五图中学七年级数学第14课时第二章有理数测试题
- 格式:doc
- 大小:209.00 KB
- 文档页数:2
七年级数学上第二章 有理数 测试卷(时间:90分钟 满分:100分)一、选择题(每题2分,共16分)1.-0.2的倒数是 ( ) A .0.2 B .5 C .-0.2 D .-52.下列式子的结果是负数的是 ( ) A .3-- B .-(-3) C .(-3)2 D .-(-1)2009 3.下列计算正确的是 ( ) A .0-(-8)=- 8 B .(-3)-(-9)=-12 C .5933255⎛⎫⨯-=- ⎪⎝⎭ D .(-48)+(-8)=-6 4.小康社会十六项基本标准之一是:人均蛋白质日摄入量75克.某人活了71岁(按26 000日计算),用科学记数法表示,这个人一生摄入蛋白质总量应是 ( ) A .1.95×106克 B .1.95×105克 C .19.5×106克 D .19.5×105 克5.小丽手中有4张卡片,分别印有数字-5,-3,4,9,现从中抽取三张,并把卡片上的数字相乘,其中所得积最小的三张卡片印有的数字是 ( ) A .-5,-3,4 B .-5,-3,9 C .-5,4,9 D .-3,4,96.若a=-22,b=(-2) 2,c=(-2)3÷(-1+5),则a ,b ,c 的大小关系是 ( ) A .a <b <c B .a <c <b C .c <a <b D .c <b <a 7.若ab ≠o ,则a ba b-不可能是 ( ) A .0 B .1 C .2 D .-28.如图,数轴上A 、B 、C 、D 四点对应的有理数分别是整数a 、b 、c 、d ,且有c -2a=8,则原点应是 ( )A .A 点B .B 点C .C 点D .D 点二、填空题(每题3分,共30分) 9.14-的绝对值是_________. 10.如果运进粮食200 t 记作+200 t ,那么-80 t 表示______________. 11.数轴上到原点的距离为324的点所表示的数为________. 12.若()2230a b -++=,则b a =_________.13.有三个连续整数,它们的和与它们的积相等,这三个数可以是________(写一组即可).14.南京市某天上午的温度是5℃,中午上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是________℃.15.若a 、b 互为相反数c 、d 互为倒数,则(a+b -2cd) 3=_________.16.如图,是一个简单的数值计算程序,当输入的x 的值为5,则输出的结果为______.17.2002年北京国际数学家大会会标如图所示,它由4个相同的直角三角形拼成,直角边长如果是4和7,则大正方形的面积是________. 18.定义:a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是()11112=--.已知113a =-,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依次类推,则a 2009=_________.三、解答题(共54分)19.(每题5分,共20分)计算: (1)()510.474 1.53166---- (2)()9113010156⎛⎫-+⨯- ⎪⎝⎭(3)()()()220091162418⎛⎫÷---⨯-+- ⎪⎝⎭(4)()2322351535⎛⎫---⨯-÷- ⎪⎝⎭20.(6分)在“2,-3,4,-5,6”五个数中,任选四个数,利用有理数的混合运算,使四个数的运算结果为24(每个数只能用一次).写出你的两个算式及计算过程.21.(6分)现有一张光盘可存储500兆字节信息,这个容量相当于5 000本书的内容.中国国家图书馆藏书量约2亿册,若制成光盘,成本低,占地小,试求出大约制成多少张光盘.(结果用科学记数法表示)22.(6分)从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的平均质量比标准质量多还是少?用你学过的方法合理解释.(2)若标准质量为450克,则抽样检测的总质量是多少?23.(6分)某出租车一天下午以鼓楼为出发地,在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+12.(1)将最后一名乘客送到目的地,出租车离鼓楼出发地多远?在鼓楼的什么方向?(2)若每千米的价格是2.4元,司机一个下午的营业额是多少?24.(10分)今年元月份李老师到银行并户,存入1000元钱,以后的每月根据收入情况存入一笔钱,下表为李老师从2月份到7月份的存款情况:(特别提醒,超出上月记为正,不足记为负)根据记录,从2月份至7月份中,_______月份存入的钱最多,为________元,_______月份存入的钱最少,为________元,截至7月份,存折上共有_______元(不要求写计算过程,直接填结果).参考答案1.D 2.A 3.C 4.A 5.C 6.B 7.B 8.C 9.1 410.运出粮食80 t 11.32412.913.答案不唯一,如:-1,0,1或1,2,3 14.-1 15.-816.32 17.65 18.3419.(1)原式=()510.47 1.534126466⎛⎫++--=-=- ⎪⎝⎭. (2)原式=()()()91130303027253010156⨯--⨯-+⨯-=-+-=- (3)原式=()()116216182178⎛⎫÷---⨯+-=-+-=- ⎪⎝⎭(4)原式=()491251539205625---⨯-÷=-+-= 20.选2,-3,4,6,则6-(-3)×(2+4)=6-(-18)=24;选2,4,-5,6,则6-2-4×(-5)=4-(-20)=24,答案不唯一. 21.200 000 000÷5 000=40 000=4×10 4(张),大约制成4×10 4张光盘. 22.(1) -5×1+(-2)×4+0×3+1×4+3×5+6×3=-5-8+0+4+15+18=24(克),24÷20=1.2(克)>0,这批样品的平均质量比标准质量多. (2)450×20+24=9 024(克),抽检的总质量是9 024克. 23.(1)+9-3-5+4-8+6-3-6-4+12=2(千米),在鼓楼的东面,离鼓楼2千米.(2)93548636412++-+-+++-+++-+-+-++=9+3+5+4+8+6+3+6+4+12=60(千米),60×2.4=144(元),司机一个下午的营业额是144元. 24.4 1650 2800 8700。
