船舶螺旋桨的设计与计算过程
- 格式:docx
- 大小:37.65 KB
- 文档页数:2
船用螺旋桨螺距计算公式船用螺旋桨的设计是船舶工程中的重要环节,其中螺距计算是一个关键步骤。
螺距是指螺旋桨每转一圈前进的距离,它直接影响到船舶的推进性能和效率。
在这篇文章中,我们将介绍船用螺旋桨螺距计算的公式及其应用。
船用螺旋桨的螺距计算公式可以根据船舶的设计要求和性能指标来确定。
一般来说,螺距的计算需要考虑船舶的速度、功率、转速以及螺旋桨的直径等因素。
下面是船用螺旋桨螺距计算的公式:螺距 = (速度× 60) / (π × 直径)其中,速度单位为节(1节=1852米/小时),直径单位为米。
这个公式的原理是通过船舶的速度和螺旋桨转速来计算螺旋桨每转一圈前进的距离。
螺距是船用螺旋桨设计中的重要参数,它直接影响到船舶的推进效率和性能。
通常情况下,为了提高船舶的推进效率,需要选择合适的螺距。
如果螺距选取不当,可能会导致船舶在高速航行时出现过载或低速航行时推进效率低下的问题。
根据船舶的设计要求和性能指标,可以通过螺距计算公式来确定螺旋桨的螺距。
首先,需要确定船舶的速度和螺旋桨的直径。
船舶的速度可以通过船舶设计参数或实测数据来获取,而螺旋桨的直径则可以根据船舶的设计要求和性能指标来确定。
然后,将速度和直径代入螺距计算公式,即可得到螺旋桨的螺距。
船用螺旋桨螺距计算公式的应用非常广泛,不仅可以用于船舶设计过程中,还可以用于船舶的改装和维修。
在船舶改装和维修中,通过调整螺距,可以改变船舶的推进性能和效率,以满足不同的使用需求。
除了螺距计算公式,还有一些其他的影响螺旋桨性能的因素需要考虑。
例如,螺旋桨的叶片数目、叶片形状、叶片角度等都会对螺旋桨的推进效率和性能产生影响。
因此,在实际应用中,需要综合考虑这些因素,以确保螺旋桨的设计满足船舶的要求。
船用螺旋桨螺距计算公式是船舶设计中的重要工具,它可以帮助工程师确定螺旋桨的螺距,以满足船舶的设计要求和性能指标。
在实际应用中,需要综合考虑船舶的速度、功率、转速、直径等因素,以确保螺旋桨的设计满足船舶的推进需求。
螺旋桨cfd方法
螺旋桨CFD方法是指利用计算流体力学(CFD)技术对螺旋桨进行数值模拟分析的方法。
螺旋桨是船舶、飞机、汽车等交通工具中重要的推进器件,对其性能的优化和设计具有重要意义。
螺旋桨CFD方法的基本过程包括模型准备、数值模拟、后处理分析等步骤。
在模型准备阶段,需要获取螺旋桨的几何模型,并进行网格划分。
数值模拟过程中,利用计算流体力学基本方程(如Navier-Stokes方程)对流场进行计算,得到速度、压力等一系列物理量。
在后处理分析阶段,对结果进行可视化处理,评估螺旋桨的性能。
螺旋桨CFD方法主要应用于螺旋桨的性能优化和设计。
通过对不同材料、不同形状、不同工作状态的螺旋桨进行CFD数值模拟,可以得到其性能特征和流场分布情况,从而指导螺旋桨的设计和优化。
同时,螺旋桨CFD方法也可以应用于螺旋桨的疲劳、振动等工程问题的研究。
螺旋桨水动力学性能分析与优化设计螺旋桨是水上船只中最重要的推进装置,其性能直接关系到船舶的推进效率和航行速度。
螺旋桨水动力学性能分析与优化设计是船舶研究领域中的重要分支,对于减少能源消耗、提高运输效率、降低污染排放具有重要作用。
一、螺旋桨水动力学性能分析的基础理论1.1 计算流体力学计算流体力学(CFD)是一种通过数字计算方法来解决流体力学问题的数学模型。
在螺旋桨被设计和研究时,CFD成为了一种重要的工具。
其模型基于Navier-Stokes方程和欧拉方程,模拟了流场和流动的变化,从而分析了流体运动的影响和经济性能的评估。
1.2 螺旋桨理论螺旋桨的理论基础是流体力学中的速度势流和双曲型等势流。
