵P(B|A)+P(B̅)=P(B|A)+1−P(B)=1,∴P(B|A)=P(B),即P(AB)=P(B),P(A)∴P(AB)=P(A)P(B),∴事件A 与B 相互独立.故选:C.6、若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足m 2+n 2<25的概率是( )A .12B .1336C .49D .512答案:B分析:利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(m,n)表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足m 2+n 2<25有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足m 2+n 2<25的概率P =1336.故选:B7、甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a,b ∈{1,2,3,4},若|a −b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A .38B .58C .316D .516答案:B分析:利用列举法根据古典概型公式计算即可.B两人分别从1,2,3,4四个数中任取一个,共有16个样本点,为:(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3) ,(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2) (4,3),(4,4),这16个样本点发生的可能性是相等的.其中满足|a−b|≤1的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为P=1016=58.故选:B8、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P=0.42×0.32+C21×0.6×0.4×C21×0.7×0.3+0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A.小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.9、已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是()A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D.事件“有1张红色卡片和2张蓝色卡片”是随机事件答案:C分析:根据随机事件、必然事件、不可能事件的定义判断.袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,在A 中,事件“都是红色卡片”是随机事件,故A 正确;在B 中,事件“都是蓝色卡片”是不可能事件,故B 正确;在C 中,事件“至少有一张蓝色卡片”是随机事件,故C 错误;在D 中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D 正确.故选:C .10、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(x,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4a mB .a+2m C .a+2m m D .4a+2m m 答案:D解析:由试验结果知m 对0~1之间的均匀随机数x,y ,满足{0<x <10<y <1,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1, 对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1, 其面积S =π4−12;则有a m =π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.11、从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“恰好有一个黑球”与“恰好有两个黑球”B.“至少有一个黑球”与“至少有一个红球”C.“至少有一个黑球”与“都是黑球”D.“至少有一个黑球”与“都是红球”答案:A分析:根据互斥事件和对立事件的定义直接判断.对于A:“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,故A中的两事件互斥而不对立;对于B:“至少有一个黑球”与“至少有一个红球”能同时发生,故B中的两事件不互斥;对于C:“至少有一个黑球”与“都是黑球”能同时发生,故C中的两事件不是互斥事件;对于D:“至少有一个黑球”与“都是红球”互斥并且对立.故选:A12、“不怕一万,就怕万一”这句民间谚语说明().A.小概率事件虽很少发生,但也可能发生,需提防;B.小概率事件很少发生,不用怕;C.小概率事件就是不可能事件,不会发生;D.大概率事件就是必然事件,一定发生.答案:A分析:理解谚语的描述,应用数学概率知识改写即可.“不怕一万,就怕万一”表示小概率事件很少发生,但也可能发生,需提防;故选:A双空题13、从1,2,3,…,10中任选一个数,这个试验的样本空间为_______,“它是偶数”这一事件包含的基本事件个数为_________.