第二章有理数综合单元测试(一)一、选择题(本大题共15小题,共45分):1、在–1,–2,1,2四个数中,最大的一个数是( )(A )–1 (B )–2 (C )1(D )22、有理数31的相反数是( ) (A )31 (B )31- (C )3 (D ) –33、计算|2|-的值是( ) (A )–2 (D )21- (C ) 21(D )24、有理数–3的倒数是( ) (A )–3 (B )31- (C )3 (D )315、π是( ) (A )整数 (B )分数 (C )有理数 (D )以上都不对6、计算:(+1)+(–2)等于( ) (A )–l (B ) 1 (C )–3 (D )37、计算32a a ⋅得( ) (A )5a (B )6a (C )8a (D )9a8、计算()23x 的结果是( ) (A )9x (B )8x (C )6x (D )5x9、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )(A )4101678⨯千瓦(B )61078.16⨯千瓦(C )710678.1⨯千瓦(D )8101678.0⨯千瓦10、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元。
(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 11、用科学记数法表示0.0625,应记作( )(A )110625.0-⨯ (B )21025.6-⨯ (C )3105.62-⨯ (D )410625-⨯12、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )3 13、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( ) (A )2 (B )–2 (C )1 (D )–114、如果a a =||,那么a 是( ) (A )0 (B )0和1 (C )正数 (D )非负数 15、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大 二、填空题:(本大题共5小题,共15分)16、如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作________。
人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。
第一章我们与数学同行第二章有理数一、选择题(本大题共8小题,每小题3分,共24分)1.-2的绝对值是( )A.2 B.-2 C.±2 D.1 22.下面每组中的两个数互为相反数的是( )A.-15和5 B.-2. 5和212C.8和-(-8) D.13和0.3333.计算-3-2的值为( ) A.-5 B.-1 C.5 D.14.下列运算正确的是( )A.-24=16 B.-(-2)2=-4C.(-13)3=-l D.(-2)3=85.计算-2×32-(-2×3)2的值是( )A.0 B.-54C.-72D.-186.下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个7.气象部门测定发现:高度每增加1 km,气温约下降5℃.现在地面气温是15℃,那么4 km高空的气温是( ) A.5℃B.0℃C.-5℃D.-15℃8.在有理数中,一个数的立方等于这个数本身,这种数的个数有( ) A.1个B.2个C.3个D.无数个二、填空题(本大题共10小题,每小题2分,共20分)9.吐鲁番盆地低于海平面155m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作m.10.化简:-(-5)= ,-5 = .11.绝对值小于4的所有整数的和是.12.如图所示,在数轴上将表示-1的点A向右移动3个单位后,对应点表示的数是.13.测得某乒乓球厂生产的五个乒乓球的质量误差(g)如下表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负数.请你选出最接近标准的球,是 号.14.下表是五个城市某年三月份的平均气温,请你把它们按平均气温从高到低的顺序排列: (写城市名).1 5.小明在小卖部买了一袋洗衣粉,发现包装上标有这样一段字样:净重(800±5)g. 请说明这段话的含义: .16.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不 见的细菌,用科学记数法表示两只手上约有 个细菌. 17.某年级举办足球循环赛,规则是:胜一场得3分,平一场得 1分,输一场得-1分,某班比赛结果是胜3场平2场输4 场,则该班得 分.18.右上图是一个数值转换机的示意图,若输入x 的值为3,y 的值为-2,则输出的结果为 . 三、解答题(本大题共10小题,共56分)19.(5分)计算:-32+(-15)+4-(-21).20.(5分)计算:3+50÷22× (-15)-1.21.(5分)计算:(14-13+16)×12+34×(-11).22.(5分)计算:-52-[(-2)3+(1-0.8×34)÷(-2)].23.(6分)若m>0,n<0,n>m,用“<”号连接m,n,n,-m,请结合数轴解答.24.(5分)从甲地到乙地共有7个班次的长途客车,今天和昨天相比这7个班次的长途客车的乘客数量增减情况如下(增加为正,减少为负,单位:人):+3,-2,+6,-5,-8,0,+3.今天这7个班次的长途客车的乘客总量和昨天相比情况如何?25.(6分)为节约用水,某市对用户规定如下:大户(家庭人口4人及4人以上者)每月用水15m3以内的,小户(家庭人口3人及3人以下者)每月用水10 m3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m3则这户人家本月应交水费多少元?26.(6分)我国和俄罗斯联合军事演习中,一核潜艇在海下时而上升,时而下降。