速度势流指的是在流体中的一个点上速度向量可以分解为势函数的梯度,而双曲型等势流涉及到一个坐标系中,速度的散度和旋度是相等的。
1.3 失速失速指的是在较小的流速下,螺旋桨进入了抵抗气蚀和附面效应的状态。
能够有效地分析并求出失速将对设计螺旋桨的截面和轴设置具有重要意义。
二、螺旋桨水动力学性能分析的关键参数2.1 推力和速度推力和速度是螺旋桨水动力学性能分析中的两个关键参数。
推力是螺旋桨提供给船体的推进力,影响到船舶的加速度和航行速度。
速度可以用来计算泥和水的扰动实体质量。
2.2 轮廓设计螺旋桨轮廓设计对其性能影响非常大,包括叶片的数量、截面形状和翼型等。
良好的轮廓设计能够提高螺旋桨的效率,减小水动力噪音,提高抵抗力和附面效应。
2.3 旋转速度旋转速度是螺旋桨的打动驱动力,影响了传动效率和螺旋桨效率。
高速旋转通常会导致较大的失速和流量噪音,而低速旋转也可能会导致螺旋桨产生过多垂直力。
2.4 推力系数推力系数是推力与密度、直径、旋转速度和旋转等效面积的关系。
推力系数是成尺寸和旋转速度的一种无因次数,用于描述螺旋桨的推进效率。
三、螺旋桨水动力学性能优化的方法3.1 优化设计算法优化设计算法是一种通过数学模型和计算机程序来找到最优解的方法。
第九章螺旋桨图谱设计§9-1 设计问题与设计方法螺旋桨设计是整个船舶设计中的一个重要组成部分。
在船舶线型初步设计完成后,通过有效马力的估算或船模阻力试验,得出该船的有效马力曲线。
在此基础上,要求我们设计一个效率最佳的螺旋桨,既能达到预定的航速,又要使消耗的主机马力小;或者当主机已选定,要求设计一个在给定主机条件下使船舶能达到最高航速的螺旋桨。
因此,螺旋桨的设计问题可分为两类。
一、螺旋桨的初步设计对于新设计的船舶,根据设计任务书对船速的要求设计出最合适的螺旋桨,然后由螺旋桨的转速及效率决定主机的转速及马力,并据此订购主机。
具体地讲就是:①已知船速V,有效马力PE,根据选定的螺旋桨直径D,确定螺旋桨的最佳转速n、效率η0、螺距比P/D和主机马力P s;②已知船速V,有效马力PE,根据给定的转速n,确定螺旋桨的最佳直径D、效率η0、螺距比P/D和主机马力Ps。
二、终结设计主机马力和转速决定后(最后选定的主机功率及转速往往与初步设计所决定者不同),求所能达到的航速及螺旋桨的尺度。
具体地讲就是:已知主机马力Ps、转速n和有效马力曲线,确定所能达到的最高航速V,螺旋桨的直径D、螺距比P/D及效率η0。
新船采用现成的标准型号主机或旧船调换螺旋桨等均属此类问题。
在造船实践中,一般采用标准机型,所以在实际设计中,极大多数是这类设计问题。
目前设计船用螺旋桨的方法有两种,即图谱设计法及环流理论设计法。
图谱设计法就是根据螺旋桨模型敞水系列试验绘制成专用的各类图谱来进行设计。
用图谱方法设计螺旋桨不仅计算方便,易于为人们所掌握,而且如选用图谱适宜,其结果也较为满意,是目前应用较广的一种设计方法。
应用图谱设计螺旋桨虽然受到系列组型式的限制,但此类资料日益丰富,已能包括一般常用螺旋桨的类型。
环流理论设计方法是根据环流理论及各种桨叶切面的试验或理论数据进行螺旋桨设计。
用此种方法可以分别选择各半径处最适宜的螺距和切面形状,并能照顾到船后伴流不均匀的影响,因而对于螺旋桨的空泡和振动问题可进行比较正确的考虑。
342第八章 螺旋桨的强度校核为了船舶的安全航行,必须保证螺旋桨具有足够的强度,使其在正常航行状态下不致破损或断裂。
为此,在设计螺旋桨时必须进行强度计算和确定桨叶的厚度分布。
螺旋桨工作时作用在桨叶上的流体动力有轴向的推力及与转向相反的阻力,两者都使桨叶产生弯曲和扭转。
螺旋桨在旋转时桨叶本身的质量产生径向的离心力,使桨叶受到拉伸,若桨叶具有侧斜或纵斜,则离心力还要使桨叶产生弯曲。
