【新课标】高中数学必修五全部教案(表格式-有三维目标)
- 格式:doc
- 大小:2.25 MB
- 文档页数:53
人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。
通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。
第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。
通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。
第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。
通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。
第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。
通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。
第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。
通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。
高中数学必修5教案全教学目标:学生能正确理解直线方程的概念,掌握直线方程的求解方法,能够应用直线方程解决实际问题。
教学重点和难点:直线方程的概念和求解方法。
教学准备:黑板、彩色粉笔、教学PPT教学过程:一、导入:通过讲述直线在几何中的重要性,引出直线方程的概念。
二、讲解直线方程的定义和性质,引导学生认识直线方程的基本形式。
三、示范解题步骤,并进行例题讲解,让学生掌握直线方程的求解方法。
四、让学生自主练习,巩固所学内容。
五、讨论解题思路,引导学生探讨直线方程在实际问题中的应用。
六、总结本节课的重点,梳理直线方程的知识结构。
教案二:数列与数列的求和教学目标:学生能正确理解数列的概念,掌握数列的通项公式和求和公式,能够应用数列解决实际问题。
教学重点和难点:数列的概念、通项公式和求和公式。
教学准备:黑板、彩色粉笔、教学PPT教学过程:一、导入:通过举例引导学生认识数列的概念。
二、讲解数列的概念和性质,引导学生掌握数列的通项公式和求和公式。
三、示范解题步骤,并进行例题讲解,让学生掌握数列的求解方法。
四、让学生自主练习,巩固所学内容。
五、讨论解题思路,引导学生探讨数列在实际问题中的应用。
六、总结本节课的重点,梳理数列和数列的求和的知识结构。
教案三:平面向量教学目标:学生能正确理解平面向量的概念,掌握平面向量的加减乘除运算规则,能够应用平面向量解决实际问题。
教学重点和难点:平面向量的概念、运算规则。
教学准备:黑板、彩色粉笔、教学PPT教学过程:一、导入:通过引导学生思考向量的概念,引出平面向量的概念。
二、讲解平面向量的定义和性质,引导学生掌握平面向量的加减乘除运算规则。
三、示范解题步骤,并进行例题讲解,让学生掌握平面向量的运算方法。
四、让学生自主练习,巩固所学内容。
五、讨论解题思路,引导学生探讨平面向量在实际问题中的应用。
六、总结本节课的重点,梳理平面向量的知识结构。
以上为高中数学必修5教案全范本,希望对您有所帮助。
课题: §1.1.1正弦定理授课类型:新授课●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin b B c =,又sin 1cC c==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a 从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
高中数学必修五全套教案教案一:立体几何教学目标:学生掌握立体几何中的基本概念和定理,能够运用这些知识解决实际问题。
教学内容:平行四边形、立体图形的体积和表面积计算、空间直角坐标系等。
教学步骤:1. 引入立体几何的基本概念,让学生认识平行四边形、立方体、棱锥等图形。
2. 教授计算立体图形的体积和表面积的方法,包括长方体、正方体等常见图形的计算。
3. 练习题:让学生做一些相关的计算题目,巩固所学知识。
4. 拓展练习:让学生在实际情境中应用所学知识,解决实际问题。
教学评价:通过课堂练习和作业,检验学生对立体几何的掌握程度,及时纠正错误,提高学生的学习兴趣。
教案二:三角函数教学目标:学生掌握三角函数的基本概念和性质,能够灵活运用三角函数解决实际问题。
教学内容:三角函数的定义、性质、图像、变化规律、基本三角恒等式等。
教学步骤:1. 引入三角函数的概念,让学生了解正弦、余弦、正切等三角函数的定义和性质。
2. 教授三角函数的图像及变化规律,让学生熟练掌握三角函数的变化趋势。
3. 教授基本三角恒等式的应用方法,让学生学会如何灵活运用。
4. 拓展练习:让学生在更加复杂的题目中练习,提高解决问题的能力。
教学评价:通过课堂表现和考试评分,检验学生对三角函数的理解和运用能力,及时纠正错误,提高学生的学习兴趣。
教案三:概率与统计教学目标:学生掌握概率与统计的基本概念和方法,能够应用这些知识解决实际问题。
教学内容:概率的定义、性质、计算方法、统计的基本概念、频数分布表等。
教学步骤:1. 引入概率与统计的基本概念,让学生了解随机事件、概率、频数等概念。
2. 教授概率的计算方法,包括古典概率、几何概率等,让学生掌握不同方法的应用。
3. 教授统计的基本方法,包括频数分布表、直方图、折线图等,让学生熟练掌握数据的统计与分析。
4. 拓展练习:让学生在更加复杂的情境中练习,提高解决问题的能力。
教学评价:通过课堂表现和作业完成情况,检验学生对概率与统计的理解和运用能力,及时纠正错误,提高学生的学习兴趣。
高中数学必修5教案教材:高中数学必修5教学目标:1.理解和掌握数列的概念和性质,并能够解决与数列有关的问题;2.理解和掌握数学归纳法,并能够运用数学归纳法解决问题;3.掌握二项式定理的概念和性质,并能够运用二项式定理解决问题;4.理解和掌握排列与组合的基本概念和性质,并能够运用排列与组合解决实际问题;5.通过学习本章内容,培养学生逻辑思维和数学推理的能力,并培养学生的创新意识和解决问题的能力。
教学内容和方法:第一节:数列与数学归纳法内容:数列的概念和性质,数列的通项公式,数列的求和公式,数列问题的应用,数学归纳法的概念和应用。
方法:通过引入一个问题,让学生猜测数列的规律,从而引出数列的概念,并通过具体的例子让学生理解数列的性质。
然后,介绍数列的通项公式和求和公式,并通过实例演示如何应用。
最后,引入数学归纳法的概念和应用,通过例题让学生学会运用数学归纳法。
第二节:二项式定理的概念和应用内容:二项式的概念和性质,二项式定理的概念和应用,杨辉三角形的性质,二项式展开。
方法:首先,介绍二项式的概念和性质,并通过例题让学生理解。
然后,引入二项式定理的概念和应用,通过实例演示如何应用。
接着,介绍杨辉三角形的性质,并通过例题让学生熟练运用杨辉三角形解决问题。
