3-5高考题赏析
- 格式:docx
- 大小:88.53 KB
- 文档页数:4
高中物理选修3-5《光电效应》6年高考试题精选一、单项选择题1.【2011·上海卷】用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是A.改用频率更小的紫外线照射B.改用X射线照射C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间【答案】B【解析】每一种金属对应一个极限频率,低于极限频率的光,无论照射时间有多长,光的强度有多大,都不能使金属产生光电效应,只要照射光的频率大于或者等于极限频率,就能产生光电效应,因为X射线的频率高于紫外线的频率,所以改用X射线照射能发生光电效应,B正确【考点定位】光电效应2.【2014·江苏卷】已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1011Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的A.波长 B.频率 C.能量 D.动量【答案】 A【考点定位】本题主要考查了对爱因斯坦光电效应方程、德布罗意波长公式的理解与应用问题,属于中档偏低题。
3.【2013·上海卷】当用一束紫外线照射锌板时,产生了光电效应,这时A.锌板带负电B.有正离子从锌板逸出C.有电子从锌板逸出D.锌板会吸附空气中的正离子【答案】C【解析】光电效应发生的过程是锌板原子核外层电子在吸收光子后摆脱原子核的束缚逃离锌板,导致锌板带正电,选项AB错误,C正确;锌板失去电子后带正电,因同种电荷排斥,所以锌板不会吸引空气中的正离子,D错误。
【考点定位】光电效应的发生。
4.【2013·天津卷】下列说法正确的是()A.原子核发生衰变时要遵守电荷守恒和质量守恒的规律B .射线、射线、射线都是高速运动的带电粒子流C .氢原子从激发态向基态跃迁只能辐射特定频率的光子D .发生光电效应时光电子的动能只与入射光的强度有关【答案】C【考点定位】原子核衰变、玻尔理论、光电效应。
高考复习散文阅读五赏析散文艺术手法及作用班级姓名一、知识归纳。
散文艺术手法,包括修辞手法、表达方式、表现手法、叙述人称、叙述顺序等。
(一)修辞手法及作用。
1.比喻:化平淡为生动,化深奥为浅显,化抽象为具体。
2.比拟:给物赋予人的形态情感(指拟人),描写生动形象,表意丰富。
3.借代:以简代繁,以实代虚,以奇代凡。
4.夸张:烘托气氛,增强感染力,增强联想;创造气氛,揭示本质,给人以启示。
5.对偶:便于吟诵,易于记忆,使词句有音乐感;表意凝练,抒情酣畅。
6.排比:节奏鲜明,内容集中,增强气势;叙事透辟,条分缕析;长于抒情。
7.反复:写景抒情感染力强;承上启下,分清层次;多次强调,给人以深刻的印象。
8.对比(也属于表现手法):使所表现的事物特征或所阐述的道理观点更鲜明、更突出。
9.设问:自问自答,提出问题,引发读者的思考。
10.反问:强调语气,语气强烈,强化情感。
(二)叙述人称1、第一人称:叙述亲切自然,能自由地表达思想感情,给读者以真实生动之感。
2、第二人称:增强文章的抒情性和亲切感,便于感情交流。
3、第三人称:能比较直接客观地展现丰富多彩的生活,不受时间和空间限制,反映现实比较灵活自由。
(三)表达方式表达方式包括记叙、说明、议论、描写、抒情,各有表达作用。
1.记叙。
分四种方式:(1)顺叙,条理清晰,脉络分明。
(2)倒叙,设置悬念,吸引兴趣,波澜起伏。
(3)插叙,丰富内容,深化主题,曲折有致。
(4)平叙(分叙)。
2、描写。
分人物描写和环境描写。
描写总体作用有:①再现自然风光。
②描绘人物的外貌及内心世界。
③交代人物活动的自然及社会环境。
具体有:(1)人物肖像、动作描写、心理描写:更好展现人物的内心世界、性格特征。
(2)人物对话描写、心理描写、细节描写:刻画人物性格,反映人物心理活动,促进故事情节的发展。
也可描摹人物的语态,收到一种特殊的效果。
(3)景物描写:具体描写自然风光,营造一种气氛,烘托人物的情感和思想。
2019年普通高等学校招生全国统一考试(Ⅲ卷)语文参考答案及试题解析1. C 此题考查原文内容的理解和分析能力。
解答此类题要把握文中的基本概念和重要信息,提取并整合最能表达作者写作意图或文章主旨的语句,阐释或归纳文中的主要内容。
解答是应先从原文中找到与选项相关的阅读区间,然后与选项的表述仔细比对,看是否一致;同时还要了解错误表述设置的一般思路,比如张冠李戴、无中生有、混淆时态、以偏概全、曲解文意等等。
C项“以防失去原有风格”分析错误,对传统艺术进行西式改编,将会失去的是“本真的艺术特性”。
故选C。
2. C 本题考查学生对文章论证的分析能力。
答题时注意分析文章的结构思路,中心论点和分论点的关系,论点和论据之间的关系,论证方法的类型,重点考核论点是否正确,论据证明的是什么观点和论证的方法。
C项,文章没有对“场馆建设和数字化保存”作比较,因为二者都是对非物质文化遗产的保存,都不是保护。
故选C。
3. D 此题考查把握文章内容、分析作者观点态度的能力。
此种归纳内容要点和分析作者观点态度的题目,解答时应先根据选项确定原文信息所在的位置,然后将选项和原文进行比较,并结合上下文语境进行判断。
A项,“使其‘雅化’意味着脱离原生的环境,很难获得成功”说法错误,原文只是说“(使其‘雅化’)弱化了传统表演艺术的民俗文化内涵”,对能否获得成功,并未有明确的说明。
B项,“民间各种自发的载歌载舞活动都是传统表演艺术的一部分”说法缺少根据,文章中只是说“广大民众为庆贺丰收、祭祖敬神、禳灾祈福而载歌载舞的即兴表演” 是传统表演艺术的一部分,有很强的民俗色彩。
并非所有的自发的载歌载舞活动。
C项,“将其物质载体作固态展示则没有价值”说法错误,原文说这样“能较好地保存民间表演艺术的物质载体”。
故选D。
4. A 此题考查考生筛选整合文中信息和把握文章内容要点的能力。
解答这类题型,学生首先要通读全文,粗知大意,理清基本思路;其次细读题干,明确问题,回归原文;最后对选项中的句子进行观察,遇到涉及有因果关系的选项时,在原文中找出相关的句子,仔细分析有无因果关系,或者是否是因果倒置,最后将选项和原文及题干细心比照判断。
高考语文诗歌鉴赏阅读理解5年真题汇总一、(2024·新高考Ⅰ卷·高考真题)阅读下面的宋诗,完成下面小题。
宿千岁庵听泉刘克庄因爱庵前一脉泉,襥衾来此借房眠。
骤闻将谓溪当户,久听翻疑屋是船。
变作怒声犹壮伟,滴成细点更清圆。
君看昔日兰亭帖,亦把湍流替管弦。
15.下列对这首诗的理解和赏析,不正确的一项是()A.诗的开头交代,诗人之所以会到千岁庵借宿,是出于对庵前泉水的喜爱。
B.诗歌主要是从听觉的角度来描写泉流,与题目中的“听泉”二字相切合。
C.诗人雅趣与古人相通,在听泉的时候,联想到昔日曲水流觞的兰亭雅集。
D.诗人与兰亭诸贤一样,都把对音乐之美的追求寄托于山水而摒弃了乐器。
16.本诗采用了对比的手法,颈联写泉水的声音既响亮又微小,请结合诗句简要分析。
二、(2024·新高考Ⅱ卷·高考真题)阅读下面的宋诗,完成下面小题。
雨后为山亭独卧叶梦得①过雨虚檐气稍清,卧闻刁斗起连营。
几看薄月当轩过,惊见阴虫绕砌鸣②。
汹汹南江浮静夜,寥寥北斗挂高城。
白头心事今如许,惭愧儿童话请缨。
[注]①叶梦得:南宋文学家,曾致力于抗金防备及军饷勤务。
②阴虫:秋虫,如蟋蟀之类。
15.下列对这首诗的理解和赏析,不正确的一项是()A.雨后空气清新,为山亭的夜晚凉爽宜人,然而诗人的心情却难以平静。
B.本诗第二句与辛弃疾《破阵子》中的“梦回吹角连营”一句立意相似。
C.诗人凭轩望月,浮想联翩,而阶前突然传出的虫鸣声惊扰了他的思绪。
D.颈联通过江水、星空等物象营造出了一个天高地迥、苍茫寂寥的境界。
16.如何理解诗人的“白头心事”?请结合诗歌内容简要分析。
三、(2024·全国甲卷·高考真题)阅读下面的宋诗,完成下面小题。
次韵钱逊叔泛舟虹桥①吕本中半篙春涨绿平溪,二月江城草色齐。
舟比蜉蝣千顷外,□同斥鷃一枝栖②。
野桥柳线斜风软,曲槛花光夕照低。
却讶探骊人不至③,清樽画航倩分题④。
[注]①次韵:依次用所和诗中的韵作诗。
2020全国ⅲ卷语文解析一、论述类文本(共12 分)阅读下面的文字,完成下面小题。
《古文观止》是一个文章选本,“观止”本于《左传》记载季札在鲁国看乐舞时赞美的话:“观止矣!”这个选本是清朝吴楚材、吴调侯在康熙三十三年(1694)选定的,它备受读者喜欢是有原因的。
第一,一般说来,它体现了比较进步的文学主张。
古代的选本,梁朝萧统的《文选》也很著名。
那时的文学主张,认为哲理散文和历史散文都不能入选。
《文选》除诗歌外,选的主要是骈文,是一种讲究辞藻、对偶、声律的文章。
唐朝韩愈起来提倡古代的散文,称为古文,用来反对骈文。
这种主张是进步的。
《古文观止》正是贯彻了韩愈以来的古文家的主张。
第二,一般说来,入选这个选本的文章丰富多彩,思想性和艺术性是比较高的。
自从韩愈提倡古文以后,古文的选本在《古文观止》前早已有了,像宋朝真德秀的《文章正宗》选录《左传》《国语》到唐朝末年的作品,《古文观止》的选文从左传》开始,就是本于《文章正宗》。