第3个第2个第1个有理数的运算一、选择题:(每小题3分,共30分)( )1、3的相反数是A 、-3B 、+3C 、0.3D 、13 ( )2、-2的倒数是A 、2B 、2-C 、12D 、12- ( )3、“神舟五号”载人飞船绕地球飞行了14圈,共飞行约590200km ,则这个飞行距离用科学记数法表示为( )kmA 、59.02×104B 、0.5902×106C 、5.902×104D 、5.902 ×105( )4、一个数的平方等于它的本身,则这个数是A 、0B 、1或-1C 、0或1D 、0或1或-1( )5、如果两个有理数的和为正数,积为负数,则这两个有理数A 、都是正数B 、一正一负C 、都是负数D 、不能确定( )6、小慧测得一根木棒的长度为2.8米,这根木棒的实际长度的范围A 、大于2.80米,小于2.90米B 、大于2.75米,小于2.85米C 、大于2.75米,小于2.84米D 、大于或等于2.75米,小于2.85米( )7、下列各式计算结果为正数的是A 、(3)(5)(7)-⨯-⨯-B 、101(5)-C 、23-D 、3(5)(2)-⨯-( )8、下列各组数中,不相等的一组是A 、3(5)-与35-B 、2(5)-与25-C 、4(5)-与45D 、35- 与35-( )9、3是331的近似值,其中331叫做真值,若某数由四舍五入得到的近似数是27,则下列各数中不可能是27的真值的是A 、26.48B 、26.53C 、26.99D 、27.02( )10、一个池塘的水浮莲,每天都在生长,且每天的面积是前一天的2倍,如果12天就能把整个池塘遮满,那么水浮莲长到遮住半个池塘需要A 、6天B 、8天C 、10天D 、11天二、填空题:(每空2分,共20分)11、–5的倒数是 ;–5的平方是 。
12、计算:(-2)+5= ;-8-6= ;2002(1)-= 。
一、填空题(每小题3分,共30分)1、 在数轴上,若点A 与表示-2的点相距5个单位, 则点A 表示的数是 2、某地某天的最高气温为5℃,最低气温为-3℃,这天的温差是 。
3、最小的正整数是______,最大的负整数是______,绝对值最小的整数是______.4、观察下列数:-2,-1,2,1,-2,-1……,从左边第一个数算起,第99个数是 。
5、若|a-2|+|b+3|=0,则3a+2b= .6、水池中的水位在某天8个时间测得的数据记录如下(规定上升为正,单位:cm ):+3、-6、-1、+5、-4、+2、-3、-2,那么这天中水池水位最终的变化情况是 。
7、已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月日 点。
8、若a<0,b<0,则a-(-b)一定是 (填负数,0或正数)9、比较大小:7665--,-100 ,99a 100a (a<0)10、(-1)2n +(-1)2n+1=______(n 为正整数).二、选择题(每小题3分,共30分)11、如图所示,A 、B 两点所对的数分别为a 、b ,则AB 的距离为( ) A 、a-b B 、a+b C 、b-a D 、-a-b12、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( )A 、0个B 、1个C 、2个D 、3个13、一个数的平方是81,这个数是( ) A 、9 B 、-9 C 、+9 D 、81 14、若b<0,则a+b,a,a-b 的大小关系为( ) A 、a+b>a>a-b B 、a-b>a>a+b C 、a>a-b>a+b D 、a-b>a+b>a 15、如果一个数的平方等于它的倒数,那么这个数一定是( ) A 、0 B 、1 C 、-1 D 、1或-1 16、下列说法正确的是( )A .有理数的绝对值为正数B .只有正数或负数才有相反数C .如果两数之和为0,则这两个数的绝对值相等( )D .如果两个数的绝对值相等,则这两个数之和为017. 学校、小明家、书店依次座落在一条南北走向的大街上,学校在小明家的正南2千米,书店在小明家的正北边10千米。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题第二章有理数及其运算本章复习1.[在数轴上与表示数4的点距离5个单位长度的点表示的数是( D )A.5 B.-1C.9 D.-1或92.有理数a,b,c在数轴上的位置如图,下列结论错误的是( B )A.c<b<a B.ab>0C.b+c<0 D.b-c>03.已知a,b,c三个数的位置如图所示,则下列结论不正确的是( C )A.a+b<0 B.b-a>0C.a+b>0 D.a+c<04.若|a|+|b|=|a+b|,则a,b关系是( D )A.a,b的绝对值相等B.a,b异号C.a+b的和是非负数D.a,b同号或其中至少一个为零5.已知a,b,c是△ABC的三边长,a,b满足|a-7|+(b-1)2=0,c为奇数,则c=__7__.6.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则:(1)a__>__0,b__>__0,c__<__0,b+c__<__0;(用“>”“<”或“=”填空)(2)化简:|a|-|b|-|c|+|b+c|.解:(2)|a |-|b |-|c |+|b +c |=a -b -(-c )+(-b -c )=a -b +c -b -c =a -2b .7.如图,在数轴上有一条可以移动的线段A B .若将线段AB 向右移动,使得点A 移动到点B 处,这时点B 对应的数是18.若将线段AB 向左移动,使得点B 移动到点A 处,这时点A 对应的数是-6.如果数轴的单位长度是1厘米.(1)线段AB 的长度为多少厘米?(2)起初点A ,B 对应的数分别是多少?解:(1)∵由题意可知线段AB 的3倍长是点6到点18之间的线段,∴[18-(-6)]÷3=8,∴线段AB 的长度为8厘米.(2)∵线段AB 的长度为8厘米,∴-6+8=2,18-8=10,∴起初点A 对应的数是2,点B 对应的数是10.8.如图,点A ,B 和线段MN 都在数轴上,点A ,M ,N ,B 对应的数字分别为-1,0,2,11.