分子生物学期末复习
- 格式:pdf
- 大小:165.01 KB
- 文档页数:7
1)分子生物学从分子水平上研究生命现象物质基础得学科.研究细胞成分得物理、化学得性质与变化以及这些性质与变化与生命现象得关系,如遗传信息得传递,基因得结构、复制、转录、翻译、表达调控与表达产物得生理功能,以及细胞信号得转导等.2)移动基因:又称转座子.由于它可以从染色体基因组上得一个位置转移到另一个位置,就是指在不同染色体之间跃迁,因此也称跳跃基因。
3)假基因:有些基因核苷酸序列与相应得正常功能基因基本相同,但却不能合成出功能蛋白质,这些失活得基因称为假基因。
4)重叠基因:所谓重叠基因就是指两个或两个以上得基因共有一段DNA序列,或就是指一段DNA序列成为两个或两个以上基因得组成部分。
5)基因家族:就是真核生物基因组中来源相同、结构相似、功能相关得一组基因。
6)基因:能够表达与产生蛋白质与RNA得DNA序列,就是决定遗传性状得功能单位、7)基因组:细胞或生物体得一套完整单倍体得遗传物质得总与、8)端粒:以线性染色体形式存在得真核基因组DNA末端都有一种特殊得结构叫端粒、该结构就是一段DNA序列与蛋白质形成得一种复合体,仅在真核细胞染色体末端存在、9)操纵子:就是指数个功能上相关得结构基因串联在一起,构成信息区,连同其上游得调控区(包括启动子与操纵基因)以及下游得转录终止信号所构成得基因表达单位,所转录得RNA为多顺反子、10)顺式作用元件:就是指那些与结构基因表达调控相关,能够被基因调控蛋白特异性识别与结合得特异DNA序列、包括启动子,上游启动子元件,增强子,加尾信号与一些反应元件等、11)反式作用因子:就是指真核细胞内含有得大量可以通过直接或间接结合顺式作用元件而调节基因转录活性得蛋白质因子、12)启动子:就是RNA聚合酶特异性识别与结合得DNA序列、13)增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率得特殊DNA序列、它可位于被增强得转录基因得上游或下游,也可相距靶基因较远、14)转录因子:直接结合或间接作用于基因启动子、形成具有RNA聚合酶活性得动态转录复合体得蛋白质因子.有通用转录因子、序列特异性转录因子、辅助转录因子等。
分⼦⽣物学期末复习资料第六章DNA和RNA的结构⼀、DNA结构1、DNA结构特征:两条多核苷酸链以双螺旋形式相互缠绕(反向平⾏)2、主链:3’-5’磷酸⼆酯键(磷酸⼆酯键赋予DNA链固有极性,由核苷酸的不对称性和他们结合的⽅式所决定)互补碱基之间由氢键连接是双螺旋的⼀个基本特征,有助于双螺旋的热动⼒学稳定性和碱基配对的特异性。
(G≡C A=T A、C以氨基形式存;G、T以酮式形式存在)3、变性:双螺旋的两条链依靠较弱的⼒(⾮共价键)结合在⼀起。
当DNA溶液温度⾼于⽣理温度(接近100℃)或者PH较⾼时,互补的两条链就可以分开,该过程称为变性。
当DNA缓慢地恢复到正常的细胞环境,变性的双链会特异恢复到有⽣物活性的双螺旋结构(复性或退⽕)——其过程可逆变性条件:⾼温、极端的pH或者变性剂来破坏氢键4、增⾊效应:当DNA溶液温度升⾼到接近⽔的沸点时,光吸收值在260nm处明显增加,这种现象称增⾊效应。
(核酸发⽣变性时,超螺旋结构多核苷酸转变成单链多核苷酸,对紫外光的吸收值随之增加的现象。
)减⾊效应是因为双螺旋DNA中的碱基堆积降低了对紫外线的吸收能⼒。
(单链多核苷酸复性成超螺旋结构多核苷酸时,对紫外光的吸收值降低的现象。
)将DNA的光吸收对温度绘制函数曲线,吸收度增加到最⼤值⼀般时的温度叫做DNA的熔点,⽤Tm表⽰。
Tm值是DNA的特征常数,取决于DNA中的G+C的百分含量和溶液中的离⼦强度,其值越⾼,Tm值越⼤。
⼆RNA结构1、DNA&RNA①RNA上含有核糖,⽽不是2’-脱氧核糖②RNA中尿嘧啶取代胸腺嘧啶(两者区别:U缺乏5’甲基基团)③RNA通常是单链的多聚核苷酸④RNA参与翻译、调控等。
组成结构(如rRNA)、⼀些重要反应中的酶(核酶)。