不过真德秀是道学家,他用封建伦理的眼光来选文章,忽略了文章的艺术性,所以他的选本不受欢迎;《古文观止》所选,像先秦的历史散文《曹刿论战》《鲁仲连义不帝秦》,表现当时人的智慧和品德;两汉文《治安策》和《出师表》,反映出当时政治上的重大矛盾,表现出作家的远见和忠诚;唐文《捕蛇者说》,深刻暴露封建统治者“苛政猛于虎”的罪恶;宋文《岳阳楼记》,通过不同景物的描写来表现“先天下之忧而忧,后天下之乐而乐”的崇高精神……这些名篇,都是古今传诵。
这个选本所选文章的丰富多彩,也表现在文章的体制上。
选本也选了几篇韵文、骈文。
严格讲起来,古文跟骈文是对立的。
但就中国文学史的发展讲,古文由散体趋向骈体,再由骈体回复到散体,完全不选骈体,就看不出这种变化来。
第三,这个选本的编选体例也有它的好处。
萧统的《文选》分很多门类,烦琐不堪;真德秀的《文章正宗》古文部分分辞令、议论、叙事三类。
《古文观止》不分类,按时代先后排列,从中可看出古代文章演变的迹象。
第一学习单元 动量1.动量 冲量 动量定理K 知识深层理解1、动量和冲量 (1)动量:运动物体的质量和速度的乘积叫动量,即p mv =.动量是矢量,方向与速度的方向相同.两个动量相同一定是大小相等,方向一致.(2)冲量:力和力的作用时间的乘积叫力的冲量,即I Ft =.冲量也是矢量,它的方向由力的方向决定.2、动量定理(1)内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.(2)表达式:Ft p p '=-或Ft mv mv '=-.理解1 什么是动量?为什么要学习动量?物体的质量m 与速度v 的乘积叫物体的动量,用p 表示,表达式是p mv =.因为公式中的v 悬物体的瞬时速度,示以动量具有矢量性,方向与瞬时速度的方向相同.动量是一个状态量,是针对某一时刻而言的,计算物体的动量时应取某一时刻的瞬时速度;动量具有相对性,大小与参考系的选取有关,通常动量是相对地面而言的.相对于速度,动量在描述物体的运动方面更进一步,更能体现物体运动的作用效果.物体动量的变化率pt∆∆等于它所受的力,这是牛顿第二定律的另一种表达形式.理解2 如何理解冲量?1.冲量描述的是力F 对作用时间t 的累积效果.力越大,作用时间越长,冲量就越大,由I Ft =可知冲量大小由力F 和作用时间t 共同决定,讲冲量必须明确是哪个力在哪段时间内对哪个物体的冲量.2.冲量与功的区别(1)冲量是矢量,功是标量.(2)由I Ft =可知,有力作用,这个力一定会有冲量,因为时间t 不可能为零.但是由功的定义式cos W Fs α=可知,有力作用,这个力却不一定做功.【注意】一对相互作用力的冲量和一定为零,一对相互作用力做功的代数和不一定为零.理解3 动量与动能的区别动量是矢量,动能是标量.动量的改变由合外力的冲量决定,而动能的改变由合外力所做的功来决定.动量和动能都是相对量,均与参考系的选取有关.当物体的速度大小不变,方向变化时,动量一定改变,动能却不变,如匀速圆周运动.理解4 理解动量定理1.物体所受的合外力的冲量等于它的动量的变化量,表达式:Ft p p '=-或Ft mv mv '=-.印象笔记◀◀冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“F t -”图像和“F s -” 图像中用面积表示.变力的F t -图像 ◀我们在分析问题时经常会遇到动量与动能相结合的问题,要注意动量与动能间的关系:22kp mE =或2k mE ρ=.2.根据得F ma =,得v v p p F mt t ''--==∆∆,即pF t∆=∆,这是牛顿第二定律的另一种表达形式:作用力F 等于物体动量的变化率pt∆∆. 3.动量定理反映了物体所受冲量与其动量变化量两个矢量间的关系,式子中的“=”的含义包括大小相等和方向相同(注意I 与初、末动量无必然联系).式子中的F t ∆应是总冲量,它可以是合力的冲量,也可以是各力冲量的矢量和,还可以是外力在不同阶段冲量的矢量和. K 应试拓展注意 拓展1 动量变化量的计算2121p p p mv mv ∆=-=-若物体的运动始终保持在一条直线上,选定一个正方向,动量、动量的变化量用带正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅表示方向,不表示大小).若物体运动的初、末状态不在一条直线上,动量的变化量p ∆的大小和方向可以按平行四边形定则求得,也可以由三角形定则来计算,如图所示.拓展2 冲量的计算方法冲量的计算一般有以下三种方法:(1)公式法:合外力的冲量可由I F t =∆求出,也可以由各个外力的冲量的矢量和求出.公式中t ∆是力作用的时间,F 必须是恒力(可以是某一个恒力,也可以是恒定的合力),若F 不是恒力,则除随时间均匀变化的力可通过取平均值计算以外,一般不能用此式表达.(2)图像法:若已知力随时间的变化图线,则力的冲量的大小为此图线与时间轴所围的“面积”,如图所示.(3)动量定理法:根据物体运动状态的变化,利用动量定理求出合外力的冲量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和.若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.例如:一质量为m 的质点在水平面内以速度v 做匀速圆周运动,如图,质点从位置A 开始,经12圆周到B 位置,质点所受合力的冲量是多少?分析:质点做匀速圆周运动,它所受的合外力提供向心力,印象笔记◀动量变化的大小与动量大小无关,这类似于v ∆与v 的关系.动量变化的正负不表示动量变化的大小,只表示动量变化的方向,动量变化的大小只能通过其绝对值的大小来判断.◀矢量运算遵从平行四边形定则或三角形定则.合力是一个大小不变、方向不断变化的力,由F t p ∆=∆可知p ∆以B v 方向为正方向,因为,A B v v v v =-=,则2B A p mv mv mv ∆=-=,合力的冲量与B v 同向.拓展3 应用动量定理分析实际问题常用动量定理解释的两类现象1.物体的动量变化量p ∆一定,由动量定理Ft p =∆可知,若力的作用时间F 越短,则作用力F 越大,因此在需要增大作用力时,可尽量缩短力的作用时间,如打击、碰撞等过程;若力的作用时间越长,则作用力F 就越小,因此在需要减小作用力时,可设法延长力的作用时间,如利用软垫、弹簧的缓冲作用来延长力的作用时间.2.作用力F 一定,由动量定理Ft p =∆可知,力的作用时间越长,动量的变化量就越大,力的作用时间越短,动量的变化量就越小.例1 玻璃杯从同一高度自由落下,落到硬水泥地面上易碎,而落到松软的地毯上不易碎.这是为什么?【分析】玻璃杯易碎与否取决于落地时与地面间相互作用力的大小.因为玻璃杯是从同一高 度落下,故动量变化量相同.但玻璃杯与地毯的作用时间远比与硬水泥地面的作用时间长,所以地毯对玻璃杯的作用力远比硬水泥地面对玻璃杯的小.所以玻璃杯从同一高度自由落下,落到硬水泥地面上易碎,而落到松软的地毯上不易碎.定量计算某过程中合外力的冲量或动量变化量根据动量定理,I p p I =∆∆−−−→合合,p F tF t I p ∆=⋅⋅−−−−→=∆合合合受恒力. 例2 质量为m 的重锤,以速度v 竖直打在木粧上,已知重锤对木粧的作用时间为t ,现在需要求出重锤对木粧的平均作用力. 【分析】取竖直向上为正方向,设木桩对重锤的平均作用力为F ,由动量定理得()()0F mg t mv -=--,整理得mvF mg t=+,由牛顿第三定律知,重链对木桩的平均作用力大小为mv mg t +,方向竖直向下.由mv F mg t=+知作用时间越短,F 越大,mg 可忽略. 2.动量守恒定律及其应月K 知识深层理解动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.(2)表达式:11221122m v m v m v m v ''+=+. (3)成立的条件①系统不受外力或系统所受外力的合力为零.②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题印象笔记◀应用动量定理解题比应用牛顿第二定律更加直接、更加简单.动量定理尤其适合用来解决作用时间短、而力的变化又十分复杂的问题,如冲击、碰撞、反冲运动等.应用时只需知道运动物体的始末状态,无须深究其中间过程的细节.只要动量的变化具有确定的值,就可以用动量定理求冲力或平均冲力,而这是用牛顿第二定律很难解决的.中的摩擦力,爆炸过程中的重力等外力比相互作用的内力小得多,可以忽略不计.③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的动量守恒.理解1 动量守恒定律的推导动量守恒并不是只有碰撞前和碰撞后两个时刻动量相等,而是系统的动量在整个过程中一直保持不变,任意两个时刻的动量都相等.在推导过程中要注意F、a、v等各量均为矢量.设两小球质量分别为1m、2m,碰撞前速度分别为1v、2v,碰撞后速度分别为1v'、2v'.根据动量定理可得对小球1m,有11111F t m v m v'∆=-,对小球2m,有22222F t m v m v'∆=-,两小球在碰撞过程中,有12F t F t∆=-∆,可得()11112222m v m v m v m v''-=--,整理可得11221212m v m v m v m v''+=+.