线段MN 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)用含有t 的代数式表示AM 的长为__t +1__;(2)当t =__192__秒时,AM +BN =11; (3)若点A ,B 与线段MN 同时移动,点A 以每秒2个单位的速度向数轴的正方向移动,点B 以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM 和BN 可能相等吗?若相等,请求出t 的值;若不相等,请说明理由.【解析】(1)∵点A ,M ,N 对应的数字分别为-1,0,2,线段MN 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒,∴移动后M 表示的数为t ,N 表示的数为t +2,∴AM =t -(-1)=t +1.(2)由(1)可知:BN =|11-(t +2)|=|9-t|.∵AM +BN =11,∴t+1+|9-t|=11,解得t =192.解:(3)假设能相等,则点A 表示的数为2t -1,M 表示的数为t ,N 表示的数为t +2,B 表示的数为11-t ,∴AM =|2t -1-t|=|t -1|,BN =|t +2-(11-t)|=|2t -9|,∵AM =BN ,∴|t-1|=|2t -9|,解得t 1=103,t 2=8. 故在运动的过程中AM 和BN 能相等,此时运动的时间为103秒和8秒. 9.计算:(1)12-(-18)+(-7)-15;解:原式=12+18-7-15=30-22=8.(2)⎝ ⎛⎭⎪⎫-12×(-8)+(-6)÷⎝ ⎛⎭⎪⎫-132. 解:原式=4-54=-50.10.计算:(1)514-⎝ ⎛⎭⎪⎫-223+⎝ ⎛⎭⎪⎫-314-⎝ ⎛⎭⎪⎫+423; (2)⎝ ⎛⎭⎪⎫-34-58+912×(-24); (3)(-3)÷34×43×(-15); (4)-14+|(-2)3-10|-(-3)÷(-1)2 017.解:(1)原式=514+223-314-423=514-314+223-423=2-2=0;(2)原式=34×24+58×24-912×24 =18+15-18=15;(3)原式=(-3)×43×43×(-15) =4×4×5=80;(4)原式=-1+|-8-10|-(-3)÷(-1)=-1+18-3=14.11.生物学家发现了一种病毒,其长度约为0.000 000 31 mm.将数据0.000 000 31用科学记数法表示为( C )A .3.1×107B .3.1×108C .3.1×10-7D .3.1×10-812. 2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA 纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”中国科学家团队研发出的这种可编程、基于DNA 折纸技术的纳米机器人大小只有90 n m×60 n m×2 n m ,n m 是长度计量单位,1 n m =0.000 000 001米,则2 n m 用科学记数法表示为( C )A .2×109米B .20×10-8米C .2×10-9米D .2×10-8米13.用激光技术测得地球和月球之间的距离为377 985 654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.解:(1)377 985 654.32米≈3.779 86×108米;(2)377 985 654.32米≈3.8×108米;(3)377 985 654.32米≈4×108米.14.已知|a +1|与|b -2|互为相反数,求a -b 的值.解:∵|a +1|与|b -2|互为相反数,∴|a +1|+|b -2|=0,∴a +1=0,b -2=0,解得a =-1,b =2,所以a -b =-1-2=-3.15.若“*”是一种新的运算符号,并且规定a *b =a +b b 2,例如:3*5=3+552.求[2*(-2)]*(-3)的值.解:原式=2+(-2)(-2)2*(-3) =0*(-3)=0+(-3)(-3)2 16.观察并计算:(1)1×2×3×4+1=__5__2,3×4×5×6+1=__19__2;(限填正整数)(2)猜想:写出一个反应上述等量关系的等式;(3)说明你猜想的理由;(4)应用:计算:10×11×12×13+1.解:(2)猜想得到:n (n +1)(n +2)(n +3)+1=(n 2+3n +1)2;(3)等式左边=(n 2+n )(n 2+5n +6)+1=n 4+6n 3+11n 2+6n +1, 等式右边=(n 2+3n )2+2(n 2+3n )+1=n 4+6n 3+11n 2+6n +1, 左边=右边,等式成立;(4)根据题意,得原式=1312=17 161.。
题精选一、选择题1.下面说法中正确的是().A.一个数前面加上“-”号:这个数就是负数B.0既不是正数:也不是负数C.有理数是由负数和0组成 D.正数和负数统称为有理数2.如果海平面以上200米记作+200米:则海平面以上50米应记作().A.-50米 B.+50米C.可能是+50米:也可能是-50米 D.以上都不对3.下面的说法错误的是().A.0是最小的整数 B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题1.如果后退10米记作-10米:则前进10米应记作________:2.如果一袋水泥的标准重量是50千克:如果比标准重量少2千克记作-2千克:则比标准重量多1千克应记为________:3.车轮如果逆时针旋转一周记为+1:则顺时针旋转两周应记为______.三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复):同时满足下面三个条件.(1)其中三个数是非正数:(2)其中三个数是非负数:(3)5个数都是有理数.2.如果我们把海平面以上记为正:用有理数表示下面问题.一架飞机飞行高于海平面9630米:(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示:则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%:第二天涨1.25%:各应怎样表示?5.