第七章基因的结构、染⾊体、染⾊质和核⼩体⼀、染⾊体DNA及其结合的蛋⽩质组成1、功能①、染⾊体是DNA的紧密结构,更适合存在于细胞中②、保护DNA免于损伤,完全裸露的DNA分⼦在细胞中相当不稳定③、只有包装成染⾊体的DNA才能在每次细胞分裂时有效地将DNA传递给两个⼦代细胞④、染⾊体将每个DNA分⼦全⾯的组织起来,有助于基因的表达和亲本染⾊体之间的重组,使所有⽣物的不同个体间产⽣多样性2、相关概念⼆倍体:细胞中每个染⾊体有两个拷贝同源染⾊体:同⼀个染⾊体的两个拷贝(分别来⾃⽗本和母本)单倍体:细胞每条染⾊体只有⼀个拷贝,并且参与有性⽣殖(如精⼦、卵细胞)多倍体:细胞每条染⾊体都超过两个拷贝(巨核细胞)重复DNA包括:微卫星DNA(由⾮常短的串联重复序列构成)、基因组范围的重复序列转座基因:指能从基因组的⼀个位置转移到另⼀个位置的序列常染⾊质:指间期核内染⾊质纤维折叠压缩程度低, 处于伸展状态, ⽤碱性染料染⾊时着⾊浅的那些染⾊质。
分子生物学课程重点,以及一份真题。
1、绪论(1)分子生物学的概念分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
(3)经典历史事迹1928年格里菲斯证明了某种转化因子是遗传物质1944年艾弗里做了肺炎双球杆菌转换实验1953年沃森和克里克提出双螺旋结构桑格尔两次诺贝尔学奖2、染色体与 DNA(1)真核生物染色体具体组成成分为:组蛋白、非组蛋白和DNA。
在真核细胞染色体中,DNA与蛋白质完全融合在一起,其蛋白质与相应DNA的质量之比约为2:1。
这些蛋白质在维持染色体结构中起着重要作用。
(2)组蛋白组蛋白是染色体的结构蛋白,其与DNA组成核小体。
根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。
组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。
H2A、H2B 介于两者之间。
H1易分离,不保守;组蛋白的特性:①进化上的极端保守,②无组织特异性;③肽链上分布的不对称性;组蛋白的修饰作用⑤富含赖氨酸的组蛋白H5(3)C值反常现象C值:一种生物单倍体基因组DNA的总量。
一般情况,真核生物C值是随着生物进化而增加,高等生物的C值一般大于低等生物。
(4)DNA的结构•DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
•DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA;另一类是左手螺旋,即Z-DNA。
DNA三级结构:是双螺旋进一步缠绕,形成核小体,染色质,染色体等超螺旋结构,5、每轮碱基数10•DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
超螺旋结构是DNA高级结构的主要形式(非唯一形式),可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶(通过催化DNA链的断裂和结合,从而影响DNA的拓扑状态。
(完整版)分子生物学期末复习.doc第一讲染色体与DNA一染色体(遗传物质的主要载体)1DNA作为遗传物质的优点:储存遗传信息量大;碱基互补,双螺旋结构使遗传稳定;核糖2′ -OH脱氢使在水中稳定性大于RNA;可以突变以进化,方便修复以稳定遗传2真核细胞染色体特点:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。
3 染色体蛋白主要分为组蛋白和非组蛋白两类。
真核细胞的染色体中, DNA与组蛋白的质量比约为 1:14组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。
组蛋白含有大量的赖氨酸和精氨酸,其中 H3、H4富含精氨酸, H1富含赖氨酸。
H2A、H2B介于两者之间。