结论:两球碰撞前的动量之和等于碰撞后的动量之和.理解2 你是怎样认识系统“总动量保持不变”的?动量守恒定律有三种表达式1.11221212m v m v m v m v''+=+,表示作用前后系统的总动量相等.2.12p p∆+∆=(或0p∆=),表示相互作用的物体系统总动量增量为零.3.12p p∆=-∆,表示两物体动量的增量大小相等,方向相反.理解时注意以下几点1.系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、末两个状态的总动量相等.2.系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化.3.系统的总动量指系统内各物体动量的矢量和,总动量不变指的是系统的总动量的大小和方向都不变.【注意】应用动量守恒定律时,要注意1p、2p……必须是系统中各物体在相互作用前同一时刻的动量,1p'、2p'……必须是系统中各物体在相互作用后同一时刻的动量.理解3 动量守恒定律成立的条件1.系统不受外力作用.这是一种理想化的情形,如宇宙中两星球的碰撞、微观粒子间的碰撞都可视为这种情形.2.系统虽然受到了外力的作用,但所受外力的和为零.如光滑水平面上两物体的碰撞就是这种情形,两物体所受的重力和支持力的合力为零.印象笔记◀动量守恒定律由牛顿运动定律和运动学公式推导出来,请参考教材或自己尝试推导.◀正确区分内力与外力:内力是系统中各物体之间的相互作用力.外力是系统外的物体对系统内的物体的作用力.内力和外力与系统的划分有关.例如甲、乙、丙三个物体之间均有相互作用,如果以三个物体为系统,则甲、乙、丙相互之间的作用力均为内力;如果以甲、乙两个物体为系统,则甲、乙间的相互作用力为内力,丙对甲的作用力为外力.如图所示.3.系统所受的外力远小于系统内各物体间的内力时,系统的总动量近似守恒.如拋出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸的内力远大于外力,外力完全可以忽略不计,动量近似守恒.4.系统所受的合外力不为零,即0F ≠外,但在某一方向上合外力为零(0x F =或0y F =),则系 统在该方向上动量守恒.5.系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的动量近似守恒. 例(多选)如图所示,A 、B 两物体的质量A B m m >,中间用一段细绳相连并有一被压缩的弹簧,放在平板小车C 上后,A 、B 、C 均处于静止状态.若地面光滑,则在细绳被剪断后,A 、B 从C 上滑离之前,A 、B 沿相反方向滑动过程中( )A.若A 、B 与C 之间的摩擦力大小相等,则组成的系统动量守恒组成的系统动量也守恒B.若A 、B 与C 之间的摩擦力大小不相等,则组成的系统动量不守恒组成的系统动量也不守恒C.若A 、B 与C 之间的摩擦力大小不相等,则>1^组成的系统动量不守恒,但组成的系统动量守恒D.以上说法均不对【解析】本题是对动量守恒定律成立条件的考查.解题的关键是明确研究对象(系统)及相互作用的过程,正确区分内力和外力.当A 、B 两物体组成一个系统时,弹簧的弹力为内力,而A 、B 与C 之间的摩擦力为外力.当A 、B 与C 之间的摩擦力等大反向时,A 、B 组成的系统所受外力之和为零,动量守恒;当A 、B 与C 之间的摩擦力大小不相等时,A 、B 组成的系统所受外力之和不为零,动量不守恒.而对于A 、B 、C 组成的系统,由于弹簧的弹力,A 、B 与C 之间的摩擦力均为内力,故不论A 、B 与C 之间的摩擦力的大小是否相等,A 、B 、C 组成的系统所受外力之和均为零,故系统的动量守恒.【答案】ACK 应试拓展注意拓展1 动量守恒定律的应用 应用动量守恒定律解题的一般步骤: (1)确定以相互作用的系统为研究对象; (2)分析研究对象所受的外力; (3)判断系统是否符合动量守恒条件;(4)规定正方向,确定初、末状态动量的正、负号; (5)根据动量守恒定律列式求解.动量守恒定律不需要考虑中间过程,只要符合守恒的条件,就只需要考虑它们的初、末状态我们结合实例分析.印象笔记◀如果给出两个物体的运动图像,要求判断物体碰撞前后动量是否守恒,注意分析图像的分界点,这是物体运动状态发生变化的转折点,例如图中2s t =时就是物体碰撞的发生时刻.例 如图所示,带有半径为的14光滑圆弧轨道的小车的质量为M ,小车置于光滑水平面上,一质量为m 的小球从圆弧轨道的顶端由静止释放,则球离开小车时,球和车的速度分别为多少?(重力加速度为g )【解析】球和车组成的系统虽然总动量不守恒,但因水平面光滑,系统在水平方向不受外力,故系统在水平方向动量守恒.又因圆弧轨道光滑,小球滚下时系统的机械能无损失,所以可由水平方向动量守恒结合机械能守恒求解.设球、车分离时,球的速度为1v ,方向向左,车的速度为2v ,方向向右,则120mv Mv -=,22121122mgR mv Mv =+,解得1v =2v =【点评】动量守恒定律具有矢量性,哪个方向上的合外力为零,则哪个方向上的动量就守恒.本题中小车和小球组成的系统在竖直方向上受到的重力和支持力不平衡,故系统在竖直方向上动量不守恒,但是可以判断出小车和小球组成的系统在水平方向上动量守恒,这是解答本题的关键.拓展2 应用动量守恒解决多物体多过程问题系统的动量守恒不是系统内每个物体的动量始终不变,而是系统内所有物体动量的矢量和不变,而且每个物体的动量都是相对同一参考系而言的.因此,根据题目的要求,要善于应用整体动量守恒,巧妙选取研究系统,合理选取相互作用过程来研究,问题就会迎刃而解.例 如图所示,两块厚度相同的木块A 、B ,紧靠着放在光滑的水平桌面上,其质量分别为2.00kg 、0.90kg ,它们的下表面光滑,上表面粗糙.另有质量为0.10kg 的铅块C (大小可以忽略)以10m /s 的速度恰好水平地滑到A 的上表面,由于摩擦,铅块C 最后停在木块B 上,此时B 、C 的共同速度0.5m /s v = .求木块A 的最终速度大小和铅块C 刚滑到B 上时的速度大小.【解析】铅块C 在A 上滑行时,木块A 、B 一起向右运动,设铅块C 刚离开A 时C 的速度为Cv ',A 和B 的共同速度为A v . 在铅块C 滑过A 的过程中,A 、B 、C 所组成的系统动量守恒,有印象笔记◀运用动量守恒定律时更注重初、末状态的动量是否守恒,而不太注重中间状态的具体细节,因此遇到物体组的问题,优先考虑是否满足动量守恒的条件 .很大,且远大于系统受到的外力,故可用动量守恒定律来处理.(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能在爆炸后会增加;在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,故可以把作用过程看成一个理想化过程简化处理.即作用后仍在作用前瞬间的位置以新的动量开始运动.理解1 碰鐘过程的特点分析1.系统的内力远大于外力,所以系统即使所受合外力不为零,外力也可以忽略,系统的总动量守恒.例如两个小球的撞击、子弹射入木块、系在绳子两端的物体将松弛的绳子突然拉直、铁锤打击钉子、列车车厢的挂接、中子轰击原子核等均可视为碰撞问题.在碰撞过程中,相互作用的时间很短,相互作用力先是急剧增大,然后急剧减小,平均作用力很大.2.位移特点:碰撞过程是在一瞬间发生的,时间极短,在物体发生碰撞的瞬间,物体的位移可忽略,认为物体在碰撞前后处在同一位置.3.能量特点:碰撞前总动能k E 与碰撞后总动能kE '满足k k E E '≥. 4.速度特点:碰后必须保证不穿透对方. 理解2 对弹性碰撞与非弹性碰撞的理解1.弹性碰撞是指碰撞过程中机械能守恒,弹性碰撞的特点是动量守恒,机械能守恒.举例:通常情况下的钢球、玻璃球等坚硬物体之间的碰撞及分子、原子等之间的碰撞皆可视为弹性碰撞.2.非弹性碰撞过程中动量守恒,机械能有损失.其中,碰撞后合为一体或碰后具有共同速度的这种碰撞动能损失最大,这样的碰撞称为完全非弹性碰撞.K 应试拓展注意拓展1 碰撞问题的可能性分析1.动量守恒,即1212p p p p ''+=+. 2.动能不增加,即k1k2k1k2E E E E ''+≥+或2222121212122222p p p p m m m m ''+≥+.3.速度要合理.(1)碰前,两物体同向,且v v >后前;碰后,原来在前的物体速度一定增大,且v v ''≥后前. (2)两物体相向运动,碰后两物体的运动方向不可能都不改变.例 质量相等的A 、B 两球在光滑水平面上均向右沿同一直线运动,A 球的动量为9kg m /s A p =⋅,球的动量为3kg m /s B p =⋅,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量可能值是( )A.6kg m /s,6kg m /s A B p p ''=⋅=⋅B.8kg m /s,4kg m /s A B p p ''=⋅=⋅C.2kg m /s,14kg m /s A B p p ''=-⋅=⋅D.4kg m /s,17kg m /s A B p p ''=⋅=⋅【解析】以A 、B 为系统,系统所受合外力为零,A 、B 组成的系统动量守恒,即9kg m /s 3kg m /s 12kg m /s A B A B p p p p ''+=+⋅+⋅=⋅=,故D 项错误.A 、B 碰撞前的动能应不小于碰撞后的动能,即kA kB kAkB E E E E ''+≥+,有印象笔记◀.