此外,桨叶上也可能受到意外的突然负荷,例如:碰击冰块或其他飘浮物体等。
同时螺旋桨处于不均匀的尾流场中工作,使桨叶受力产生周期性变化,故较难精确地算出作用在桨叶上的外力。
在计算桨叶的强度时,我们可以把桨叶看作是扭曲的、变截面的悬臂梁,而且其横截面是非对称的,故计算较为复杂,即使能正确地求得桨叶上的作用力,要精确地进行强度计算也是很困难的。
目前,对于动态负荷(即计及伴流不均匀性影响)下螺旋桨的强度计算方法虽然有所发展,但计算繁复,付之实用还为时尚早。
故在螺旋桨设计的实践中,一般都用理论和实验相结合的近似方法来进行螺旋桨的强度计算。
计算螺旋桨强度的近似方法很多,中国船级社于2001年颁发的《钢质海船入级与建造规范》(以下简称《规范》)中对螺旋桨的强度也有了规定,因为比较偏于安全,用近似方法计算的厚度未必一定能满足规范的要求,因此对“入级”海船应采用规范规定的方法计算。
本章中主要介绍我国2001年《规范》的规定,由此确定桨叶厚度。
为了使读者了解桨叶上的受力情况,对于分析计算方法也作必要的介绍。
§ 8-1 《规范》校核法一、螺旋桨桨叶厚度的确定为了保证螺旋桨的安全,中国船级社2001年《钢质海船入级与建造规范》第三分册第三篇第十一章中,对螺旋桨的强度要求作了明确具体的规定。
螺旋桨桨叶厚度t (固定螺距螺旋桨为0.25R 和0.6R 切面处,可调螺距螺旋桨为0.35R 和0.6R 切面处)不得小于按下式计算所得之值:XK Yt -=(mm ) (8-1) 式中 Y —— 功率系数,按(8-2)式求得;343K —— 材料系数,查表8-1;X —— 转速系数,按(8-3)式求得。
螺旋桨螺距怎么算[3篇]以下是网友分享的关于螺旋桨螺距怎么算的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
螺旋桨螺距怎么算(一)调距螺旋桨通过设置于桨中的操纵机构使桨叶能够相对于桨转动而调节螺距的螺旋桨,称为可调螺距螺旋桨。
据记载,大约在一个半世纪以前,在帆船上首先开始装置蒸汽机和螺旋桨时就产生了应用可转动叶瓣的螺旋桨的观念,这些船舶在没有风力时,借机器和螺旋桨来航行。
在风里足够时,停机而靠风力来航行,在风帆航行的状态下,停止的螺旋桨会产生相当大的阻力,此时转动螺旋桨的叶瓣将阻力最小,到1884年英国人符特科洛夫脱研究的一只调距螺旋桨得到实际应用。
后来调距螺旋桨在内燃机船舶也得到应用,那时的蒸汽机和内燃机还没有建立转向装置。
是通过调距螺旋桨达到换向目的而引起人们的兴趣。
由于某些船舶的航行状态经常需要变更(如军舰的巡航航速和最高航速,拖轮和渔船的自由航行与拖拽航行) ,一些船舶因增加吃水、风浪中航行及污底等影响而降低航速,而港内拖轮、渡轮、破冰船等对操纵性能要求较高,这些都对调距桨的发展提出了要求。
近几十年来调距桨的技术发展较快,已被广泛应用于各种商船和军舰。
20世纪30年代是调距桨发展的新时期,1934年瑞士爱舍维斯(Escher —Wyss )公司首次将调距桨装在一艘184kW (250马力)的游艇艾彩尔(Etzel )号上,1936年挪威的列爱思(Liaacn )公司生产了其第一套调距桨,1937年瑞典的卡米瓦(Kamewa )公司开始生产了其第一套调距桨装在110kW (150马力)的湖泊帆船上。
之后英国的罗托尔(Rotol )公司、美国的摩根史密斯(Morgen Smith)公司、荷兰的列泼斯(Lipes )公司等也相继开发了具有各自特点的螺旋桨。
1963年的瑞典的Kamewa 公司制造了当时世界上最大的调距桨(桨重28.5吨,桨直径5.8米)安装在25000吨散货船Sliver Isle号上,主机功率7281kW (9900马力)。