答案: Ω={1,2,3,4,5,6,7,8,9,10} 5分析:题中10个数中每一个都是样本空间中的样本点,而偶数的样本点有5个:2,4,6,8,10.从1,2,3,…,10中任意选一个数,所得到的数可能是从1到10中的任意一个数,所以这个试验的样本空间为Ω={1,2,3,4,5,6,7,8,9,10},“它是偶数”这一事件包含的基本事件有5个,分别为2,4,6,8,10.故答案为Ω={1,2,3,4,5,6,7,8,9,10};5.小提示:本题考查样本空间,解题时只要写出事件发生的所有可能情形即可.注意不重不漏.14、已知随机变量X 的取值范围为{3,4,5,6},且P (X =3)=0.2,P (X =4)=0.3,P (X =5)=0.4,P (X =6)=0.1,则P (4<X ≤6)=______,若Y =4X +3,则P (Y ≤23)=______.答案: 0.5 0.9分析:利用P (4<X ≤6)=P (X =5)+P (X =6),P (Y ≤23)=P (X ≤5)即可得到结果.由题意可知P (4<X ≤6)=P (X =5)+P (X =6)=0.4+0.1=0.5,P (Y ≤23)=P (X ≤5)=1−P (X =6)=1−0.1=0.9.所以答案是:0.5,0.9.15、一袋中有大小相同的4个红球和2个白球若从中任取3球,则恰有一个白球的概率是__________,若从中不放回的取球2次,每次任取1球,记“第一次取到红球”为事件A , “第二次取到红球”为事件B ,则P (B|A )=__________.答案: 35 35分析:(1)直接使用公式;(2)条件概率公式的使用.恰有一个白球的概率P =C 21C 42C 63=35; 由题可知A =“第一次取到红球”, B =“第二次取到红球”,则P (A )=23,P (AB )=4×36×5=25,所以P (B|A )=P (AB )P (A )=35.所以答案是:35,35. 16、容量为200的样本的频率分布直方图如图所示,则样本数据落在[6,10)内的频数为______,数据落在[6,10)内的概率约为______.答案: 64. 0.32.解析:(1)根据矩形面积表示频率,再根据公式频数样本容量=频率,计算频数; (2)转化为求数据落在[6,10)内的频率.由题图易知组距为4,故样本数据落在[6,10)内的频率为0.08×4=0.32,频数为0.32×200=64,故数据落在[6,10)内的概率约为0.32.所以答案是:64;0.32小提示:本题考查频率分布直方图的简单应用,理解频率和概率,属于基础题型.17、一个盒子中有1个白球(计0分),15个相同的红球(计1分)和6个不同的彩球(计2−7分),小阳每次从盒中随机摸出1个球,要求摸完不放回盒中,则2次均摸到红球的概率是______,若得分≥2时即停止摸球,则所有可能的摸球方式共有______种.(用数字作答)答案: 511 912 解析:两次都摸到红球的概率为P =15×1422×21;若得分≥2时停止摸球,则最多摸三次球,然后分类讨论求出总共的摸球方式.由题意得,盒子中共有球22个,红球15个,则两次都摸到红球的概率为:P =15×1422×21=511,若得分≥2则停止摸球,则摸球的可能情况有:摸球一次得分≥2时,只需从六个彩球中摸出一个,共有6种可能;摸球两次得分≥2时,则摸出的球颜色可以为:白彩,红彩,红红三类,共有6+15×6+15×14=306种情况摸球三次得分≥2时,则摸出球的颜色可以为:白红红,白红彩,红白红,红白彩,共有1×15×14+1×15×6+15×1×14+15×1×6=600种情况,综上,共有912种方式.所以答案是:5,912.11小提示:本题考查随机事件概率的计算,考查计数原理,难度一般,解答时注意分类讨论.解答题18、某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取了100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”按学生的课外阅读时间(单位:小时))各分为5组:[0,10),[10,20),[20,30),[30,40),[40,50][0,10),[10,20),得其频率分布直方图如图所示.(1)国家规定:初中学生平均每人每天课外阅读时间不少于半小时,若该校初中学生课外阅读时间低于国家标准,则学校应适当增加课外阅读时间.根据以上抽样调查数据(同一组中的数据用该组区间的中点值为代表),该校是否需要增加初中学生课外阅读时间?(2)从课外阅读时间不足10个小时的样本中随机抽取3人,求至少有2名初中生的概率.答案:(1)需要;(2)0.7.分析:(1)根据频率分布直方图根据平均数公式估计初中生阅读时间的平均数,即得解;(2)根据古典概型的计算公式,即得解(1)由图可求出初中生在[30,40)内的频率为0.2,故样本中初中生阅读时间的平均数为5×0.05+15×0.3+25×0.4+35×0.2+45×0.05=24<60×0.5=30,故按国家标准,该校需要增加初中学生课外阅读时间.(2)由图可求出初中生和高中生课外阅读时间不足10小时的人数分别为3人和2人,记初中生3人为a1,a2,a3,高中生2人为b1,b2,从这5人中随机抽取3人一共有10种,分别为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),其中至少2名初中生包括7种情况,=0.7.