5 组蛋白具有如下特性:①进化上的极端保守性(不同种生物组蛋白的氨基酸组成十分相似)②无组织特异性(只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有 H5)③ 肽链上氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。
碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合)④存在较普遍的修饰作用(如甲基化、乙基化、磷酸化及ADP核糖基化等。
修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)二DNA1 真核细胞基因组的最大特点是它含有大量的重复序列2 C值反常现象:①所谓 C值,通常是指一种生物单倍体基因组DNA的总量②同类生物不同种属之间DNA总量变化很大。
从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。
3 真核细胞DNA序列可被分为3类:①不重复序列(它占DNA 总量的 10%~80%。
不重复序列长约750~ 2 000bp ,相当于一个结构基因的长度)②中度重复序列(各种rRNA、 tRNA以及某些结构基因如组蛋白基因等都属于这一类)③高度重复序列—卫星 DNA(只存在于真核生物中,占基因组的 10%~60%,由 6~100个碱基组成)三染色体与核小体1 染色质 DNA的 Tm值比自由 DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用2 在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA 复制和转录活性大大低于在自由DNA 中的反应3 DNA片段均为 200bp基本单位的倍数,核小体是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体(由 H2A、H2B、 H3、 H4各两个分子生成)组成四级压缩:第一级(DNA+组蛋白→核小体)第二级(核小体→螺线管)第三级(螺线体→超螺旋)第四级(超螺线体→染色体)4 原核生物基因组原核生物的基因组很小,大多只有一条染色体,且 DNA含量少主要是单拷贝基因整个染色体 DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。
、分子生物学期末复习资料检疫1111班)考试题型:1、单项选择(1分/题,共50题);2、多项选择(分/题,共10题);3、名词解释(2分/题,共5题);4、问答题(共15分,4题);5、论述题(共10分,1题)·第二章基因与基因组一、基因的概念(一)基因概念的发展1、孟德尔:一个因子决定一种性状。
2、摩尔根:性状单位,突变单位和交换单位。
3、顺反子:功能单位,决定一条多肽链的表达4、操纵子:基因表达调控单元(原核)•`•结构基因、调节基因(可表达)•控制基因(启动基因和操纵基因)(二)现代基因概念的发展1、重叠基因:一个基因包含或部分包含另一基因2、断裂基因:内部含间隔区,即由外显子和内含子互相间隔组成的嵌合体3、跳跃基因:转座元件,可移动遗传元件4、假基因:拟基因,没有功能,序列与功能基因相似。
(三)基因的分子生物学定义、是编码多肽链或RNA的DNA片段,包括编码序列:外显子(exon)、插入序列:内含子(intron)、侧翼序列:含有调控序列(四)基因组基因组:一个细胞或病毒的全部遗传信息二、病毒基因组1、病毒基因组核酸的类型(7种)双链DNA(dsDNA)病毒;单链DNA(ssDNA)病毒;双链RNA(dsRNA)病毒;单链正链RNA病毒;单链正链RNA病毒;逆转录RNA病毒;逆转录DNA病毒2、病毒基因组的特点•一种核酸,DNA/RNA ,线性或环形•…•大小相差很大;•一般为单拷贝;•一条或几条核酸链;•连续或间隔;•编码序列大于90%;•相关基因往往丛集形成一个功能单位或转录单元;•有重叠基因。