绚丽的烟花◀物体发生爆炸时,动量守恒,但k k E E '<,因为有化学能转化为动能.2222A B kAkB 81990(kg m /s)(kg m /s)2222p p E E m m m m ++=+=⋅=⋅,2222AB kA kB p p E E m m ''''++= .将A 、B 、C 三项代入可得C 项错误.A 、B 选项表明碰撞后两球的动量均为正值,即碰后两球沿同一方向运动,后面A 球的速度应不大于B 球的速度,即A B v v ''≤,故B 项错误.所以该题的正确选项为A.【答案】A拓展2 弹性碰撞的规律以质量为1m 、速度为1v 的小球与质量为2m 的静止小球发生正面弹性碰撞为例,弹性碰撞应满足动量守恒和机械能守恒,则有111122m v m v m v ''=+ ① 222111122111222m v m v m v ''=+②由①②得()121111212122,m m v m v v v m m m m -''==++.()11220v v v v ''+==, 1122v v v v ''+=+,弹性碰撞的二级公式,可用于快速计算. 结论:(1)当12m m =时,1210,v v v ''==,两球碰撞后交换了速度. (2)当12m m >时,120,0v v ''>>,碰撞后两球都向1v 的方向运动. 若12m m ?,这时1211211121,,,2m m m m m m v v v v ''-≈+≈==,表示1m 的速度不变,2m 以12v 的速度向1v 的方向运动,如铅球碰乒乓球. (3)当12m m <时,120,0v v ''<>,碰撞后质量小的球被反弹回来. 若12m m =,这时121112121221,0,,0m m m v v v m m m m -''≈-≈=-=++,表示1m 被反向以原速率弹回,而2m 仍静止,如乒乓球碰静止的铅球或物体碰墙后以同样大小的速度返回. 拓展3 碰撞模型拓展碰撞的特点是动量守恒,动能不增加.相互作用的两个物体在很多情况下都可当成碰撞模型处理.对相互作用中两物体相距“最近”“最远”或“恰上升到最高点”等一类临界问题,求解的关键都是“速度相等”.具体分析如下:1.如图甲所示,光滑水平面上的A 物体以速度0v 去撞击静止且一端带有轻弹簧的B 物体,A 、B 两物体相距最近时,两物体速度必相等,此时弹簧最短,其压缩量最大. 2.如图乙所示,物体A 以速度0v 滑上静止在光滑水平面上的小车B ,当A 在B 上滑行的距离最大时,A 、B 相对静止,A 、B 的速度必相等.印象笔记◀五个完全相同的金属球沿直线排列并彼此邻接,把最左端的小球拉高释放,撞击后发现最右端的小球摆高,而其余四球不动,这是由于小球发生了弹性碰撞,碰撞中的动量和动能都守恒,发生了速度、动能的“传递”.◀爆炸和碰撞的区别主要表现在能量的转化上.在碰撞过程中,系统的总动能不会增加.在爆炸过程中,有其他形式的能(如化学能)转化为动能,爆炸后系统的总动能会增加.◀(1)在图甲中,若弹簧恢复原长,弹性势能又全部转化成动能,全过程系统没有动能的损失,可以看成弹性碰撞.(2)在图丙中,若小球回到水平面上,重力势能又全部转化成动能,全过程系统没有动能的损失,可以看成弹性碰撞.以上两种情况满足关系式:222012111222mv mv Mv =+, 可以求出作用后的速度10m M v v m M -=+,202mv v m M=+3.如图丙所示,质量为M 的滑块静止在光滑水平面上,滑块的光滑弧面底部与水平面相切.一个质量为m 的小球以速度0v 向滑块滚来,设小球不能越过滑块,则小球到达滑块的最高点时(小球的竖直速度为零),两物体的速度一定相等(方向水平向右).总结:以上三种类型都可以看成完全非弹性碰撞.在作用过程中,动能损失最大,系统损失的3能分别转化为弹性势能、内能和重力势能.满足关系式:0()mv m M v =+共,22200 11()222()mM E mv m M v v m M ∆=-+=+共. 4.反冲运动 火箭K 知识深层理解反冲现象反冲现象是指一个静止的物体在内力作用下分裂为两个部分,一部分物体向某个方向运动,另一部分物体必然向相反的方向运动的现象.喷气式飞机、火箭等都是利用反冲运动的实例.在反冲现象里,系统的动量是守恒的.理解1 反冲运动的特点及遵循的规律反冲运动是相互作用的物体之间的作用力与反作用力产生的效果.如射击时枪身的后坐、发射炮弹时炮身的后退、火箭因喷气而发射升空等都是典型的反冲运动.反冲运动是系统内力作用的结果,虽然有时系统所受的合外力不为零,但由于系统内力远大于外力,所以系统的总动量是守恒的.在反冲运动中,由于有其他形式的能转化为机械能,所以系统的总动能增加.在反冲运动中,系统在某个方向上满足动量守恒,则有11220m v m v -=,故2121m v v m =.物体在这一方向上有速度,产生位移,则位移同样满足2121ms s m =,它们之间的相对位移12ss s =+相对.理解2 如何提高火箭的发射速度火箭是利用反冲现象工作的,燃料燃烧,高速向后喷出气体,箭体获得向前的速度,随着不断喷出气体而加速.设火箭相对于地面以速度大小u 喷出质量为m ∆的气体,剩余箭体的质量为m ,开始时静止,火箭获得的速度大小为v ∆,由动量守恒定律得0m v mu ∆-∆=,解得muv m∆∆=. 根据mu v m ∆∆=可知,火箭性能的参数与喷气速度u 和mm∆有关,而0m m m ∆=-(0m 为火箭喷气之前的质量),01m v u m ⎛⎫∆=- ⎪⎝⎭,所以若想使火箭获得较大的速度,则需要:(1)增大喷出燃气的速度u ;(2)增大火箭喷气前后的质量比.K 应试拓展注意印象笔记◀火箭◀反冲运动的一般解题思路:确定研究对象→确定各部分质量及初、末状态→由动量守恒定律列式求解. 注意:解题的过程中一定要注意速度的相对性及质量发生变化的问题.拓展1 “人船模型”的处理方法 “人船模型”问题的特征两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.处理“人船模型”问题的关键利用动量守恒,确定两物体的速度关系,再确定两物体通过的位移关系. 由于动量守恒,所以任一时刻系统的总动量为零,动量守恒表达式可写成1122m v m v =(1v 、2v 为两物体的瞬时速率),表明任意时刻的瞬时速率都与物体的质量成反比,所以全过程的平均速度也与质量成反比.进而可得两物体的位移大小与物体的质量成反比,即1221x m x m =. 解题时要画出各物体的位移关系草图,找出各位移之间的关系.例 如图所示,长为L 、质量为M 的船停在静水中,一个质量为m 的人(可视为质点)站在船头,在人从船头走到船尾的过程中,船与人相对地的位移大小分别为多少?(忽略水对船的阻力)【解析】选人和船为一系统,由于系统在水平方向上不受外力作用,所以系统在水平方向上动量守恒.设某一时刻人的对地速度为v ,船的速度大小为v ',选人的运动方向为正方向,由动量守恒定律得0mv Mv '-=.在人与船相互作用的过程中,上式始终成立,不难想到,船的运动受人运动的制约,当人加速运动时,船也加速运动;当人匀速运动时,船也匀速运动;当人停止运动时,船也停止运动.设人从船头到船尾的过程中,人的对地位移大小为1x ,船的对地位移大小为2x ,则12x vx v =',又从图可见12x x L +=,联立解得1M x L M m =+,2mx L M m =+. 【答案】M L M m + mL M m+ 【点评】在人船模型中,易把人的位移误认为是相对船的位移. 拓展2 解决反冲运动应注意的问题1.反冲运动问题中,题目中给出的速度可能是相互作用的两物体的相对速度,因此应先将相对速度转换成对地的速度,再列动量守恒定律方程.2.在反冲运动中还常遇到变质量物体的运动,如在火箭的运动过程中,随着燃料的消耗,火箭本身的质量不断减小,此时必须取火箭本身和在相互作用的短印象笔记◀“人船模型”适用条件 (1)系统由两个物体组成且相互作用前静止,系统总动量守恒.(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒,注意两物体的位移是相对同一参考系而言的. ◀2112cos m x L m m θ=+1212cos m x L m m θ=+2112m x Rm m =+1212m x Rm m =+2112m x l m m =+1212m x l m m =+。
2023年5月高三新高考语文考前预测试题卷(四)(试卷满分150分,考试时间150分钟)2023.05一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成下面小题。
材料一:人类创造的文化,包括科技文化和人文文化两大部类,它们分别发展着工具理性和价值理性。