所以所求事件的概率为71019、袋子里有6个大小、质地完全相同且带有不同编号的小球,其中有1个红球,2个白球,3个黑球,从中任取2个球.(1)写出样本空间;(2)求取出两球颜色不同的概率;(3)求取出两个球中至多一个黑球的概率.答案:(1)答案见解析;;(2)1115.(3)45分析:(1)将1个红球记为a,2个白球记为b1,b2,3个黑球记为c1,c2,c3,进而列举出所有可能性,进而得到样本空间;(2)由题意,有1红1白,1红1黑,1白1黑,共三大类情况,由(1),列举出所有可能性,进而求出概率;(3)由题意,有1红1白,1红1黑,1白1黑,2白,共四大类情况,由(1),列举出所有可能性,进而求出概率.(1)将1个红球记为a,2个白球记为b1,b2,3个黑球记为c1,c2,c3,则样本空间Ω={(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)},共15个样本点.(2)记A事件为“取出两球颜色不同”,则两球颜色可能是1红1白,1红1黑,1白1黑,则A={(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3)},A包含11个样本点,所以P(A)=1115.(3)记B事件为“取出两个球至多有一个黑球”,则两球颜色可能是1红1白,1红1黑,1白1黑,2白,则B={(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3)},B包含12个样本点,所以P(B)=1215=45.20、某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如下表所示.(1)如果随机调查这个班的一名学生,求事件A:抽到不积极参加班级工作且学习积极性不高的学生的概率;(2)若不积极参加班级工作且学习积极性高的7名学生中有2名男生,现从中抽取2名学生参加某项活动,请用字母代表不同的学生,写出样本空间;(3)在(2)的条件下求事件B:2名学生中恰有1名男生的概率.答案:(1)0.38(2)答案见解析(3)1021分析:(1)50名学生中,不积极参加班级工作且学习积极性不高的学生有19人,由此能求出事件A:抽到不积极参加班级工作且学习积极性不高的学生的概率P(A).(2)不积极参加班级工作且学习积极性高的7名学生中有两名男生,设为A,B,另外五名女生设为a,b,c,d,e,现从中抽取两名学生参加某项活动,能用字母代表不同的学生列举出抽取的所有可能结果.(3)事件B:两名学生中恰有1名男生,则事件B包含的基本事件有10种,由此能求出事件B:两名学生中恰有1名男生的概率P(B).(1)50名学生中,不积极参加班级工作且学习积极性不高的学生有19人,=0.38.∴事件A:抽到不积极参加班级工作且学习积极性不高的学生的概率P(A)=1950(2)不积极参加班级工作且学习积极性高的7名学生中有两名男生,设为A,B,另外五名女生设为a,b,c,d,e,现从中抽取两名学生参加某项活动,用字母代表不同的学生列举出抽取的所有可能结果有21种,分别为:AB,Aa,Ab,Ac,Ad,Ae,Ba,Bb,Bc,Bd,Be,ab,ac,ad,ae,bc,bd,be,cd,ce,de.(3)事件B:两名学生中恰有1名男生,则事件B包含的基本事件有10种,分别为:Aa,Ab,Ac,Ad,Ae,Ba,Bb,Bc,Bd,Be,∴事件B:两名学生中恰有1名男生的概率P(B)=10.21。
高中数学概率问题解决技巧与方法详细说明概率是高中数学中的一个重要概念,也是考试中常见的题型。
掌握解决概率问题的技巧和方法,对于高中学生来说至关重要。
本文将详细说明高中数学概率问题的解决技巧和方法,帮助读者更好地应对这类题目。
一、基本概念与公式在解决概率问题之前,我们首先需要了解一些基本概念和公式。
概率是指某一事件发生的可能性,通常用一个介于0和1之间的数表示。
事件的概率可以通过以下公式计算:P(A) = n(A) / n(S)其中,P(A)表示事件A的概率,n(A)表示事件A包含的样本点个数,n(S)表示样本空间中的样本点个数。
二、排列与组合在概率问题中,排列和组合是常见的考点。
排列是指从n个不同元素中取出m 个元素进行排列,计算排列数可以使用以下公式:A(n, m) = n! / (n - m)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
组合是指从n个不同元素中取出m个元素进行组合,计算组合数可以使用以下公式:C(n, m) = n! / (m! * (n - m)!)三、互斥事件与独立事件在概率问题中,互斥事件和独立事件是另一个重要的概念。
互斥事件指的是两个事件不能同时发生,例如掷骰子出现1和出现6是互斥事件。
计算互斥事件的概率可以使用以下公式:P(A or B) = P(A) + P(B)其中,P(A or B)表示事件A或事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。
独立事件指的是两个事件的发生不会相互影响,例如连续两次抛硬币出现正面是独立事件。
计算独立事件的概率可以使用以下公式:P(A and B) = P(A) * P(B)其中,P(A and B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。
四、应用实例下面通过一些具体的题目来说明概率问题的解决技巧和方法。
1. 从一副扑克牌中随机抽取一张牌,求抽到红心的概率。