三、原核生物基因组,1、原核生物基因组特点(1)一般由一条环状双链DNA分子组成;(2)通常只有一个DNA复制起点;(3)结构基因大多组成操纵子;(4)编码序列不重叠(5)没有内含子(6)编码序列(结构基因)在基因组中所占比例较大,基因密度非常高(非编码—调控序列)(7)结构基因多为单拷贝,rRNA基因为多拷贝;[(8)有编码同工酶的同基因(isogene)(9)转座现象:插入序列和转座子等(10)具有多种功能识别区域(往往具有特殊的序列,并且含有反向重复序列。
分子生物学-期末总复习极性突变, 极性效应:在同一个操纵子中,一个结构基因发生突变后,它除了影响该基因本身产物的表达外,还(在转录或翻译水平)影响其后结构基因的表达,并且具有极性梯度的特征。
操纵子:转录的功能单位。
很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA序列。
主要见于原核生物的转录调控DNA 合成:需要4种dNTP、二价金属离子(Mg2+或Mn2+)Primer引物(提供3’-OH)Template 模板(Watson - Crick base-pairing)ATP的水解提供能量DNA 合成方向:从引物3’-OH延伸,5 ’到3’方向合成产物DNA的极性与模板单链相反DNA聚合酶(DNA-dependent DNA polymerase)催化端粒酶反转录酶端粒酶以自身RNA为模板延长染色体突出的3’端端粒酶是蛋白质和RNA的复合物参与DNA复制的酶:拓扑异构酶:拓扑异构酶Ⅰ解除超螺旋,拓扑异构酶Ⅱ增加超螺旋解链酶:解除DNA双螺旋单链DNA结合蛋白:DNA复制过程中,在DNA分叉处与单链DNA 结合的蛋白质。
防止已解链的双链还原、退火,使复制得以进行。
引物酶:合成一小段RNA,用来引导DNA聚合酶起始DNA链的合成DNA聚合酶DNA连接酶基因表达:指基因的遗传信息通过转录和翻译传递到蛋白质和功能性RNA等基因产物的过程。
功能性RNA:rRNA、tRNA、snRNA转录:是基因表达的第一步以dsDNA中的一条单链作为转录的模板依赖DNA的RNA聚合酶催化以NTPs为底物,按A=U,C G 配对的原则,合成RNA分子,不需要引物,从头合成RNA链合成方向5’→ 3’,与非模板单链DNA的极性方向相同(模板单链DNA的极性方向为3’ → 5’。
模板链,反义链,waston链编码连,有义链,crick链不对称转录:某一基因只以一条单链DNA 为模板进行转录转录单位:从启动子(promoter)到终止子(terminator)的一段DNA 原核生物中多为多顺反子,真核生物中多为单顺反子。
友情提示:1、一般出判断题2、一般出填空3、-------- 一般出名词解释4、******** 一般出简答题5、阴影部分也是重点(一)第一章蛋白质的结构与功能一级结构:指多肽链中氨基酸的排列顺序,即它的化学结构。
二级结构:指借助主链(不包括侧链)的氢键形成的具有周期性的构象。
三级结构:指1条肽链(包括主链和侧链)完整折叠而形成的构象。
四级结构:指含有多条肽链的寡聚蛋白质分子中各亚基间相互作用,形成的构象。
超二级结构和结构域是在蛋白质二级和三级结构之间的两个层次。
超二级结构:指相邻的二级结构单元,在侧链基团次级键的作用下彼此靠近而形成的规则的聚集结构。
结构域:指在1条肽链内折叠成的局部结构紧密的区域。
组成四级结构的多肽链称为蛋白质的亚基,多个亚基组成的蛋白质为寡聚蛋白质1 维持蛋白质分子构象的作用力,主要包括氢键、疏水性相互作用、范德华引力、离子键和二硫键。
2 二级结构主要包括下面几种基本类型(一) α—螺旋(二)β折叠(三)转角(四) β突起(五)卷曲(六)无序结构3 β折叠有两种类型,1种是平行式,1种是反平行式。
反平行折叠在能量上更稳定。
4 转角主要分两类:β转角和γ转角。
转角结构通常负责各种二级结构单元之间的连接作用。