最后,讲解二项式展开的方法,并通过实例演示如何展开二项式。
第三节:排列与组合内容:排列与组合的概念和性质,排列与组合的计算公式,应用排列与组合解决问题。
方法:首先,介绍排列与组合的概念和性质,并通过例题让学生理解。
然后,讲解排列与组合的计算公式,并通过实例演示如何应用。
接着,引入应用排列与组合解决问题的方法,并通过例题让学生熟练运用。
第四节:逻辑与证明内容:逻辑的基本概念和性质,命题与命题演算,真值表和逻辑联结词,条件命题与充分必要条件,简单而常见的证明方法。
方法:首先,介绍逻辑的基本概念和性质,并通过例题让学生理解。
然后,讲解命题与命题演算的概念和性质,并通过实例演示如何运用命题演算。
新课标人教A版高中数学必修5教案完整版一、教学目标1.了解函数的基本概念,能够将现实中的问题转化为函数的形式。
2.理解函数的性质,掌握常用函数的性质及图像特征。
3.能够利用函数的性质,解决实际问题。
二、教学重点1.函数的基本概念;2.常用函数的性质;3.利用函数解决实际问题。
三、预备知识1.初中数学基本概念;2.函数概念的初步了解。
四、教学内容第一节函数基本概念1.函数的定义;2.定义域、值域和对应关系;3.奇偶性、周期性、单调性等基本性质。
第二节常用函数及其性质1.幂函数、指数函数、对数函数、三角函数等;2.函数的图像特征及性质。
第三节函数的应用1.函数与方程的联系;2.应用题解法:建立函数模型,求解实际问题。
五、教学方法本节课采用“导入-讲解-演示-练习-总结”等教学方法,其中:1.导入:通过举例子,引导学生了解相关概念。
2.讲解:深入浅出,分析函数性质及应用。
3.演示:通过实例,引导学生理解函数的应用。
4.练习:课后布置作业,帮助学生掌握相关知识。
5.总结:概括本节课所学知识,为下一步教学打下基础。
六、教学过程导入教师通过一个实际问题,引导学生思考如何把问题转化为函数的形式,如:某人5年前的年龄是现在年龄的2倍减3年,建立相关函数模型。
讲解1.函数的定义:函数是一种对应关系,它将定义域内的每一个元素都对应唯一的一个值。
2.函数的基本概念:定义域、值域及对应关系等。
3.常用函数的性质及图像:函数的奇偶性、周期性和单调性等。
其中幂函数、指数函数、对数函数、三角函数等为常用函数。
4.函数的应用:函数与方程的联系以及实际问题的应用,通过建立函数模型,解决实际问题。
演示老师通过现实中的例子,引导学生理解函数的应用,如:电费问题、最小二乘法问题等。
练习1.要求学生掌握函数的基本概念及性质;2.要求学生了解常用函数及其图像特征,掌握函数的基本变换和应用;3.练习题包括基础练习题和应用题,要求学生灵活掌握函数的应用。
高中数学必修五教案全集(48份)人教课标版(实用教案)第一章解三角形本章规划《课程标准》和教科书把“解三角形”这部分内容安排在数学必修五的第一部分,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁.教学中应加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,提高教学效益,并有利于学生对于数学知识的学习和巩固.要重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导..教学内容全章有三大节内容:第一大节:正弦定理和余弦定理,这一节通过初中已学过的三角中的边角关系,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”重点是正弦定理的概念和推导方法,体现了从特殊到一般的思想,并可以向学生提出用向量来证明正弦定理,这一点可以让学生探究.在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.设置这些问题,都是为了加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角形的方法,需要对三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力.第二大节:应用举例,在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较.对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法.学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够.针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题.第三大节:实习作业,适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题和解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果的能力,增强学生应用数学的意识和数学实践能力.教师要注意对学生实习作业的指导,包括对实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题..作用与地位本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.学习数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱.为解决此问题,教学中要用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构..学习目标本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章学习,学生应当达到以下学习目标:()通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题..重点和难点通过对三角形中边角关系的探索,证明正弦定理、余弦定理及其推论,并能应用它们解三角形..课时安排正弦定理和余弦定理(课时)应用举例(课时)实习作业(课时)本章复习(课时)人生最大的幸福,莫过于连一分钟都无法休息零碎的时间实在可以成就大事业珍惜时间可以使生命变的更有价值时间象奔腾澎湃的急湍,它一去无返,毫不流连一个人越知道时间的价值,就越感到失时的痛苦得到时间,就是得到一切用经济学的眼光来看,时间就是一种财富时间一点一滴凋谢,犹如蜡烛漫漫燃尽我总是感觉到时间的巨轮在我背后奔驰,日益迫近夜晚给老人带来平静,给年轻人带来希望不浪费时间,每时每刻都做些有用的事,戒掉一切不必要的行为时间乃是万物中最宝贵的东西,但如果浪费了,那就是最大的浪费我的产业多么美,多么广,多么宽,时间是我的财产,我的田地是时间时间就是性命,无端的空耗别人的时间,知识是取之不尽,用之不竭的。
高中数学必修五教案3篇新课标高中数学必修5教案篇一一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
二、教法分析针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。