如果海平面以上我们规定为正:地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛:其中考五个题:记分标准是这样定的:如果答对一题得1分:答错或不答都扣1分:该生得了3分:问其答对了几个题?参考答案:一、1. B 2. B 3. A二、1.+10米 2.+1千克 3.-2周三、1.√ 2.× 3.× 4.×四、1.2:1:0:-1:-2.(提示:0是非负数和非正数的公用数)2.(1)+9630米(2)-60米3.(1)应该是负数来表示.(提示:12月份哈尔滨已进入严冬:其温度在零下:而此时海南岛温度还在零上)4.答:一般按习惯我们都把股票上涨记为“+”:所以第一天应表示为-0.71%:第二天应表示为+1.25%.(提示:正、负虽是人规定的:但在实际应用中我们应尊重多年形成的习惯)5.不能.(提示:我们有很多地面高度在海平面以下)6.该生答对了4个题(提示:如果不考虑扣分:则答对了3个题就可以得3分:而其中另外两题的分数和是零:所以另外两题还得有一题答对:故共答对4个题)习题精选一、选择题1.一个数的相反数是它本身:则这个数是()A.正数 B.负数 C.0 D.没有这样的数2.数轴上有两点E和F:且E在F的左侧:则E点表示的数的相反数应在F点表示的数的相反数的()A.左侧 B.右侧 C.左侧或者右侧 D.以上都不对3.如果一个数大于另一个数:则这个数的相反数()A.小于另一个数的相反数 B.大于另一个数的相反数C.等于另一个数的相反数 D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧:则表示该数相反数的点一定在原点的________侧:2.任何有理数都可以用数轴上的________表示:3.与原点的距离是5个单位长度的点有_________个:它们分别表示的有理数是_______和_______:4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.()3.数轴就是规定了原点和正方向的直线.()4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数:(2)大于-4的负整数:(3)大于-0.5的非正整数.2.在数轴上表示下列各数:并把各数用“<”连结起来.(1)7:-3.5:0:-4.5:5:-2:3.5:(2)-500:-250:0:300:450:(3)0.1::0.9::1:0.3.找出下列各数的相反数(2)(3)(4)-10004.如图:说出数轴上A、B、C、D四点分别表示的数的相反数:并把它们分别用标在数轴上.5.在数轴上:点A表示的数是-1:若点B也是数轴上的点:且AB的长是4个单位长度:则点B表示的数是多少?参考答案:一、1.C 2. B(提示:画出数轴:分两点在原点的同侧和两点在原点的两侧进行讨论) 3.A二、1.右 2.点 3.两:5、-5 4.小三、1.× 2.× 3.× 4.√四、1.(1)-2:0:-1 (2)-3:-2:-1 (3)02.(1)如图(2)如图(3)如图(提示:数轴上单位所表示的数可根据实际而定:在用“<”连结数之前最好把这些数表示在数轴上:就一目了解了=(2)(3)(4)10004.表示数的相反数是:-2:5::-4.5.如图.5.答:点B表示的数是3或-5.(提示:在数轴上到一点相等距离的点有两个)题精选一、选择题1.如果:则()A. B. C. D.2.下面说法中正确的是()A.若:则B.若:则C.若:则D.若:则3.下面说法中正确的是()A.若和都是负数:且有:则B.若和都是负数:且有:则C.若:且:则D.若都是正数:且且:则4.数轴上有一点到原点的距离是5:则()A.这一点表示的数的相反数是5B.这一点表示的数的绝对值是5C.这一点表示的数是5D.这一点表示的数是-5二、填空题1.已知某数的绝对值是:则是______或_______:2.绝对值最小的有理数是________:3.一个数的相反数是8:则这个数的绝对值是_________:4.已知数轴上有一点到原点的距离是3:则这点所表示的数的绝对值是________:这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数:绝对值大的数反而小.()4.两个正有理数:绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值:并把它们用“<”连起来-2.37:0::-385.7.2.把下列一组数用“>”连起来-999:::0.01:.3.计算下列各式的值(1):(2):(3):(4)4.如图:比较和的绝对值的大小.5.计算下面各式的值(1)-(-2):(2)-(+2).参考答案:一、1. D 2.C 3. A 4. B二、1.正数:0 2.0 3.8 4.3、3或-3三、1.× 2.× 3.× 4.√ 5.√四、1.:.2.3.(1)(2)44.5.(1)2 (2)-2习题精选一、选择题1.两个有理数的和()A.一定大于其中的一个加数 B.一定小于其中的一个加数C.和的大小由两个加数的符号而定 D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A. B.(-2)+(+2)=4C. D.(-71)+0=-713.如图:下列结论中错误的是()A. B. C. D.二、填空题1.两个负数相加其和为___________数.2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加:其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图:请用表示与的和.2.计算(1):(2)(-0.19)+(-3.12):(3):(4):(5).3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25:(2)0.47+(-0.09)+0.39+(-0.3)+1.53:(3):(4)23+(-72)+(-22)+57+(-16):(5):(6)(7)4.