5 常见的3种超二级结构单元为:αα ββ,βαβ。
6 结构域不仅仅是折叠单位和有一定功能的结构单位,还是一个遗传单位7结构域可以分为4种类型:反平行α,平行α/β,反平行β,不规则的小结构1、多肽链的折叠过程天然蛋白质是多肽链合成后经折叠而形成的热力学上稳定的构象。
多肽链的折叠是一自发过程..人们现已提出了一些多肽链的折叠模型,大致可以分为二类。
一种模型认为多肽链的折叠是逐步进行的,先形成一种稳定的二级结构作为核心,然后二级结构的氨基酸侧链进一步发生交互作用,扩大成天然三维结构;另一种模型提出,多肽链可能由于其疏水侧链的疏水交互作用而突然自发折叠,形成一种含二级结构的紧密状态,最后调整成天然结构。
分子生物学参考题答案1、请简述实时定量PCR的过程和基本原理。
原理:具体实时荧光定量PCR 就是通过对PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。
过程:1.在实时荧光定量PCR 反应中,引入了一种荧光化学物质2.随着PCR 反应的进行,PCR 反应产物不断累计,荧光信号强度也等比例增加。
3.经过一个循环,收集一个荧光强度信号4.通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图。
三个阶段:荧光背景信号阶段, 荧光信号指数扩增阶段和平台期。
只有在荧光信号指数扩增阶段,PCR 产物量的对数值与起始模板量之间存在线性关系,可以选择在这个阶段进行定量分析。
2、请简述蛋白质生物合成的三个主要过程。
一、氨基酸的活化:氨基酸必须在氨酰-tRNA合成酶作用下生成活化氨基酸AA-tRNA。
氨基酰tRNA的形成是一个两步反应过程1.氨基酸与ATP作用,形成氨基酰腺嘌呤核苷酸;2.氨酰基转移到tRNA的3-OH端上,形成氨酰tRNA二、肽链的起始、伸长和终止(1)翻译的起始:1.蛋白质合成的起始需要核糖体大、小亚基,起始tRNA和几十个蛋白因子的参与,2.在模板mRNA编码区5’端形成核糖体-mRNA-起始tRNA复合物3.将甲酰甲硫氨酸放入核糖体P位点。
(2)翻译的伸长:肽链的延伸有许多循环组成,每加上一个氨基酸就是一个循环,每个循环包括进位、成肽和移位。
(3)翻译的终止:1.当mRNA上终止密码出现后,没有相应的AA-tRNA与之结合2.而释放因子(RF)能识别终止密码子并结合,水解P位上多肽链和tRNA之间二硫键。
3.多肽链合成停止,肽链从核糖体中释出,mRNA、核蛋白体等分离三、新合成多肽链的折叠和加工:1.新生成的肽链大多数是没有功能的,必须经过加工修饰才能转变为有活性的蛋白质。
2.N端fMet/Met的切除、二硫键的形成、特定氨基酸的修饰(磷酸化、糖基化和甲基化)和切除新生肽链的非功能片段3、请简述酵母双杂交技术实验原理。
分子生物学期末考试资料分子生物学期末考试资料一、名词解释(8/16)1、靶标鸟枪法:用稀有限制性内切核酸酶先将待测基因组降解为长度几十万个碱基对的片段;再分别进行测序;或者根据染色体上已知基因或遗传标签的位置来确定部分DNA片段的排列顺序;逐步确定各片段在染色体上的相对位置。
P4472、蛋白质免疫印迹:是根据抗原抗体的特异性结合检测复杂样品中的某种蛋白的方法。
该法是在凝胶电泳和固相免疫测定技术基础上发展起来的一种新的免疫生化技术。
P2393、反密码子:是位于tRNA反密码环中部、可与mRNA中的三联体密码子形成碱基配对的三个相邻碱基。
P1234、感受态细胞:用理化方法人工诱导细胞;使之处于易于吸收和容纳外源DNA分子的状态。
P1755、冈崎片段:是在DNA半不连续复制中产生的长度为1000~2000个碱基的短的DNA片段;能被连接形成一条完整的DNA 链。
P4716、基因敲除:针对一个序列已知但功能未知的基因;从DNA水平上设计实验;彻底破坏该基因的功能或消除其表达机制;从而推测该基因的生物学功能。
P4727、基因芯片:将大量DNA或cDNA探针固定于支持物表面;然后与标记的待测核酸样品进行杂交;通过检测杂交信号对样品核酸进行分析。