某沿海单桨散货船螺旋桨设计计算说明书姓名:胡建学班级:20120115学号:2012011503日期:2014年12月8日1.已知船体的主要参数船长 L = 118.00 米型宽 B = 9.70 米设计吃水 T = 7.20 米排水量 △ = 5558.2 吨方型系数 C B = 0.658桨轴中心距基线高度 Zp = 3.00 米由模型试验提供的船体有效马力曲线数据如下:航速V (kn ) 13 14 15 16有效马力PE (hp ) 2160 2420 3005 40452.主机参数型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp额定转速 N = 165 rpm转向 右旋传递效率 ηs=0.983.相关推进因子伴流分数 w = 0.279推力减额分数 t = 0.223相对旋转效率 ηR = 1.0船身效率 0777.111=--=wt H η4.可以达到最大航速的计算采用MAU 四叶桨图谱进行计算。
取功率储备10%,轴系效率ηs = 0.98螺旋桨敞水收到马力:P D = 5400×0.9×0.98×1.0=4762.8hp根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算:项 目单位 数 值 假定航速Vkn 13 14 15 16 V A =(1-w)Vkn 9.373 10.049 10.815 11.536 Bp=NP D 0.5/V A 2.542.337 35.212 29.570 25.171 Bp 6.5075.934 5.438 5.017 MAU 4-40 δ 75.5071.84 65.28 60.32 P/D 0.6560.678 0.689 0.738 ηO 0.552 0.573 0.5950.628 P TE =P D ·ηH ·ηO hp 2833.344 2941.134 3054.0573223.442 MAU 4-55 δ 76.22 70.27 64.4358.94 P/D 0.683 0.704 0.7290.768 ηO 0.538 0.557 0.5810.603 P TE =P D ·ηH ·ηO hp 2761.148 2859.008 2982.1973095.120 MAU 4-70 δ 73.42 68.26 62.1857.88 P/D 0.708 0.724 0.7580.796 ηO 0.514 0.537 0.5680.586 P TE =P D ·ηH ·ηO hp 2638.295 2756.3512915.470 3007.120据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。
桨叶的迎角只会影响升力的大小,不会前进。
直升机前进是靠螺旋桨的旋转面向前倾斜实现的,桨叶的迎角变化,指的只是桨叶本身绕横向的轴旋转。
就是对称的两只桨,成一条直线,以这个直线为轴旋转。
迎角增大,旋转阻力增大,如果转速不变的情况下,升力就会增大,直升机上升。
飞机螺旋桨由两个或者多个桨叶以及一个中轴组成,桨叶安装在中轴上。
飞机螺旋桨的每一个桨叶基本上是一个旋转翼。
由于他们的结构,螺旋桨叶类似机翼产生拉动或者推动飞机的力。
旋转螺旋桨叶的动力来自引擎。
引擎使得螺旋桨叶在空气中高速转动,螺旋桨把引擎的旋转动力转换成前向推力。
空气中飞机的移动产生和它的运动方向相反的阻力。
所以,飞机要飞行的话,就必须由力作用于飞机且等于阻力,而方向向前。
这个力称为推力。
典型螺旋桨叶的横截面如图3-26。
桨叶的横界面可以和机翼的横截面对比。
一种桨叶的表面是拱形的或者弯曲的,类似于飞机机翼的上表面,而其他表面类似机翼的下表面是平的。