高中数学概率问题解决技巧与方法详细说明数学概率是高中数学中的一个重要内容,也是学生们经常会遇到的问题。
在处理概率问题时,我们需要运用一些技巧和方法来解决,以确保能够正确地分析和计算概率。
本文将详细介绍一些高中数学概率问题解决的技巧和方法,帮助读者更好地理解和应用概率概念。
一、概率问题的基本概念回顾在解决概率问题之前,我们首先需要回顾一些基本概念。
概率是指某个事件发生的可能性,通常用一个介于0到1之间的数值来表示。
事件的概率可以通过分为有限样本空间的情况下,事件发生的次数与样本空间中的总次数之比来计算。
二、计算概率的常用方法在解决概率问题时,我们可以运用以下几种常见的计算方法:1. 等可能性原则:当事件的样本空间中的每个样本发生的可能性相等时,我们可以采用等可能性原则。
例如,投掷一个均匀的骰子,每个点数(1-6)出现的可能性相等。
2. 频率法:在实际的观察或实验中,通过统计事件发生的频次来估计事件的概率。
这种方法在大量实验中往往更加准确。
3. 几何法:对于几何问题,我们可以通过计算区域面积或长度比来计算概率。
例如,计算一个点落在某个区域内的概率,可以通过计算该区域的面积与总体面积的比值。
4. 利用条件概率:有时,我们需要计算事件在给定其他条件下发生的概率。
这时可以使用条件概率公式:P(A|B) = P(A∩B)/P(B),其中P(A∩B) 表示事件 A 和 B 同时发生的概率,P(B) 表示事件 B 发生的概率。
5. 利用排列与组合:排列与组合是解决概率问题时常用的技巧。
当事件所涉及的样本空间较大时,我们可以利用排列与组合的原理来简化计算。
例如,在从一副52张的扑克牌中抽取5张牌,我们可以利用组合数来计算不同组合的出现概率。
三、应用概率解决实际问题除了计算概率,概率概念还可以应用于解决一些实际问题,例如:1. 投资理财:概率可以用来估计投资风险和预测投资收益。
投资者可以根据不同资产类别的历史数据和市场趋势,计算出不同事件的概率,并做出相应的投资决策。
高中数学概率与统计的常见题型及解题思路数学是一门精确的科学,而概率与统计则是数学中的一个重要分支。
在高中阶段,学生将学习到许多与概率与统计相关的常见题型,本文将介绍这些题型以及解题的思路。
一、概率题型1. 事件的概率计算概率计算是概率论的基本概念之一。
当我们面对一个事件时,首先需要明确事件的样本空间以及事件本身的可能性。
以掷硬币为例,样本空间为{正面,反面},而事件“掷出正面”有一半的可能性。
解题时,可以使用计数原理或者几何概型来计算概率。
2. 独立事件的概率计算当两个或多个事件相互独立时,可以使用乘法法则来计算它们同时发生的概率。
例如,从一副扑克牌中同时抽出两张牌,求两张牌都是红心的概率。
解题时,需要考虑每个事件的概率,并将它们相乘。
3. 互斥事件的概率计算互斥事件指的是两个事件不可能同时发生。
当两个事件互斥时,可以使用加法法则来计算它们发生的概率。
例如,从一副扑克牌中抽出一张牌,求该牌是红心或者是黑桃的概率。
解题时,需要考虑每个事件的概率,并将它们相加。
4. 条件概率计算条件概率是在已知一定条件下某个事件发生的概率。
例如,某城市早高峰时段交通事故的概率。
解题时,需要将已知条件与事件的概率结合起来计算。
二、统计题型1. 样本调查与数据分析在统计学中,常常需要进行样本调查以获取数据。
例如,假设我们要调查全校学生的身高分布,可以通过随机抽样的方式获得样本数据,并进行统计分析。
解题时,需要了解样本调查的方法和数据分析的技巧。
2. 统计指标计算常见的统计指标包括平均数、中位数、众数、方差等。
解决统计题目时,需要根据给定的数据计算相应的统计指标。
例如,求一组数据的平均值或者方差。
3. 概率分布计算概率分布是指随机变量取各个值的概率。
在统计学中,常见的概率分布包括二项分布、正态分布等。
解决概率分布相关的题目时,需要了解不同概率分布的特点,并运用相应的公式来计算。
4. 假设检验与置信区间假设检验和置信区间是统计学中的两个重要概念。
高中数学概率问题解决思路与方法概率问题在高中数学中占据着重要的地位,它不仅是数学知识的重要组成部分,也是我们在日常生活中常常会遇到的问题。
解决概率问题需要一定的思维方式和方法,本文将从概率的基本概念、计算方法和解题技巧三个方面进行详细论述,帮助高中学生和他们的父母更好地理解和解决概率问题。
一、概率的基本概念概率是指某一事件在所有可能事件中发生的可能性大小。
在概率问题中,我们常常需要计算某一事件发生的概率。
例如,某班级有30名学生,其中15名男生和15名女生,现从中随机抽取一名学生,求抽到男生的概率。
解决这类问题,首先需要明确事件和样本空间的概念。
事件是指我们关注的某一结果,样本空间是指所有可能的结果的集合。
在这个问题中,事件是抽到男生,样本空间是所有学生的集合。
然后,我们需要计算事件发生的可能性大小,即概率。
在这个问题中,抽到男生的概率等于男生的人数除以总人数,即15/30=1/2。
二、概率的计算方法在解决概率问题时,我们可以利用频率和几何概率两种方法进行计算。
1. 频率法:频率是指某一事件在多次试验中发生的次数与总次数的比值。
例如,某班级有30名学生,其中15名男生和15名女生,现从中随机抽取10名学生,求抽到男生的频率。
解决这类问题,我们需要进行多次试验,统计男生出现的次数,然后计算频率。
在这个问题中,我们可以进行多次抽取10名学生的试验,统计抽到男生的次数,然后将该次数除以总次数,即可得到频率。
2. 几何概率法:几何概率是指事件发生的可能性大小与样本空间中的元素个数之比。