P2288、基因组DNA文库:是某一生物体全部或部分基因的集合。
将某个生物的基因组DNA或c DNA片段与适当载体在体外重组后;转化宿主细胞;所得的菌落或噬菌体的集合即为该生物的基因文库。
P4739、克隆:把外源DNA插入具有复制能力的载体DNA中;使之得以永久保存和复制;这种过程称为克隆。
P19010、连锁图:是指基因或DNA标志在染色体上的相对位置与遗传距离。
P43511、免疫共沉淀技术:当细胞在非变性条件下被裂解时;完整细胞内存在的许多蛋白质—蛋白质间的相互作用被保留下来。
P22112、启动子:DNA链上一段能与RNA聚合酶结合并起始mRNA 合成的序列。
P7413、RFLP:是指基因型之间限制性片段长度的差异;这种差异是由限制性酶切位点上碱基的插入、缺失、重排或点突变所引起的。
第一讲染色体与DNA一染色体(遗传物质的主要载体)1 DNA作为遗传物质的优点:储存遗传信息量大;碱基互补,双螺旋结构使遗传稳定;核糖2′-OH脱氢使在水中稳定性大于RNA;可以突变以进化,方便修复以稳定遗传2 真核细胞染色体特点:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。
3 染色体蛋白主要分为组蛋白和非组蛋白两类。
真核细胞的染色体中,DNA与组蛋白的质量比约为1:14 组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。
组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。
H2A、H2B介于两者之间。
5 组蛋白具有如下特性:①进化上的极端保守性(不同种生物组蛋白的氨基酸组成十分相似)②无组织特异性(只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5)③肽链上氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。
碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合)④存在较普遍的修饰作用(如甲基化、乙基化、磷酸化及ADP核糖基化等。
修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)二 DNA1 真核细胞基因组的最大特点是它含有大量的重复序列2 C值反常现象:①所谓C值,通常是指一种生物单倍体基因组DNA的总量②同类生物不同种属之间DNA总量变化很大。
从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。
3 真核细胞DNA序列可被分为3类:①不重复序列(它占DNA总量的10%~80%。
不重复序列长约750~2 000bp,相当于一个结构基因的长度)②中度重复序列(各种rRNA、tRNA以及某些结构基因如组蛋白基因等都属于这一类)③高度重复序列—卫星DNA(只存在于真核生物中,占基因组的10%~60%,由6~100个碱基组成)三染色体与核小体1 染色质DNA的Tm值比自由DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用2 在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA复制和转录活性大大低于在自由DNA中的反应3 DNA片段均为200bp基本单位的倍数,核小体是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体(由H2A、H2B、H3、H4各两个分子生成)组成四级压缩:第一级(DNA+组蛋白→核小体)第二级(核小体→螺线管)第三级(螺线体→超螺旋)第四级(超螺线体→染色体)4 原核生物基因组原核生物的基因组很小,大多只有一条染色体,且DNA含量少主要是单拷贝基因整个染色体DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。