科学技术作为最富革命性格的生产力,改造着世界,创造着巨大的物质财富,为人类提供日益增多的方便与享受,使人类自觉不自觉地产生了一种对科学技术的盲目崇拜。
19世纪以降,尤其是20世纪,相当多的人把科学技术视作全知、全能、全在的救世主,以为所有难题,包括精神、价值、自由都可以经由科学技术获得完满解决。
但由于科学技术是从研究自然界(尤其是物理世界)中抽象出来的一种“物质化”方法,或“非人格化”方法,其应用显然不足以解决人的精神领域的各种问题。
用池田大作的语言来说,“科学之眼”自有其限定性,因为“科学的思维法产生了轻视生命的倾向,容易忽视活生生的人的真实风貌”,因而有赖人文的思想及方法的补充与矫正。
这首先表现在,对人类的生命意义而言,科学技术的健康走向,有赖人文精神指引。
诚然,科技是“价值中立”的,但是作为社会人的科学家却不应是价值中立的。
二战期间,爱因斯坦与“原子弹之父”奥本海默联袂反对使用原子弹,便是从人类良知和社会责任感出发的。
科技需要人文文化弥补的又一理由是:科学技术可以提供日益强大、有效的工具理性,却不能满足人类对于政治理念、伦理规范和终极关怀等层面的需求,总之,无法提供人类区别于禽兽的“价值理性”。
而现代人类所面临的诸多困扰,往往发生在“价值理性”管辖的领地,发生在“意义危机”频频袭来之际。
中国古代优秀的人文传统,尤其是在道德层面,有若干超越性的意义,可以成为文明人类公认的生活准则。
诸如不忍之心、羞恶之心、恻隐之心、仁爱之心,都是贯通古今、中外认可的。
“人无信不立”,何尝不是成熟的现代市场交易所应遵循的经济伦理?“己所不欲,勿施于人”,也是现代社会人际关系须臾不可脱离的黄金法则。
专题3.5 指数与指数函数(真题测试)一、单选题1.(2007·山东·高考真题(理))已知集合{}1,1M =-,11|24,Z 2x N x x +⎧⎫=<<∈⎨⎬⎩⎭,则MN =A .{}1,1-B .{}1-C .{}0D .{}1,0-2.(2022·北京·高考真题)己知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+=D .1()()3f x f x --=3.(2012·四川·高考真题(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .4.(2014·江西·高考真题(文))已知函数f (x )=2,0,2,0x xa x x -⎧⋅≥⎨<⎩(a ∈R ),若((1))1f f -=,则a =( ) A .14B .12C .1D .25.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .6.(2013·全国·高考真题(文))若存在正数x 使2x (x -a )<1成立,则a 的取值范围是 A .(-∞,+∞)B .(-2, +∞)C .(0, +∞)D .(-1,+∞)7.(2015·山东·高考真题(文))设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是 A .a b c <<B .a cb << C .b ac <<D .b c a <<8.(2014·陕西·高考真题(文))下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()3f x x =B .()3xf x =C .()23f x x = D .()12xf x ⎛⎫= ⎪⎝⎭二、多选题9.(2021·江苏·南京市中华中学高三期中)已知a b >,0ab ≠,则( ) A .a b >B .1133a b -->C .33a b >D .11a b< 10.(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .11.(2022·山东潍坊·高三期末)已知函数x x x xe ef xe e,则下列结论中正确的是( )A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在定义域上是减函数D .()f x 无最小值,无最大值12.(2022·全国·高三专题练习)已知函数2,0(),2,0x xa x f x a R a x -⎧-+<=∈⎨->⎩,下列结论正确的是( ) A .()f x 为奇函数B .若()f x 在定义域上是增函数,则1a ≤C .若()f x 的值域为R ,则1a <D .当1a ≤时,若()(34)0f x f x ++>,则(1,0)(0,)x ∈-+∞ 三、填空题13.(2022·全国·高三专题练习)函数()f x =的定义域为______.14.(2012·山东·高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =______.15.(2015·山东·高考真题(理))已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________.16.(2022·浙江·乐清市知临中学模拟预测)设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.四、解答题17.(2021·新疆·伊宁市第一中学高三期中(理))若(1)()42(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,求实数a 的取值范围.18.(2021·福建龙岩·高三期中)已知()2221x m f x -=++是奇函数. (1)求m 的值;(2)求()f x 的值域.19.(2021·福建·永安市第三中学高中校高三期中)已知指数函数()(0xf x a a =>且1)a ≠的图象过点129⎛⎫ ⎪⎝⎭,.(1)求函数()xf x a =的解析式;(2)已知()()1f x f >,求x 的取值范围;20.(2021·安徽省六安中学高三阶段练习(文))已知函数()()33xf x k a b ⋅=++-(0a >,且1a ≠)是指数函数.(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-.21.(2021·重庆市涪陵高级中学校高三阶段练习)设()e e x x f x -=-()R x ∈.(1)判断并证明函数()y f x =的奇偶性;(2)解不等式()()22f x f x -≤.22.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.专题3.5 指数与指数函数(真题测试)一、单选题1.(2007·山东·高考真题(理))已知集合{}1,1M =-,11|24,Z 2x N x x +⎧⎫=<<∈⎨⎬⎩⎭,则MN =A .{}1,1-B .{}1-C .{}0D .{}1,0-【答案】B 【解析】 【分析】利用指数函数的单调性化简集合N ,然后利用交集的定义运算即得. 【详解】函数2x y =是增函数,则不等式11242x +<<,即112222x -+<< ∴112,x -<+<即21x -<<,所以{}{}|21,Z 1,0N x x x =-<<∈=-,又{}1,1M =-, ∴{}1.M N ⋂=- 故选:B.2.(2022·北京·高考真题)己知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+= D .1()()3f x f x --=【答案】C 【解析】 【分析】直接代入计算,注意通分不要计算错误. 【详解】()()1121112121212x x x x xf x f x --+=+=+=++++,故A 错误,C 正确;()()11212121121212122121x x x x x x x xf x f x ----=-=-==-++++++,不是常数,故BD 错误; 故选:C .3.(2012·四川·高考真题(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A . B .C .D .【答案】C 【解析】 【分析】对a 进行分类讨论,结合指数函数的单调性以及函数图像平移变换,即可得出答案. 【详解】①当1a >时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于1a >,则A 错误; 又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故B 错误;②当01a <<时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于01a <<,则D 错误;又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故C 正确; 故选:C4.(2014·江西·高考真题(文))已知函数f (x )=2,0,2,0x xa x x -⎧⋅≥⎨<⎩(a ∈R ),若((1))1f f -=,则a =( ) A .14B .12C .1D .2【答案】A 【解析】 【分析】先求出(1)f -的值,再求((1))f f -的值,然后列方程可求得答案【详解】解:由题意得(1)(1)22f ---==,所以2((1))(2)241f f f a a -==⋅==,解得a =14.