例如,某班级有30名学生,其中15名男生和15名女生,现从中随机抽取一名学生,求抽到男生的几何概率。
解决这类问题,我们需要根据样本空间和事件的定义来计算几何概率。
在这个问题中,样本空间是所有学生的集合,男生是事件。
由于男生的人数为15,样本空间的元素个数为30,所以抽到男生的几何概率为15/30=1/2。
三、解题技巧在解决概率问题时,我们需要掌握一些解题技巧,以提高解题效率和准确性。
高中数学概率问题解决技巧与方法详细解读与举例概率问题在高中数学中占有重要地位,它既是数学的一门重要分支,也是现实生活中常见的实际问题。
掌握概率问题的解决技巧和方法,对于学生来说是非常重要的。
本文将详细解读概率问题的解决技巧,并通过具体的题目举例,说明其考点和应用。
一、概率的基本概念概率是指某个事件发生的可能性大小。
在概率问题中,我们常用“P(A)”表示事件A发生的概率,其取值范围为0到1之间。
当P(A)=0时,表示事件A不可能发生;当P(A)=1时,表示事件A一定会发生。
例如,某班级有30名学生,其中10名男生和20名女生。
现从班级中随机抽取一名学生,求抽到男生的概率。
解析:设事件A为抽到男生,事件B为抽到女生。
由于班级中共有10名男生和20名女生,所以事件A的样本空间为男生的集合,共有10个元素;事件B的样本空间为女生的集合,共有20个元素。
因此,事件A的概率为P(A)=10/30=1/3。
二、概率的加法法则概率的加法法则是指当两个事件A和B互斥(即事件A和事件B不可能同时发生)时,它们的概率之和等于它们的和事件的概率。
例如,某班级有30名学生,其中10名男生和20名女生。
现从班级中随机抽取一名学生,求抽到男生或女生的概率。
解析:设事件A为抽到男生,事件B为抽到女生。
由于男生和女生是互斥的,即事件A和事件B不可能同时发生,所以事件A和事件B的和事件为全体学生,样本空间为班级中所有学生的集合,共有30个元素。
因此,事件A或事件B的概率为P(A∪B)=1。
三、概率的乘法法则概率的乘法法则是指当两个事件A和B独立(即事件A的发生与事件B的发生无关)时,它们的概率之积等于它们的交事件的概率。
例如,某班级有30名学生,其中10名男生和20名女生。
现从班级中随机抽取两名学生,求两名学生都是男生的概率。
解析:设事件A为第一名学生是男生,事件B为第二名学生是男生。
由于两名学生的性别是独立的,即第一名学生是男生与第二名学生是男生的发生无关,所以事件A和事件B的交事件为两名学生都是男生的情况。
高中数学概率与统计中的常见问题与解题技巧总结概率与统计是高中数学中重要的一部分,它涉及到我们日常生活中许多实际问题的分析与解决。
本文将总结高中数学概率与统计中的常见问题,并提供解题技巧,帮助学生更好地理解和应用这一知识点。
一、概率与统计中的常见问题1. 抽样问题抽样是统计中常用的一种方法,用于研究大量事物中的一部分。
在实际问题中,有时我们需要从一个样本中了解整体的情况。
抽样问题涉及如何选择样本以及如何通过样本推断总体的特征等。
2. 事件与概率在概率问题中,我们常常需要计算事件发生的概率。
事件是指对某个随机试验的结果的描述,而概率则是该事件发生的可能性大小。
常见的问题有计算单个事件的概率、计算多个事件的联合概率、计算事件的互斥与独立等。
3. 随机变量与概率分布随机变量是指取值不确定的变量,概率分布则描述了这些变量可能取得各个值的概率情况。
在概率与统计中,我们通过研究随机变量的概率分布,来了解其特征和规律。
常见问题有计算随机变量的期望和方差、找到随机变量的概率分布等。
4. 样本空间与事件样本空间是指一个随机试验中所有可能结果的集合,事件是对样本空间中的某些结果的描述。
在概率问题中,我们常常需要确定样本空间和事件,并通过它们来计算概率。
常见问题有确定样本空间的大小、确定事件发生的概率等。
二、解题技巧1. 画图辅助分析在解决概率与统计问题时,画图是一种常用的辅助分析工具。
通过画图,可以更直观地理解问题,并找到解题的思路。
比如,在计算事件的概率时,可以通过画出样本空间和事件的关系图来计算。
2. 分类讨论许多概率与统计问题是复杂的,需要进行分类讨论,才能找到解题的方法。
将问题进行分解,将复杂的情况分成几种简单情况,然后逐一解决。
通过分类讨论,可以将问题变得更简单,容易理解和解决。
3. 利用性质和公式在解概率与统计问题时,我们常常可以利用一些性质和公式来简化计算或推导过程。
比如,利用事件的互斥性和独立性,可以简化计算多个事件的联合概率;利用随机变量的线性性质,可以计算期望和方差等。
高中数学概率的性质及相关题目解析概率是高中数学中一个重要的概念,它在日常生活中无处不在。
掌握概率的性质和解题技巧,对于高中生来说是非常重要的。
本文将从概率的基本性质、计算方法、常见题型等方面进行详细解析,帮助读者更好地理解和应用概率知识。
一、概率的基本性质概率是描述某一事件发生可能性大小的数值,它具有以下几个基本性质:1. 概率的取值范围是0到1之间,即0≤P(A)≤1。
其中,P(A)表示事件A发生的概率。
2. 对于必然事件,其概率为1,即P(S) = 1,其中S表示样本空间。
3. 对于不可能事件,其概率为0,即P(Φ) = 0,其中Φ表示空集。
4. 对于任意事件A,有P(A') = 1 - P(A),其中A'表示事件A的对立事件。
5. 对于互斥事件A和B,有P(A∪B) = P(A) + P(B),其中∪表示并集。
二、概率的计算方法在实际解题过程中,我们需要根据具体情况选择合适的计算方法。