弦线是一条划过前缘到后缘的假想线。
类似机翼,前缘是桨叶的厚的一侧,当螺旋桨旋转时前缘面对气流。
桨叶角一般用度来度量单位,是桨叶弦线和旋转平面的夹角,在沿桨叶特定长度的的特定点测量。
因为大多数螺旋桨有一个平的桨叶面,弦线通常从螺旋桨桨叶面开始划。
螺旋角和桨叶角不同,但是螺旋角很大程度上由桨叶角确定,这两个术语长交替使用。
一个角的变大或者减小也让另一个随之增加或者减小。
当为新飞机选定固定节距螺旋桨时,制造商通常会选择一个螺旋距使得能够有效的工作在预期的巡航速度。
然而,不幸运的是,每一个固定距螺旋桨必须妥协,因为他只能在给定的空速和转速组合才高效。
飞行时,飞行员是没这个能力去改变这个组合的。
当飞机在地面静止而引擎工作时,或者在起飞的开始阶段缓慢的移动时,螺旋桨效率是很低的,因为螺旋桨受阻止不能全速前进以达到它的最大效率。
这时,每一个螺旋桨叶以一定的迎角在空气中旋转,相对于旋转它所需要的功率大小来说产生的推力较少。
螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。
图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。
船用螺旋桨生产工艺船用螺旋桨是船舶推进设备中最为关键的一种。
其生产工艺包括有浆叶设计、材料选择、模具制造、叶片铸造、叶轮组装和动平衡六个基本环节。
1.浆叶设计浆叶设计是螺旋桨制造的起点。
浆叶的设计要根据船舶型号和推进功率等要素,经计算求出最合适的参数,以达到较好的推进效果。
浆叶的结构包括两大部分,即浆翼和浆叶。
浆翼是浆叶的承载部分,相当于“脊梁”;浆叶则是实际起推进作用的部分。
对于大型船用螺旋桨,还需要设计转子与定子的透面,以消减推进时的离心力。
2.材料选择螺旋桨的材料选择至关重要,因为它关系到其推进效能、使用寿命和抗腐蚀能力。
对于大部分船轮毂,选择HT250铸铁或高锰钢铸造;而钢和合金材料则通常用于叶轮的铸造。
3.模具制造模具制造是螺旋桨生产的关键环节之一。
其目的是为了定型铸造,并达到尺寸精度和表面质量要求。
模具制造工艺主要包括木样制作、沙模制作、金属模制作等。
模具的制作要满足浆叶设计的需求,制模时应考虑到浆叶的曲率、斜度、展弦比等特点,以便于铸造时填充浆翼和浆叶。
4.叶片铸造叶片铸造是螺旋桨生产的核心环节,也是最为复杂的一个工序。
叶片铸造技术对模具制作和铸造工艺有着很高的要求。
在实际操作中,先进行慢跑放砂处理,然后在模具中浇注熔融的铸造合金材料,待铸造材料冷却后进行拆模,形成叶片。
5.叶轮组装叶轮组装是螺旋桨生产的重要环节之一,即将铸造好的叶片组成一个完整的浆叶。
组装时要保证叶片间的间隙均匀,并根据叶轮的设计要求调整各个叶片的相对位置,以保证浆翼和浆叶的质量和精度。
6.动平衡叶轮的动平衡是螺旋桨生产的最后一步,是制造工艺中的重要环节。
动平衡的目的是消除螺旋桨运转时的振动和共振,确保其正常运行和使用寿命。
动平衡过程中,先是将叶轮装备在动平衡机上,然后对其逐一检测、调整叶片的角度和平衡质量,以达到预定的平衡标准,同时也保证了螺旋桨的质量。
综上所述,船用螺旋桨的生产工艺包括浆叶设计、材料选择、模具制造、叶片铸造、叶轮组装和动平衡等环节。
重庆交通大学船舶与海洋工程专业MAU型螺旋桨毕业设计计算书设计题目35000吨螺旋桨图谱设计航海学院二本船舶与海洋工程专业1001班设计者张超(eb08040310)指导教师赵藤重庆交通大学完成日期2012年1月2 日目录螺旋桨的设计任务书 (1)螺旋桨的设计计算书 (3)可以达到最大航速的计算 (3)空泡校核 (3)强度校核 (6)螺距修正 (7)重量及惯性矩计算 (7)系柱特性计算 (8)航行特性计算 (9)螺旋桨计算总结 (10)螺旋桨课程设计总结 (11)35000吨散货船船用螺旋桨课程设计任务书1.前言本船阻力通过艾尔法来估算出结果得出阻力曲线。