5 原核细胞DNA特点:①结构精炼②存在转录单元(原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成转录单元并转录产生含多个mRNA的分子,称为多顺反子mRNA)③有重叠基因(一些细菌和动物病毒存在重叠基因,同一段DNA能携带两种不同蛋白质的信息)四 DNA的结构1 DNA链的基本特点是:1、DNA是由两条互相平行的脱氧核苷酸长链盘绕而成的。
2、DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。
3、两条链上的碱基通过氢键相结合,形成碱基对。
2 DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。
通常情况下,DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA(最常见);另一类是左手螺旋,即Z-DNA五 DNA的变性和复性1 变性(denaturation 或融解 melting):DNA双螺旋区的氢键断裂,使双螺旋的两条链完全分开变成单链,这一双链分离的过程叫做变性;1、条件:加热, 极端pH,有机溶剂(尿素、酰胺 ),低盐浓度等2、变性过程的表现:是一个爆发式的协同过程,变性作用发生在一个很窄的温度范围导致一些理化性质发生剧烈变化2 增色效应指在DNA变性的过程中,他在260nm的吸收值先是缓慢上升,达到某一温度时及骤然上升3 复性:变性DNA在适当条件下,两条彼此分开的链又可以重新地合成双螺旋结构的过程(退火)影响因素:阳离子浓度复性反应温度 S.S,DNA初始浓度,分子长度DNA分子中碱基排列情况六 DNA复制1 复制子:又称复制单位或复制元DNA中含有一定复制起点和复制终点的复制单位2 复制体:复制叉处的许多酶和蛋白组成的复合体,协同合成DNA3 原核生物:整个染色体只有一个复制起点即单复制起点真核生物为多复制起点4 复制叉:染色体中参与复制的活性区域,即复制正在发生的位点5 复制眼:电子显微镜下观察正在复制的DNA,复制的区域形如一只眼睛6 真核生物含有多个复制叉与复制眼7 细菌、病毒和线粒体的DNA分子都是作为单个复制子完成复制的;真核生物基因组可以同时在多个复制起点上进行双向复制,也就是说它们的基因组包含有多个复制子。
单双向复制取决于起点处有一个还是两个复制叉8 无论是原核生物还是真核生物,DNA的复制主要是从固定的起始点以双向等速复制方式进行的。
复制叉以DNA分子上某一特定顺序为起点,向两个方向等速生长前进。
9 θ复制 D环复制(常见于线粒体与叶绿体)δ复制(滚环式复制共价延伸方式常见于病毒细菌因子)图见附表10 DNA聚合反应 DNA聚合酶I和DNA聚合酶Ⅲ主要特征与功能:1、DNA聚合酶活性:两者都有条件--模板、引物DNApolⅠ--主要用于DNA的修复和RNA 引物的替换 DNApol Ⅲ--DNA链的延长聚合方向:5’-3’2 3’-5’ 外切核酸酶活性(两酶都具有)校对功能35’-3’外切核酸酶活性DNApolⅠ的5’-3’外切活性有以下三个特点:必须有5’-磷酸末端被除去的核苷酸必须是已经配对的被除去的可以是脱氧核糖核苷酸,也可以是核糖核苷酸(切刻平移)4 子链DNA延伸方向只能是5’-3’:已知的DNA聚合酶只能使链按5’-3’方向生长11 DNA连接酶所需条件:a、切刻的 3’-OH 和 5’-P 相邻 b、切刻各自碱基处于配对状态 c、需要能量原核(ATP、NAD)真核(ATP)用途:复制过程中,5’ 端RNA引物被置换后切刻的连接、修复、重组12 DNA半不连续性先导链:DNA复制时,与复制叉向前移动的方向一致,以3’→5’链为模板按5’→3’方向连续合成的一条链冈崎片段: DNA复制不连续合成链中形成的短DNA片段原因:后随链的片段合成需要一个周期性的起始信号13 