故选:A5.(2018·全国·高考真题(文))函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.(2013·全国·高考真题(文))若存在正数x 使2x (x -a )<1成立,则a 的取值范围是 A .(-∞,+∞) B .(-2, +∞)C .(0, +∞)D .(-1,+∞)【答案】D 【解析】由题意知,存在正数x ,使12xa x >-,所以,而函数12xy x =-在(0,)+∞上是增函数,所以(0)1y y >=-,所以1a >-,故选D.7.(2015·山东·高考真题(文))设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是 A .a b c << B . a c b << C .b a c << D .b c a <<【答案】C 【解析】 【详解】由0.6x y =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C . 8.(2014·陕西·高考真题(文))下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()3f x x =B .()3xf x =C .()23f x x = D .()12xf x ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【详解】试题分析:A 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()3x y f x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3xf x =是定义在R 上增函数,所以B 正确;C 选项:由()()23f x y x y +=+,()()f x f y 2233x y =⋅23()xy =,得()()()f x y f x f y +≠,所以C 错误;D 选项:函数()12xf x ⎛⎫= ⎪⎝⎭是定义在R 上减函数,所以D 错误;故选B.二、多选题9.(2021·江苏·南京市中华中学高三期中)已知a b >,0ab ≠,则( ) A .a b >B .1133a b -->C .33a b >D .11a b< 【答案】BC 【解析】对A ,D 可取反例;对B ,C 可利用函数的单调性判断; 【详解】对A ,取1,2a b ==-,则||||a b >不成立,故A 错误; 对B ,11a b a b >⇒->-,∴1133a b -->,故B 成立;对C ,33a b a b >⇒>,故C 成立; 对D ,取1,1a b ==-,11a b<不成立; 故选:BC10.(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .【答案】AC 【解析】【分析】依题意可得a 、b 两个数一个大于1,一个大于0且小于1,再分类讨论,结合指数函数的性质判断即可; 【详解】解:令()()()0f x x a x b =--=,解得1x a =、2x b =,根据二次函数图形可知,a 、b 两个数一个大于1,一个大于0且小于1,①当1a >,01b <<时,则()x g x a b =-在定义域上单调递增,且()001g a b b =-=-,即()001g <<,所以满足条件的函数图形为C ;②当1b >,01a <<时,则()x g x a b =-在定义域上单调递减,且()0010g a b b =-=-<,所以满足条件的函数图形为A ; 故选:AC11.(2022·山东潍坊·高三期末)已知函数x x x xe ef x e e,则下列结论中正确的是( )A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在定义域上是减函数D .()f x 无最小值,无最大值 【答案】BD 【解析】 【分析】求解0x x e e --≠,可判断A ;利用函数奇偶性的定义可判断B ;比较(1),(1)f f -可判断C ;分离常数得到2211x f x e ,分析单调性及函数值域可判断D【详解】选项A ,0x x e e --≠,解得0x ≠,故()f x 的定义域为{|0}x x ≠,选项A 错误;选项B ,函数定义域关于原点对称,且()()x x x x e ef x f x e e --+-==--,故()f x 是奇函数,选项B 正确;选项C ,()121212121110,(1)011e e e e e ef f e e e e e e ----++++-==<==>----,故(1)(1)f f -<,即()f x 在定义域上不是减函数,选项C 不正确;选项D ,()22212111x x x x x x x e e e f x e e e e --++===+---,令20x t e =>,211y t =+-,由于2x t e =在R 上单调递增,211y t =+-在(0,1),(1,)+∞分别单调递减,故函数()f x 在(,0),(0,)-∞+∞分别单调递减,且x →-∞时,()1f x →-,0x -→时,()f x →-∞,0x +→时,()f x →+∞,x →+∞时,()1f x →,故函数()f x 的值域为(,1)(1,-∞-⋃+∞),无最小值,无最大值,选项D 正确故选:BD12.(2022·全国·高三专题练习)已知函数2,0(),2,0x xa x f x a R a x -⎧-+<=∈⎨->⎩,下列结论正确的是( )A .()f x 为奇函数B .若()f x 在定义域上是增函数,则1a ≤C .若()f x 的值域为R ,则1a <D .当1a ≤时,若()(34)0f x f x ++>,则(1,0)(0,)x ∈-+∞ 【答案】ABD 【解析】 【分析】分段函数奇偶性判断需要分段判断,分段函数的单调性需要列两段分别单调,衔接处单调即可. 【详解】当0x <时,0x ->,()2,()2(2)()x x x f x a f x a a f x ---=-+-=-=--+=-;当0x >时,0x -<,()2,()2()x x f x a f x a f x =--=-+=-.则函数()f x 为奇函数,故A 正确;若()f x 在定义域上是增函数,则0022a a --+≤-,即1a ≤,故B 正确;当0x <时,()2xf x a -=-+在区间(,0)-∞上单调递增,此时值域为(,1)a -∞-;当0x >时,()2x f x a =-在区间()0,∞+上单调递增,此时值域为(1,)a -+∞.要使得()f x 的值域为R ,则11a a ->-,即1a >,故C 错误;当1a ≤时,由于0022a a --+≤-,则函数()f x 在定义域上是增函数,由()(34)0f x f x ++>,得()(34)f x f x >--,则034034x x x x ≠⎧⎪--≠⎨⎪>--⎩解得(1,0)(0,)x ∈-+∞,故D 正确.故选:ABD. 三、填空题13.(2022·全国·高三专题练习)函数()f x =的定义域为______.【答案】[)()0,11,+∞【解析】【分析】结合分式型,二次根号型函数的定义即可求解. 【详解】由题知,021********x xx x x x x ⎧⎧≥-≥≥⎧⎪⎪⇒⇒⎨⎨⎨≠-≠-≠≠⎪⎪⎩⎩⎩且,所以()f x 的定义域为[)()0,11,+∞,故答案为:[)()0,11,+∞.14.(2012·山东·高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =______.【答案】14【解析】 【详解】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x = 不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意15.(2015·山东·高考真题(理))已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________. 【答案】32-【解析】 【详解】若1a > ,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+= ,此方程组无解; 若01a << ,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=- ,解得1{22a b ==- ,所以32a b +=-. 16.(2022·浙江·乐清市知临中学模拟预测)设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______. 【答案】[1,2]【解析】 【分析】由1x >,求得()f x 的范围,再求得||()2x a f x -=的单调性,讨论1a <,1a 时函数()f x 在1x 的最大值,即可得到所求范围. 