计算时以设计吃水T=11.5m 情况来进行。
由于在艾尔法计算过程中已将本船的附体部分(舵、轴支架、舭龙骨等)考虑在其中,但考虑本船建造以后及在以后的使用过程中产生的表面粗糙度增加及螺旋桨等影响在换算本船阻力时再相应增加10%。
本船主机最大持续功率9480KW ,额定转速为127转/分,考虑本船主机的经济性和长期使用后主机功率折损。
在船速计算中按%9094801⨯⨯Kw 来考虑。
螺旋桨转速为127转/分。
2.船体主要参数水线长 wl L 180m 垂线间长 pp L175m型宽 B 30m 型深 D 17m 设计吃水 d 11.5m 桨轴中心高 3.343m 排水量 Δ47188t本船的D B =1.788; d D=1.435; BL pp =5.858 ; dB=2.565 3.主机参数 :型 号 6S50MCC (大连船用柴油机厂) 一台额定功率 s P =9480kw (12889hp) 额定转速 N=127 r/min 减速比 1传送效率S η=0.974.推进因子伴流分数 ω=0.5C B -0.05=0.5×0.785-0.05=0.34 (泰洛公式---单桨船) 推力减额 t=k ω=0.588×0.34=0.2 (商赫公式---取k=0.588流线型舵)船身效率ηH =wt--11=1.212相对旋转效率ηR=15.阻力计算6.设计任务①我在本次设计中按d=11.5m,设计叶数为4叶的MAU型螺旋桨;②完成所设计螺旋桨的设计计算书。
船用螺旋桨的功率计算功率(W)直径(D)螺距(P)转/分(N)功率(W)=(D/10)的4次方*(P/10)*(N/1000)的3次方*0。
45速度(SP)km/h=(P/10)*(N/1000)*15.24静止推力(Th)g=(D/10)的3次方*(P/10)*(N/1000)的2次方*22船用螺旋桨的工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1〈r2)两处各取极小一段,讨论桨叶上的气流情况.V—轴向速度;n—螺旋桨转速;φ-气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角.显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D-螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D-螺旋桨直径。
船舶螺旋桨的设计与计算过程
某沿海单桨散货船螺旋桨
设计计算规范
刘磊磊2021101320
2022年7月
某沿海单桨散货船螺旋桨设计计算说明书
1.已知船体的主要参数
船长l=118.00米型宽b=9.70米设计吃水t=7.20米排水量△=5558.2吨方型系数
cb=0.658桨轴中心距基线高度zp=3.00米
模型试验提供的船体有效马力曲线数据如下:
航速v(kn)13141516有效马力pe(hp)2160242030054045
2.主机参数
型号6esdz58/100柴油机额定功率ps=5400hp额定转速n=165rpm转向右旋传递效率ηs=0.98
3.相关推广因素
伴流分数w=0.279推力减额分数t=0.223相对旋转效率ηr=1.0
1.T1.0777船体效率?H1.W
4.可以达到最大航速的计算
Mau四叶螺旋桨图谱用于计算。
取功率储备10%,轴系效率ηs=0.98螺旋桨敞水收到马力:pd=4762.8hp