一名外地民工10天的收支情况如下(收入为正):30元:-17元:21元:-5元:-3元:18元:-21元:45元:-10元:28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下(亏为负):单位:元星期周一周二周三周四周五周六周日盈亏情况-15 27 -7 98(1)计算出小商店一周的盈亏情况:(2)指出盈利最多一天的盈利额.6.在-49:-48:-47:…:2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?参考答案:一、1. C 2. B 3.C二、1.负 2. 0 3.较大三、1.(1)(2)(3)(4)2.(1)(3)(4)(5)0(2)2 (3)(4)-30 (5)0 (6)-2 (7) 04.86元6.(1)0(提示:前99个数是-49…0…49)(2)50习题精选一、选择题1.下面说法中正确的是()A.在有理数的减法中:被减数一定要大于减数 B.两个负数的差一定是负数C.正数减去负数差是正数 D.两个正数的差一定是正数2.下面说法中错误的是()A.减去一个数等于加上这个数的相反数 B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数 D.一个数减去零仍得这个数3.甲数减乙数差大于零:则()A.甲数大于乙数 B.甲数大于零:乙数也大于零C.甲数小于零:乙数也小于零 D.以上都不对二、填空题1.比-3比2的数是__________:比-3少2的数是__________:2.:3..三、判断题1.若:则:()2.若成立:则:()3.若:则()四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图:根据图中与的位置确定下面计算结果的正负.(1):(2):(3):(4)3.计算(1)2.7-(-3.1):(2)0.15-0.26:(3)(-5)-(-3.5):(4):(5):(6)4.1998年4月2日:长春等5个城市的最高气温与最低气温记录如下表:哪个城市的温差最大?哪个城市的温差最小?城市名称哈尔滨长春沈阳北京大连最高温度2℃3℃3℃10℃6℃最低温度-12℃-10℃-8℃2℃-2℃5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时:表示数的点与表示的点.参考答案:一、1. C 2. B 3. A二、1.-1:-5 2.3.三、1.√ 2.× 3.×四、1.举例:2-(-2)=4:而2.(1)(2)(3)(4)(4)(5)-15 (6)4.哈尔滨温差最大:北京、大连温差最小.(提示:分别算出各地温差:进行比较)5.(1)(2)习题精选一、选择题1.在1.17-32-23中把省略的“+”号填上应得到()A.1.17+32+23 B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23) D.1.17-(+32)-(+23)2.下面说法中正确的是()A.-2-1-3可以说是-2:-1:-3的和B.-2-1-3可以说是2:-1:-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-13.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数:则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________:(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________:(2)3.计算:(1)-5+7-15-4+2=_______________:(2)-0.5+4.3-9.6-1.8=_____________:(3)三、解答题1.计算(1):(2):(3):(4)2.计算(1):(2):(3):(4)3.计算(1):(2)-1999+2000-2001+2002-2003.4.存折中有2676元:取出1082元:又存入600元:在不考虑利息的情况下:你能算出存折中还有多少元钱吗?参考答案:一、1. C 2. A 3.B二、1.(1)-9+2+(-3)+(-4):(2):2.(1)-7+15-3+4:(2):3.(1)-15:(2)-7.6:(3).三、1.(1)(2)(3)-17 (4)2.(1)(2)(3)(4)(2)-20014.2194元习题精选1.小胖去年年末称体重是75千克:今年一月份小胖开始减肥:下面是小胖今年上半年体重的变化情况:月份一月二月三月四月五月六月体重变化情况/千克+2 -3 -2负数表示比上月减少:正数表示比上月增加(1)小胖1~6月中哪个月的体重最重:是多少?(2)小胖1~6月中哪个月的体重最轻:是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了:是多少?2.某校初一抽出5名同学测量体重:小明体重是55千克:其他4名同学的体重和小明体重的差数如下表:姓名小光小月小华小刚与小明体重的差数/千克+5 -4 -1 +3比小明重记为正:比小明轻记为负(1)哪几名同学的体重比小明重:重多少?(2)哪几名同学的体重比小明轻:轻多少?(3)写出最重和最轻的两个同学的体重:并说明这两名同学之间的体重相差多少?3.某百货商场的某种商品预计在今年平均每月售出500千克:一月份比预计平均月售出额多10千克记为+10千克:以后每月销售量和其前一个月销售量比较:其变化如下表(前11个月):月份一月二月三月四月五月六月七月八月九月十月十一月销售量变化情+10 +5 +2 0 -3 -4 -10 -12 +5 +4况/千克(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量:12月份还需销售多少千克?参考答案1.(1)2月最重是(2)6月最轻是(3)是减少:减少了7.5干克(提示:把小胖每个月的体重算出来)2.(1)小光、小刚比小明重:分别重5千克和3千克:(2)小月、小华比小明轻:分别轻4千克和1千克:(3)最重的是小光:其体重是60千克:最轻的是小月:其体重是51千克:小光和小月之间相差9千克.3.