下面以两个常见的计算方法为例进行说明。
1. 等可能概型当样本空间中的每个样本点发生的可能性相等时,称为等可能概型。
在这种情况下,事件A的概率可以通过计算事件A包含的样本点个数与样本空间总个数的比值来求得,即P(A) = n(A) / n(S)。
例如,有一枚均匀硬币,抛掷一次,求出现正面的概率。
样本空间为{正面,反面},共2个样本点,其中正面的个数为1,因此P(正面) = 1 / 2。
2. 条件概率当事件A的发生受到事件B的影响时,我们需要考虑条件概率。
条件概率的计算公式为P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和B同时发生的概率。
例如,某班级男生和女生的比例为3:2,现在从班级中随机选取一名学生,求选中的学生是男生的概率。
设事件A表示选中的学生是男生,事件B表示选中的学生来自该班级。
则P(A) = P(A∩B) / P(B) = (3/5) / 1 = 3/5。
高中数学概率问题解决技巧与方法详细解读与实例分析与相关讲解概率问题在高中数学中占据着重要的位置,是数学中的一大难点。
为了帮助广大高中学生和家长更好地理解和解决概率问题,本文将详细解读概率问题的解题技巧与方法,并通过具体的题目实例进行分析与讲解。
一、概率问题的基本概念和计算方法概率是研究随机事件发生可能性的数学工具。
在解决概率问题时,我们需要了解一些基本概念和计算方法。
首先,我们要明确事件和样本空间的概念。
事件是指我们感兴趣的事情,而样本空间是指所有可能发生的结果的集合。
例如,掷一枚骰子,事件可以是“出现的点数为3”,样本空间可以是{1, 2, 3, 4, 5, 6}。
其次,我们需要计算事件发生的可能性,即概率。
概率的计算公式为:P(A) =n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A发生的可能结果数,n(S)表示样本空间中所有可能结果的数目。
例如,假设有一副扑克牌,从中随机抽取一张牌,求抽到红心的概率。
红心有13张牌,总共有52张牌,因此概率为P(红心) = 13 / 52 = 1 / 4。
二、概率问题的解题技巧与方法1. 利用排列组合计算概率有些概率问题可以通过排列组合的方法来解决。
例如,从10个人中选取3个人,问其中至少有一个男生的概率是多少?首先,我们计算不选男生的情况,即选取3个女生的概率。
根据排列组合的公式,我们有C(7, 3)种选取3个女生的方法。
然后,我们计算总的选取方法,即C(10, 3)。
因此,概率为P(至少有一个男生) = 1 - C(7, 3) / C(10, 3)。
2. 利用条件概率计算概率有些概率问题需要考虑条件概率来解决。
例如,某班级有30个学生,其中20个人会打篮球,15个人会踢足球,10个人既会打篮球又会踢足球。
现在从班级中随机选取一个学生,问这个学生会打篮球的概率是多少?根据条件概率的定义,我们有P(打篮球|选中的学生) = P(打篮球且选中的学生) / P(选中的学生)。
高中数学解概率问题的技巧概率问题在高中数学中占据了重要的位置,它不仅是高考数学的必考内容,也是数学思维能力的重要体现。
本文将介绍一些解概率问题的技巧,帮助高中学生更好地应对这类题目。
一、概率基础知识回顾在解概率问题之前,我们需要回顾一些概率的基础知识。
概率是描述随机事件发生可能性的一种数值,通常用一个介于0和1之间的实数表示。
对于一个随机事件A,其概率记作P(A),满足0 ≤ P(A) ≤ 1。
当P(A) = 0时,表示事件A不可能发生;当P(A) = 1时,表示事件A一定会发生。
二、计算概率的方法1. 等可能性原则当一个随机试验的所有结果是等可能发生时,可以通过计算事件A的有利结果个数与总结果个数之比来求解概率。
例如,掷一枚均匀的骰子,求得点数为3的概率。
由于骰子的六个面都是等可能的,点数为3的有利结果只有一个,总结果个数为6,因此P(点数为3) = 1/6。
2. 排列组合当随机试验的结果不是等可能发生时,可以通过排列组合的方法来计算概率。
例如,从1至10中随机选择一个数,求得选出的数是偶数的概率。
由于1至10中共有5个偶数,总数为10,因此P(选出的数是偶数) = 5/10 = 1/2。
三、概率问题的常见考点1. 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
计算条件概率时,可以利用条件概率的定义公式P(A|B) = P(A∩B)/P(B)。
例如,某班级有30名男生和20名女生,从中随机选取一名学生,求得选中的学生是男生的概率。
由于男生和女生的人数不同,所以选中男生和选中女生的概率不同。
设事件A为选中男生,事件B为选中女生,则P(A) = 30/50,P(B) = 20/50,P(A∩B) = 0,因此P(A|B) = 0。
2. 互斥事件互斥事件是指两个事件不能同时发生的情况。
计算互斥事件的概率时,可以利用互斥事件的概率公式P(A∪B) = P(A) + P(B)。
例如,某班级有30名男生和20名女生,从中随机选取一名学生,求得选中的学生是男生或者女生的概率。