原核生物和真核生物DNA复制的对比:相同点 Semi-conservative replication(半不连续) Semi-discontinuousreplication(半不保留) DNA helicase(DNA解旋酶), Ssb RNA priming(RNA引物)校正阅读(Proofreading)不同点复制起点(单、多)复制子(大小、多少)复制起始的许可因子的控制(复制周期的重叠与否)复制叉移动的速度 (900/50 nt/S) 冈崎片段的大小端粒和端粒酶DNA聚合酶Polymerases七 DMA损伤修复1 引起损伤的因素:自发性损伤(复制中的损伤、碱基的自发性化学改变、自发脱碱基、细胞的代谢产物对DNA的损伤) 物理因素引起的损伤(电离辐射、紫外线) 化学因素引起的损伤(烷化剂、碱基类似物)引起损伤的类型:碱基脱落、碱基(或核苷)改变、错误碱基(碱基的取代)、碱基的插入或缺失、链的断裂、链交联(链内、链间)、嘧啶二聚体等2 广义的修复系统:DNA聚合酶的校对功能(复制的范畴) 尿嘧啶-N-糖苷酶修复系统(复制时U的渗入、C脱氨氧化成U)错配修复系统损伤修复系统(光复活、重组修复、SOS修复等)突变的操作子不能被阻遏蛋白所识别调节基因突变不能产生有活性的阻遏蛋白两者之一都使结构基因失去了负向控制第二讲转录一转录1 转录(transcription)是以DNA为模板,在依赖DNA的RNA聚合酶的催化下,以4种rNTP(ATP、CTP、GTP和UTP )为原料,合成RNA的过程。
转录是DNA将遗传信息传递给蛋白质的中心环节在有些RNA病毒中,RNA也可以指导RNA的合成2 RNA合成与DNA合成比较(1)催化方向均是5‘-3‘ ,延伸的机理相同;反应受焦磷酸水解趋动,需要模板(2)RNA合成不需引物(自身可以独立起始合成),且无外切酶作用(即缺乏核对能力);DNA复制是一个半保留复制,RNA合成是全保留的(因是单链)(3)RNA合成起始和终止均受严格的控制,而DNA的终止无特殊的信号3 转录过程中,DNA双链中的一条链为模板链,而另一条链为编码链4 RNA聚合酶α亚基可能参与全酶的组装及全酶识别启动子。
另外,α亚基还参与RNA聚合酶与一些转录调控因子间的作用β亚基具有与底物(NTP及新生的RNA链)结合的能力。
利福霉素可以阻断转录的起始,链霉溶菌素可抑制延伸反应,二者均是通过与β亚基的结合而发挥作用的β’亚基可能与模板结合。
肝素可与β’亚基结合而抑制转录,并且可以和β’亚基竞争DNA的结合位点。
β亚基和β’亚基提供了RNA聚合酶的活性中心,其一级结构与真核生物RNA聚合酶大亚基有同源性。
5 σ亚基的功能是帮助全酶识别启动子并与之结合。
σ亚基也可被看作一种辅助因子,因此又可称为σ因子σ因子在RNA聚合酶识别启动子的过程中起关键作用σ因子的结构属于α螺旋,是通过识别启动子上的某一序列来控制RNA聚合酶与启动子的结合的在细菌受到外界环境的急剧影响时,会改变所表达的基因,产生σ因子更替的现象6 RNA聚合酶Ⅰ位于核仁,活性所占比例最大,负责rRNA(5.8S、18S和28S)的转录。
RNA 聚合酶Ⅰ负责了大部分细胞RNA的转录。
RNA聚合酶Ⅱ位于核质,活性所占比例仅次于RNA聚合酶Ⅰ,主要负责核内不均一RNA(heterogenous nuclear RNA, hnRNA/ mRNA前体)的转录。
RNA聚合酶Ⅲ也位于核质,活性所占比例最小,负责tRNA、5SRNA、Alu序列和其他小RNA的转录二转录过程起始阶段结合(RNA聚合酶(α2ββ‘ωб)与启动子(promoter)结合,б组别启动子部位(-35启动子部位),б和β‘起连接作用)、解旋(解开一小段DNA双螺旋,以便产生单链DNA 转录模板)、引发(第一个核苷三磷酸上去(GTP、ATP)(模板)若第一个是C,那么是PPPG(GTP)结合上去)启动子(promoter)是指DNA分子上被RNA聚合酶识别并结合,形成起始转录复合物的区域。