根据mau4-40、mau4-55和mau4-70的BP——atlas list的δ计算:本项目假设速度为VVA=(1-W)VBP=nPd0 5/va2。
5台机组knδmau4-40p/dηopte=pdηhηoδmau4-55p/dηopte=pdηhηoδmau4-70p/dηopte=pdηhηohphp139。
37369.01304268.9654875.60.640.55833332863.990774.6291210.68600640.54142172777. 24173.7725630.692540.52107252672.8601值
141510.09410.8151611.53669.0130469.0130425bp6901304225451.99967323.7116384.650 50720760.7440.7204980.6260672.1087864.879773690.6673210.6854205610.5827810.605 7068062989.3953106.9946263211.437768.6357663.5658914759.3410250.7130990.740958
4660.77022360.5671380.5909414380.61119962909.1563031.2551443135.170567.7718563
.0305555658.685030.7231620.7542806390.78611010.545710.5657927790.58286442799.2 382902.25422989.8239
据上表的计算结果可绘制pte、δ、p/d及ηo对v的曲线,如下图所示。
根据pte-f(V)曲线与船体满载有效马力曲线的交点,不同轮盘比对应的设计速度以及下表中列出的最佳系数P/D、D和ηO。
mauvmaxp/ddΔηo4-404-554-70
15.13715.03714.8510.689190.742010.74960664.100663.399863.686884.2398766914.165 8191124.1329199360.6086220.591738720.5630774265.空泡校核
根据Brill空化极限线中商船的上限线,计算无空化的最小膨胀面积比。
桨轴沉深hf=t-zp=7.2-3.00=4.2m
p0-pv=pa+γhs-pv=10300+1025×4.2-174
=14461kgf/m2
计算温度T=15°C,PV=174kgf/m2,PD=4762.8hp,ρ=104.63kgfs2/m4
序号12345678910
项目vmaxva=0.5144vmax(1-W)(0.7πnd/60)2v20 7r=v2a+321ζ=(p0PV)/ρv0。
(M/S)2(M/S)2(M/S)2(M/S)2(M/S)2(M/S)2(M/S)2(M/S)2(M/S)2(M/S)2(M/S)2(S)2)2(S)2(S)2(S)4)4(S)4)4(S)4)4(S)4)4(S)4)4)4(S)4)6(4)4)6.4054)6.6(6.6.6.6.6.6)6.6(6)
6.65656565656.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6
(6.466565656565656.6.6.6.6.6.6.6.6.6.6.6.466.466.6.6.466.佩林。
7r2η根据π
(P/AE)/(P=28717.887/AE=217.887)的系数得出螺旋桨的最佳空化率,并根据上图计
算出螺旋桨的最小空化率
ae/ao=0.549202116p/d=0.741852486d=4.166mηo=0.591857369vmax=15.03775kn。