专题22高中数学概率的问题【知识总结】1.古典概型的概率公式P (A )=事件A 包含的样本点数试验的样本点总数. 2.独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . 3.相互独立事件同时发生的概率:若A ,B 相互独立,则P (AB )=P (A )·P (B ).4.互斥事件至少有一个发生的概率:若事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ),P (A -)=1-P (A ).5.条件概率公式设A ,B 为随机事件,且P(A)>0,则P (B |A )=P (AB )P (A ). 【高考真题】1.(2022·全国乙理)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 ____________.2.(2022·全国甲理) 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 3.(2022·全国甲文) 从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A .15B .13C .25D .23 4.(2022·新高考Ⅰ) 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16 B .13 C .12 D .235.(2022·全国乙理) 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、 乙、丙比赛获胜的概率分别为123, , p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( ) A .p 与该棋手和甲、乙、丙的比赛次序无关 B .该棋手在第二盘与甲比赛,p 最大 C .该棋手在第二盘与乙比赛,p 最大 D .该棋手在第二盘与丙比赛,p 最大【题型分类】题型一 古典概型1.(2021·全国甲)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .452.已知多项选择题的四个选项A ,B ,C ,D 中至少有两个选项正确,规定:如果选择了错误选项就不得 分.若某题的正确答案是ABC ,某考生随机选了两个选项,则其得分的概率为( )A .12B .310C .16D .3113.有4个大小、形状相同的小球,装在一个不透明的袋子中,小球上分别标有数字1,2,3,4.现每次有放 回地从中随机取出一个小球,直到标有偶数的球都取到过就停止.小明用随机模拟的方法估计恰好在第4次停止摸球的概率,利用计算机软件产生随机数,每1组中有4个数字,分别表示每次摸球的结果,经随机模拟产生了以下21组随机数:1314 1234 2333 1224 3322 1413 31244321 2341 2413 1224 2143 4312 24121413 4331 2234 4422 3241 4331 4234由此可以估计恰好在第4次停止摸球的概率为( )A .23B .13C .27D .5214.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为( )A .114B .37C .47D .345.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个 五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A .16B .110C .112D .1206.《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的 上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为________.7.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分 为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .11168.“六艺”出自《周礼·地官司徒·保氏》,是指礼、乐、射、御、书、数.已知某人觉得“君子不学礼无 以立”,而其两个孩童对“数”均有浓厚兴趣,该人依据自己能力,只能为每个孩童选择六艺中的四艺进行培养,若要令该人和两个孩童对所选的四艺都满意,那么两个孩童至少有一个选到“御”的概率为( )A .12B .34C .59D .459.甲、乙、丙三人被系统随机地预约到A ,B ,C 三家医院接种新冠疫苗,每家医院恰有1人预约.已知 A 医院接种的是只需要打一针的腺病毒载体新冠疫苗,B 医院接种的是需要打两针的灭活新冠疫苗,C 医院接种的是需要打三针的重组蛋白新冠疫苗,问:甲不接种只打一针的腺病毒载体新冠疫苗且丙不接种需要打三针的重组蛋白新冠疫苗的概率等于( )A .13B .23C .12D .1910.北斗导航系统由55颗卫星组成,于2020年6月23日完成全球组网部署,全面投入使用.北斗七星自古是我国人民辨别方向判断季节的重要依据,北斗七星分别为天枢、天璇、天玑、天权、玉衡、开阳、摇光,其中玉衡最亮,天权最暗,一名天文爱好者从七颗星中随机选两颗进行观测,则玉衡和天权至少一颗被选中的概率为( )A .1021B .1121C .1142D .521题型二 相互独立事件与独立重复试验11.(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立12.某国产杀毒软件的比赛规则为每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响,则( )A .该软件通过考核的概率为18B .该软件在第三轮考核被淘汰的概率为18C .