【详解】解:因为()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,当1x >时()112f x x =-+函数单调递减且()12f x <,当1x ≤时()122x ax af x ---⎛⎫== ⎪⎝⎭,可得在x a >时函数单调递减,在x a <单调递增,若1a <,1x ,则()f x 在x a =处取得最大值,不符题意; 若1a ,1x ,则()f x 在1x =处取得最大值,且11122a -⎛⎫≥⎪⎝⎭,解得12a , 综上可得a 的范围是[]1,2. 故答案为:[]1,2 四、解答题17.(2021·新疆·伊宁市第一中学高三期中(理))若(1)()42(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,求实数a 的取值范围. 【答案】[4,8). 【解析】 【分析】根据分段函数的单调性的判定方法,列出不等式组,即可求解. 【详解】由题意,函数(1)()42(1)2xa x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则满足114024122a a a a⎧⎪>⎪⎪->⎨⎪⎪⎛⎫-⨯+≤ ⎪⎪⎝⎭⎩,解得48a ≤<, 所以实数a 的取值范围[4,8).18.(2021·福建龙岩·高三期中)已知()2221x m f x -=++是奇函数. (1)求m 的值; (2)求()f x 的值域. 【答案】(1)-2 (2)11-(,) 【解析】【分析】(1)因为()f x 为奇函数,且在0x =处有意义,所以()00f =,便可求出m 的值;(2)在(1)的前提下,对于复合函数分解成若干基本初等函数,然后逐个求其值域,从而求出()f x 的值域. (1)因为()f x 为奇函数,所以()00f =,即2022m +=,解得2m =-. 经检验:当2m =-时,()f x 为奇函数; (2)由(1)知()2121xf x -=-+,因为211x -+∈+∞(,), 所以20221x -∈+(,),于是()11f x ∈-(,),因此()f x 的值域为11-(,). 19.(2021·福建·永安市第三中学高中校高三期中)已知指数函数()(0xf x a a =>且1)a ≠的图象过点129⎛⎫ ⎪⎝⎭,.(1)求函数()xf x a =的解析式;(2)已知()()1f x f >,求x 的取值范围;【答案】(1)()13xf x ⎛⎫= ⎪⎝⎭(2)()1,1- 【解析】 【分析】(1)将点129⎛⎫ ⎪⎝⎭,代入()(0xf x a a =>且1)a ≠,解之即可得出答案;(2)根据指数函数的单调性即可得出答案. (1)解:将点129⎛⎫ ⎪⎝⎭,代入()(0xf x a a =>且1)a ≠,得:219a =,解得13a =,所以()13xf x ⎛⎫= ⎪⎝⎭;(2)因为1013<<,所以函数()13xf x ⎛⎫= ⎪⎝⎭为减函数,由()()1f x f >,得1x <,解得11x -<<, 所以()()1f x f >的解为()1,1-.20.(2021·安徽省六安中学高三阶段练习(文))已知函数()()33xf x k a b ⋅=++-(0a >,且1a ≠)是指数函数.(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-. 【答案】(1)2k =-,3b = (2)答案见解析 【解析】 【分析】(1)根据指数函数的定义列出方程,即可得解;(2)分1a >和01a <<两种情况讨论,结合指数函数的单调性即可得解. (1)解:因为()()33x f x k a b =++-(0a >,且1a ≠)是指数函数, 所以31k +=,30b -=, 所以2k =-,3b =; (2)解:由(1)得()xf x a =(0a >,且1a ≠),①当1a >时,()xf x a =在R 上单调递增,则由()()2743f x f x ->-, 可得2743x x ->-,解得2x <-;②当01a <<时,()xf x a =在R 上单调递减,则由()()2743f x f x ->-, 可得2743x x -<-,解得2x >-,综上可知,当1a >时,原不等式的解集为(),2-∞-; 当01a <<时,原不等式的解集为()2,-+∞.21.(2021·重庆市涪陵高级中学校高三阶段练习)设()e e x xf x -=-()R x ∈.(1)判断并证明函数()y f x =的奇偶性;(2)解不等式()()22f x f x -≤.【答案】(1)奇函数,证明见解析; (2)[]1,2- 【解析】 【分析】(1)利用函数奇偶性的定义判断证明即可;(2)根据指数函数单调性以及函数单调性的性质判断()y f x =的单调性,再由单调性去掉f 转化为解一元二次不等式即可求解. (1)()e e x x f x -=-是R 上的奇函数,证明如下:()e e x x f x -=-的定义域为R 关于原点对称,()()()e e e e x x x x f x f x ---=-=--=-,所以()e e x xf x -=-是R 上的奇函数.(2)因为e x y =为R 上的增函数,1ee xxy -==为R 上的减函数, 所以()e e x xf x -=-为R 上的增函数,若()()22f x f x -≤,则22x x -≤即220x x --≤,可得()()210x x -+≤,解得:12x -≤≤,所以不等式()()22f x f x -≤的解集为:[]1,2-.22.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围. 【答案】(1)证明见解析(2)[]4,4- 【解析】 【分析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令33x x t -=-,根据x 的范围,可得t 的范围,原式等价为()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,只需()min 4h t ≥-即可,分别讨论823m -≤-、88323m -<-<和823m -≥三种情况,根据二次函数的性质,计算求值,分析即可得答案. (1)由已知可得()f x 的定义域为R , 任取12,x x ∈R ,且12x x <,则()()12f x f x -()()1122121121333331313x x x x x x x x x ---+⎛⎫=---=-+ ⎪⎝⎭,因为130x >,121103x x ++>,21130x x --<,所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数. (2)()()()()223333x x x xf x mf x m --⎡⎤+=-+-⎣⎦,令33x x t -=-,则当[]1,1x ∈-时,88,33t ⎡⎤∈-⎢⎥⎣⎦,所以()()22f x mf x t mt ⎡⎤+=+⎣⎦.令()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,则只需()min 4h t ≥-. 当823m -≤-,即163m ≥时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递增, 所以()min 86484393h t h m ⎛⎫=-=-≥- ⎪⎝⎭,解得256m ≤,与163m ≥矛盾,舍去;当88323m -<-<,即161633m -<<时,()h t 在8,32m ⎡⎤--⎢⎥⎣⎦上单调递减,在8,23m ⎡⎤-⎢⎥⎣⎦上单调递增,所以()2min424m m h t h ⎛⎫=-=-≥- ⎪⎝⎭,解得44m -≤≤;当823m -≥即163m ≤-时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递减, 所以()min 86484393h t h m ⎛⎫==+≥- ⎪⎝⎭,解得256m ≥-,与163m ≤-矛盾,舍去. 综上,实数m 的取值范围是[]4,4-.。
2018 年一般高等学校招生全国一致考试语文注意事项:1.答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。
2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(一)阐述类文本阅读阅读下边的文字,达成以下小题。
对城市而言,文明弹性是一个城市体在生计、创新、适应、应变等方面的综合状态、综合能力,是公共性与个人性之间、多样性与共同性之间、稳固性与变迁性之间、柔性与刚性之间的动向和睦,过于绵柔、松懈,或许过于刚硬、密集,都是弹性不足或丧失的表现,是城市体出现危机的表征。
今世城市社会,特别需要关注以下文明弹性问题。
其一,空间弹性。
城市拥有优秀空间弹性的一个重要表现,是空间的个人性与公共性关系能够获取较为合理的办理。