(1)每月的销售量分别是510千克、515千克、517千克、517千克、514千克、510千克、500千克、488于克、493干克、497干克、(2)平均销量(3).(提示:注意表格给出的变化是较比其上个月的增减情况)题精选一、选择题1.下面说法中正确的是()A.因为同号相乘得正:所以(-2)×(-3)×(-1)=6B.任何数和0相乘都等于0C.若:则D.以上说法都不正确2.已知:其中有三个负数:则()A.大于0 B.小于0 C.大于或等于0 D.小于或等于03.若:其a、b、c()A.都大于0 B.都小于0 C.至少有一个大于0 D.至少有一个小于0二、填空题1.两个数相乘:同号得___________:异号得_________:并把_________相乘:2.一个数和任何数相乘都得0:则这个数是_________:3.若干个有理数相乘:其积是负数:则积中负因数的个数是_________数.4.先填空:然后补写一个有同样特点的式子.(1)1×(-7)-1=_________:(2) 9×(-9)+1=___________:12×(-7)-2=_________: 98×(-9)+2=_________:123×(-7)-3=_________. 987×(-9)+3=_________.__________________________. __________________________.参考答案:一、1. B 2. D 3. C二、1.正、负、绝对值2.03.奇4.(1)-8:-86:-864:1234×(-7)-4=-8642(2)-80:-880:-8880:9876×(-9)+4=-88880习题精选一、填空题1.0.25的倒数是___________-:-0.125的倒数是________:_________的倒数是:2.倒数与本身相等的数有____________.3.4.5.6.二、解答题1.计算:(1)(2)2.计算:3.在下面不正确的算式中添加负号与括号:使等式成立.(1)8×3+12÷4=-30 (2)8×3+12÷4=-94.计算(1):(2)(-12)÷(-4)÷(-3)÷(-3):(3):(4)参考答案:一、1.4:-8::2.1和-1:3.:4.<5.>6.=二、1.(1)原式(2)原式2.原式3.答案不确定.如(1)8×〔-3+(-12)〕÷4=-30 (2)〔(-8)×3+(-12)〕÷4=-94.(1)1 (2)(3)(4)习题精选一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________:底数是__________:指数是__________:2.平方等于它本身的数是_________:3.4.________的立方等于64:_________的平方等于64:5.一个数的平方等于它的绝对值:这个数是_________:6.二、判断题1.因为:所以()2.3.因为:所以有任何有理数的平方都是正数.()4.(n是正整数)()三、解答题1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?3.若a是正数:请设计一个问题:使计算的结果是.4.计算1+3:1+3+5:1+3+5+7:…并找出规律:利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节:第二次同时折这两节就得到四节:……:依次这样进行下去:当折十次时:将得到多少节木棍?参考答案:一、1.(-5)3:-5:3 2. 0和1 3.-1:-1:-724.(1)4:8和-8 5.-1:0或1 6. 950(原式=1-8+81-1024)二、1.× 2.× 3.× 4.×三、1.(1)原式(2)解法不惟一:如原式=4×4×4××2.5=(4×2.5)×(4×2.5)×4=10×10×4=400(3)原式=-4-4=-82.不可能是2、3、7、8提示:可利用一些连续的整数进行实验。
第二章《有理数》综合测试题一、选择题(每小题3分,共24分)1.-2的相反数是(A )A .2B .-2C . 21D . 21-2.│3.14- π|的值是( C ).A .0B .3.14- πC .π-3.14D .3.14+π3.一个数和它的倒数相等,则这个数是( C )A .1B .1-C .±1D .±1和04.如果a a -=||,下列成立的是( B )A .0>aB .0<aC .0≥aD .0≤a5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( A )A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(保留两个有效数字)D .0.0502(精确到0.0001)6.计算1011)2()2(-+-的值是( C )A .2-B .21)2(-C .0D .102-7.有理数a 、b 在数轴上的对应的位置如图所示,则( A )0-11a bA .a + b <0B .a + b >0C .a -b = 0D .a -b >08.下列各式中正确的是( A )A .22)2(2-=B .33)3(3-=C .|2| 222-=-D .|3| 333=-二、填空(每题3分,共24分)9.在数+8.3、 -4、-0.8、 51-、 0、 90、 334-、|24|--中,__+8.3 90__ 是正数,_+8.3 -0.8 -1/5 -3/34________不是整数。
10. +2与-2是一对相反数,请赋予它实际的意义:_+2+-2=0________.11.35-的倒数的绝对值是__3/5_______.12.(2)--+4= 6 ;13.用科学记数法表示13 040 000,应记作______1.304*10的4次方_________.14.若a 、b 互为相反数,c 、d 互为倒数,则(a + b)3 .(cd)4 =______1____.15.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____64_____个.16.在数轴上与-3距离四个单位的点表示的数是_-7 1_________.三、解答题(每题6分,共12分)17.(-0.9)+(+4.4)+(-8.1)+(+5.6)=(-0.9)+(-8.1)+4.4+5.6=(-9)+10=118.÷-|97|2)4(31)5132(-⨯-- =-3/11四、解答题(每题8分,共40分)19.把下列各数用“〉”号连接起来:51- ,-0.5,51 , 5-- ,-(-0.55), 515+- -(-0.55)>5分之1>-5分之1>-0.5>-|-5|>-|+5又5分之1|20. 如图,先在数轴上画出表示2.5的相反数的点B,再把点A 向左移动1.5个单位,得到点C,求点B,C 表示的数,以及B,C 两点间的距离.0 2.521. 求2-x +7-x 的最小值。