该软件至少能够通过两轮考核的概率为23D .在此次比赛中该软件平均考核了6524轮13.甲、乙两个球队进行篮球决赛,采取五局三胜制(共赢得三场比赛的队伍获胜,最多比赛五局),每场球赛无平局.根据前期比赛成绩,甲队的主场安排为“主客主主客”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以3∶2获胜的概率为________.14.小明在做一个与扔质地均匀的正六面体骰子有关的游戏,规定:若骰子1点或2点向上,则小明前进1步,若骰子3点或4点向上,则小明前进2步,若骰子5点或6点向上,则小明前进3步.小明连续扔了三次骰子,则他一共前进了8步的概率是( )A .127B .227C .19D .2915.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为p 1和p 2,则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能16.(多选)甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的 是( )A .目标恰好被命中一次的概率为12+13B .目标恰好被命中两次的概率为12×13C .目标被命中的概率为12×23+12×13D .目标被命中的概率为1-12×2317.甲、乙两人进行象棋比赛,采取五局三胜制(当一人先赢3局时获胜,比赛结束).棋局以红棋与黑棋对阵,两人执色轮流交换,执红棋者先走.假设甲执红棋时取胜的概率为23,执黑棋时取胜的概率为12,各局比赛结果相互独立,且没有和局.若比赛开始,甲执红棋开局,则甲以3∶2获胜的概率为________.18.如图,已知电路中3个开关闭合的概率都是12,且是相互独立的,则灯 亮的概率为( )A .38B .12C .58D .7819.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以2∶0领先,则下列说法中正确的有________(填序号).①甲队获胜的概率为827;②乙队以3∶0获胜的概率为13; ③乙队以3∶1获胜的概率为29;④乙队以3∶2获胜的概率为49. 20.甲、乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球赢球的概率为25,则在比分为10∶10后甲先发球的情况下,甲以13∶11赢下此局的概率为( )A .225B .310C .110D .325题型三 条件概率与全概率21.2020年12月4日是第七个“国家宪法日”.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动,甲同学答对第一道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第一道题”,事件B 表示“甲同学答对第二道题”,则P (B |A )=( )A .13B .12C .23D .3422.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出2个球,记事件A 为“取出的2个球颜色不同”,事件B 为“取出1个红球,1个白球”,则P (B |A )等于( )A .16B .313C .59D .2323.某公司为方便员工停车,租了6个停车位,编号如图所示.公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则P (A |B )等于( )A .16B .310C .12D .3524.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A .310B .13C .38D .2925.某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是( )A .0.155B .0.175C .0.016D .0.09626.已知某公路上经过的货车与客车的数量之比为2∶1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为( )A .1100B .160C .150D .13027.(多选)为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是( )A .P (A )=35B .P (AB )=310C .P (B |A )=12D .P (B |A )=1228.甲、乙两个均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .P (A )=P (B )=P (C ) B .P (BC )=P (AC )=P (AB )C .P (ABC )=18D .P (B |A )=1229.有三个箱子,分别编号为1,2,3.1号箱装有1个红球、4个白球,2号箱装有2个红球、3个白球,3号箱装有3个红球.某人从三个箱子中任取一箱,从中任意摸出一球,取得红球的概率为________.30.有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有( )A .任取一个零件是第1台生产出来的次品概率为0.06B .任取一个零件是次品的概率为0.052 5C .如果取到的零件是次品,且是第2台车床加工的概率为27D .如果取到的零件是次品,且是第3台车床加工的概率为27。