任何城市空间都是个人性与公共性的一致,空间弹性的核心问题,就是怎样实现空间的公共性与个人性的有机一致、详细变换。
片面地重申空间的公共性或片面地重申空间的个人性,都会使城市发展失掉基础,目前,人们更多地要求空间的个人性,侧重把空间固化为永久的个人所有物、据有物。
这类以个人化为核心的空间固化偏向,造成城市空间弹性不足,正在成为限制城市发展的一个重要原由。
其二,制度弹性,一种较为理想的、有弹性的城市制度,是能够在次序与活力、生计与发展间获得相对均衡的制度。
城市有其发展周期、发展阶段,对一个正在盛行的城市而言,其主要任务是齐集更多的发展资源、激活发展活力,而对一个已经发展起来的城市而言,人们会更为侧重城市制度的稳固功能。
但问题在于,即便是正在兴起的城市,也需要面对次序与稳固的问题;即便是一个已经发展起来的城市,也需要面对新活力的激活问题。
过于侧重某种形式的城市制度,过于侧重城市制度的某种目标,都是城市制度弹性不足,走向僵化的表现,都会妨碍城市发展。
2020-2021学年高二物理人教版选修3-5课后作业:第十六章动量守恒定律高考真题集训含解析第十六章高考真题集训一、选择题1.(2019·江苏高考)质量为M的小孩站在质量为m的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦。
小孩沿水平方向跃离滑板,离开滑板时的速度大小为v,此时滑板的速度大小为()A.错误!vB.错误!vC.错误!v D。
错误!v答案B解析由题意知,小孩跃离滑板时小孩和滑板组成的系统动量守恒,则Mv+mv′=0,得v′=错误!,即滑板的速度大小为错误!,B 正确。
2.(2019·全国卷Ⅰ)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。
若某次实验中该发动机向后喷射的气体速度约为 3 km/s,产生的推力约为4.8×106N,则它在1 s时间内喷射的气体质量约为()A.1.6×102 kg B.1。
6×103 kgC.1.6×105 kg D.1.6×106 kg答案B解析设1 s内喷出气体的质量为m,喷出的气体与该发动机的相互作用力为F,由动量定理Ft=mv知,m=错误!=错误!kg=1。
6×103 kg,B正确.3.(2018·全国卷Ⅱ)高空坠物极易对行人造成伤害。
若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()A.10 N B.102 NC.103 N D.104 N答案C解析设鸡蛋落地瞬间的速度为v,每层楼的高度大约是3 m,由动能定理可知:mgh=错误!mv2,解得:v=错误!=错误!m/s=12错误! m/s。
落地时受到自身的重力和地面的支持力,规定向上为正方向,由动量定理可知:(N-mg)t=0-(-mv),解得:N≈1×103 N,根据牛顿第三定律可知鸡蛋对地面产生的冲击力约为103 N,故C正确.4.(2017·全国卷Ⅰ)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。
高考题赏析(选修3-5)
35.[物理—选修3-5](15分)(2013年全国卷2)
(1) (5分)关于原子核的结合能,下列说法正确的是 (填正确答案标号。
选 对I 个得2分,选对2个得4分,选对3个得5分;每选错1个扣3分,最低得分为0分)。
A.原子核的结合能等于使其完全分解成自由核子所需的最小能量
B.一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能
C. 铯原子核()的结合能小于铅原子核()的结合能
D.比结合能越大,原子核越不稳定
E.自由核子组成原子核时,其质量亏损所对应的能最大于该原子核的结合能
(2) (10分)如图,光滑水平直轨道上有三个质量均为m 的物块A、B 、C 。
B 的左 侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v0朝B 运动,压缩弹簧;
当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动。
假设B 和C 碰撞过 程时间极短。
求从A开始压缩弹簧直至与弹簧分离的过程中,
(i )整个系统拐失的机械能;
(ii )弹簧被压缩到最短时的弹性势能。
35.[物理——选修3-5](15分)(2014年全国卷2)
(1) ( 5分)在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用。
下列说法符合历史事实的是 。
(填正确答案标号。
选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分)
A .密立根通过油滴实验测出了基本电荷的数值
B .贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核
C .居里夫妇从沥青铀矿中分离出钋(Po )和镭(Ra )两种新元素
D .卢瑟福通过α粒子散射实验证实了原子核内部存在质子
E .汤姆逊通过阴极射线在电场和磁场中的偏转实验,发现了阴极射线是由带负电的粒子组成的,并测出了该粒子的比荷
s 133
55C Pb 208
82
(2)(10分)现利用图(a)所示装置验证动量守恒定律。
在图(a)中,气垫导轨上有
A 、
B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计数器(未完全画出)可以记录遮光片通过光电门的时间。
实验测得滑块A 的质量m 1=0.301kg ,滑块B 的质量m 2=0.108kg ,遮光片的宽度d =1.00cm ;打点计时器所用交流电的频率f =50.0Hz 。
将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰。
碰后光电计数器显示的时间为Δt B =3.500ms ,碰撞前后打出的纸带如图(b)所示。
若实验允许的相对误差绝对值()最大为5%,本实验
是否在误差范围内验证了动量守恒定律?写出运算过程。
100%碰撞前后总动量之差碰前总动量 图(b) 图(a)
参考答案
(2013年)35.答案:(1)ABC 5分
(2)(i ) (ii ) 10分 【解析】(1)由结合能的定义分析可知原子核的结合能等于使其完全分解成自由核子所需的最小能量,A 正确;一重原子核衰变成α粒子和另一原子核,衰变产物的核子的比结合能增加,又衰变过程质量数守恒,故衰变产物核子的结合能之和一定大于原来重核的结合能,B 正确;组成原子的核子越多,原子的结合能越高,故C 正确;比结合能越大,原子核越稳定,D 错误;自由核子组成原子核时,其质量亏损所对应的能量等于该原子核的结合能,E 错误。
(2)(i )从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得
mv 0=2mv 1 ①
此时B 与C 发生完全非弹性碰撞,设碰撞后瞬时速度为v 2,损失的机械能为对B 、C 组成的系统,由动量守恒定律得
mv 1=2mv 2 ②
③ 联立①②③式得
④ (ii )由式可知,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为,此时弹簧被压缩至最短,其弹性势能为,由动量守恒和能量守恒定律得
⑤
⑥ 联立④⑤⑥式得
⑦ (2014年)35(1)【答案】 ACE
【解析】 密立根通过油滴实验测出了基本电荷的数值为1.6×10-19C ,A 正确;贝克勒尔通过对天然放射性研究发现了中子, B 错误;居里夫妇从沥青铀矿中分离出了钋(Po )和镭(Ra )两种新元素,C 正确;卢瑟福通过α粒子散射实验,得出了原子的核式结构理论, D 错误;汤姆逊通过对阴极射线在电场及在磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成,并测定了粒子的比荷,E 正确。
20161mv E =∆2048
13mv E P =E ∆2221)2(2
121v m E mv +∆=2016
1mv E =∆12v v <3v P E 303mv mv =P E v m E mv +=∆-2220)3(2
1212048
13mv E P =
(2)【解析】按定义,物体运动的瞬时速度大小v 为: 式中Δx 为物块在很短的时间Δt 内的位移,设纸带上打出相邻两点的时间间隔为Δt A ,则
Δt A =1/f =0.02s Δt A 可视为很短
设在A 碰撞前后瞬时速度大小分别为v 0和v 1
由图(b)所给数据可得:v 0=2.00m/s v 1=0.790m/s
设B 碰撞后瞬时速度大小为v 2
设两滑块在碰撞前后的动量分别为P 和,则
两滑块在碰撞前后总动量相对误差的绝对值为
联立各式代入数据得: 因此,本实验在允许的误差范围内验证了动量守恒定律。
x v t
∆=∆2 2.56/B
d v m s t ==∆P '101122
P m v P m v m v ='=+100%r P P P
δ'-=⨯ 1.7%5%r δ=<。