2019年七年级数学上册第二章有理数的运算测试题一、选择题(每小题3分,共30分)1.计算2(- )的结果是 ( )A.-1B.1C.-2D.22.以下关于有理数-10的表述正确的是 ( )A.-(-1O)- C.-102O3.已知两数相乘大于0,两数相加小于0,则这两数的符号为 ( )A.同正B.同负C.一正一负D.没法确定4.若-2减去一个有理数的差是-5,则-2乘这个有理数的积是 ( )A.10B.-10C.6D.-65.算式( - - )24的值为 ( )A.-16B.-18C.16D.-246.以下各对数中,互为相反数的是 ( )A.-|-7|和+(-7)B.+(-10)和-(+10)C.(-4)3和-43D.(-5)4和-547.尽管遭到国际金融危机的影响,但义乌市经济仍然保持了平稳增长.据统计,截止到今年4月底,该市金融机构存款余额约为1193亿元,用科学记数法应记为 ( )A.1.1931010元B.1.1931011元C.1.1931012元D.1.1931013元8.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元免费;如果超过60立方米,超过部分按每立方米1.2元免费.已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费 ( )A.64元B.66元C.72元D.96元9. 3是3 的近似值,其中3 叫做真值,若某数由四舍五入得到的近似数是27,则以下各数中不可能是27的真值的是 ( )A.26.48B.26.53C.26.99D.27.0210.小华和小丽比来测了本人的身高,小华量得本人约1.6m,小丽测得本人的身高约为1.60m,以下关于她俩身高的说法正确的是( )A.小华和小丽一样高B.小华比小丽高C.小华比小丽低D.没法确定谁高二、填空题(每小题4分,共24分)11.- 的倒数是 ;- 的平方是 .12.(1)近似数2.50万精确到位;有效数字分别是 ;(2)1纳米等于十亿分之一米,用科学记数法表示25米= 纳米.13.数轴上表示有理数-3.5与4.5两点的距离是 .14.(-1)2+(-1)3++(-1)2019= .15.李明与王伟在玩一种计算的游戏,计算的规则是 | |=ad-bc,李明轮到计算| |,根据规则| |=31-25=3-10=-7,,如今轮到王伟计算| |,请你帮忙算一算,得 .16.a是不为1的有理数,我们把称为a的差倒数.如:3的差倒数是 =- ,-1的差倒数是 = .已知a1=2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,,依此类推,则a2019= 。
第二章有理数测试
一、选择
1、关于有理数,下面的说法正确的是( )
A、有最大的数 B、有最小的数
C、有绝对值最小的数 D、有绝对值最大的数
3、下列结论中正确的是 …………………………………………( )
A.0既是正数,又是负数
B.O 是最小的正数
C.0是最大的负数
D.0既不是正数,也不是负数
4、给出下列各数:-3,0,+5,-1.5 ,+3.1,10% ,2004,+2008.
其中是负数的有 ……………………………………………………( )
A.2个
B.3个
C.4个
D.5个
5、已知|x|=3,|y|=2,且xy ﹤0,则x +y 的值为( )
A、5或-5 B、1或-1 C、5或1 D、-5或-1
6、对于数轴上表示的数,下列说法不正确的是( )
A 、离原点远的点表示的有理数大。
B 、两个负数,表示较大的数的点离原点较近。
C 、两个正数,表示较大的数的点离原点较远。
D 、右边的数大于左边的数
7、如图,根据有理数a ,b ,c 在数轴上的位置,下列关系正确的是( )
A .b>c>0>a
B .a>b>c>0
C .a>c>b>0
D .b>0>a>c
8、下列说法中,正确的是( ).
A 、|-a|是正数
B 、|-a|不是负数
C 、-|a|是负数
D 、|-a|不是正数
一、填空
1、如果向东运动5m 记作+5m ,那么向西运动3m 记作 。
2、-(-3)的相反数是 ,|+(-4
3)|= 。
3、一个数的绝对值与它的倒数的和等于零,那么这个数是 。
4、有理数 2
3-, 2)3(-, -|-3|, -31, 33,从小到大的顺序是: 。
5、倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它
本身的数是 。
6.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
二、把下列各数分别填在相应的集合中。
+5,-21,0.4,0,6,+3
1,-2.56,-0.67,+9 正数集: { };
分数集: { };
非正数集:{ }。
三、把下列各数在数轴上表示出来,并按从小到大的顺序,用“﹤”连接起来。
+(-
21), -2)3(-, 25
.01 , -|2-4|, 0, 2)1(-
四、 化简下列各数:
(1)--()16
(2)+-()21 (3)---[()]6 (4)+-+[()]5
(5)+-()0 (6)--+[()]3
五、应用题
在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向。
当天航行路程记录如下:(单位:千米)
14,-9,18,-7,13,-6,10,-5
问:(1)B 地在A 地的何位置;
(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?。