2019年浙江省金华市中考数学试卷
- 格式:pdf
- 大小:274.69 KB
- 文档页数:7
2019浙江金华中考试题解析(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分) 1.(2019浙江省金华市,1,3分)实数4的相反数是( ) A.14- B. -4 C.14D.4【答案】B .【解析】由a 的相反数是-a ,得实数4的相反数是-4,故选B . 【知识点】相反数 2.(2019浙江省金华市,2,3分)计算a 6÷a 3,正确的结果是( ) A.2 B.3a C. a 2 D. a 3 【答案】D .【解析】根据同底数幂的除法法则,有a 6÷a 3=a 3.故选D . 【知识点】同底数幂的除法 3.(2019浙江省金华市,3,3分)若长度分别为a ,3,5的三条线段能组成一个三角形,则a 的值可以是( )A.1B. 2C.3D. 8 【答案】C .【解析】根据三角形的三边关系,得2<a <8,故选C . 【知识点】三角形的三边关系 4.(2019浙江省金华市,4,3分)某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( )A. 星期一B.星期二C.星期三D.星期四【答案】C . 【解析】温差=最高气温-最低气温.故选C .【知识点】温差 5.(2019浙江省金华市,5,3分)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同. 搅匀后任意摸出一个球,是白球..的概率为( ) A. 12B. 310C. 15D. 710 【答案】A .【解析】白球..的概率为5235++=12.故选A .【知识点】概率 6.(2019浙江省金华市,6,3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的星期 一 二 三 四最高气温10C ︒ 12C ︒ 11C ︒ 9C ︒最低气温3C ︒ 0C ︒ -2C ︒ -3C ︒位置表述正确的是( )A. 在南偏东75°方向处B. 在5km 处C. 在南偏东15°方向5km 处D. 在南偏东75°方向5km 处(第6题图)【答案】D .【解析】目标A 的位置表述正确的是在南偏东75°方向5km 处,故选B . 【知识点】确定位置 7.(2019浙江省金华市,7,3分)用配方法解方程x 2-6x -8=0时,配方结果正确的是( ) A. 2(3)17x -= B. 2(3)14x -= C. 2(6)44x -= D. 2(3)1x -=【答案】A .【解析】解方程x 2-6x -8=0,配方,得(x -3)2=17,故选A . 【知识点】配方法解一元二次方程 8.(2019浙江省金华市,8,3分)如图,矩形ABCD 的对角线交于点O ,已知AB =m ,∠BAC =∠α,下列结论错误的是( )A. ∠BDC =∠αB. BC = m ·tan αC. AO =2sin m α D. BD =cos mα【答案】C .【解析】由锐角三角函数的定义,得sin α=2BC OA,∴AO =2sin BC α ,故选C .【知识点】锐角三角函数9.(2019浙江省金华市,9,3分)如图,物体由两个圆锥组成,其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A.2B. 3C. 32D. 2A2442531135270°0°180°90°αm ODB C A(第9题图) 【答案】D .【解析】∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设AB 长为R ,则BD 长为2R .∵上面圆锥的侧面积为1,即1=12lR ,∴l =2R ·∴下面圆锥的侧面积为12lR =12·2R·2R =2.故选D .【知识点】圆锥的侧面积 10.(2019浙江省金华市,10,3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM 、GN 是折痕,若正方形EFGH 与五边形MCNGF 面积相等,则FMGF的值是( ) A.522- B.21- C.12D.22【答案】A .【解析】连接EG ,FH 交于点O ,由折叠得△OGF 是等腰直角三角形,OF =22GF .∵正方形EFGH 与五边形MCNGF 面积相等,∴(OF +FM )2=GF +14GF =54GF 2,∴22GF +FM =52GF ,∴FM =52GF -22GF ,∴FM GF=522-.故选A .【知识点】正方形;折叠;直接开平方法 ;等腰直角三角形的性质;特殊角的锐角三角函数值DCB A⑤④③②①HDG NC FM BAE x H D GN CF M BO AE二、填空题(本大题共6小题,每小题4分,共24分)11.(2019浙江省金华市,11,4分)不等式369x-≤的解是.【答案】x≤5.【解析】解不等式,得x≤5.【知识点】解不等式;12.(2019浙江省金华市,12,4分)数据3,4,10,7,6的中位数是.【答案】6.【解析】将数据按序排列为3,4,6,7,10,位于最中间的数6就是这组数据的中位数.【知识点】中位数13.(2019浙江省金华市,13,4分)当x=1, y=-13时,代数式x2+2xy+y2的值是.【答案】49【解析】当=1x,1=3y-时,x2+2xy+y2=(x+y)2=(23)2=49.【知识点】代数式求值;完全平方公式14.(2019浙江省金华市,14,4分)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪,量角器的0刻度线AB对准楼顶时,铅垂线对应的度数是50°,则此时观察楼顶的仰角度数是___________.【答案】40°.【解析】量角器的0刻度线AB对准楼顶时,铅垂线对应的度数是50°,则过AB中点的水平线对应的是140°,所以此时观察楼顶的仰角度数是40°.【知识点】仰角,平角,铅垂线,水平线15.(2019浙江省金华市,15,4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图是两匹马行走路程ts关于行走时间t的函数图象,则两图象交点P的坐标是__________.【答案】(32,4800).【解析】设良马t 日追之,根据题意,得240,150(12,s t s t =⎧⎨=+⎩)解得20,4800.t s =⎧⎨=⎩故答案为(32,4800).【知识点】一次函数的应用16.(2019浙江省金华市,16,4分)图2,图3是某公共汽车双开门的俯视示意图,ME 、EF 、FN 是门轴的滑动轨道,∠E =∠F =90°,两门AB 、CD 的门轴A 、B 、C 、D 都在滑动轨道上,两门关闭时(图2),A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合);两门同时开启,A 、D 分别沿E →M ,F →N 的方向匀速滑动,带动B 、C 滑动;B 到达E 时,C 恰好到达F ,此时两门完全开启,已知AB =50cm ,CD =40cm.(1)如图3,当∠ABE =30°时,BC =_______cm.(2)在(1)的基础上,当A 向M 方向继续滑动15cm 时,四边形ABCD 的面积为_______cm 2.(第16题图)【答案】(1)(90-453);(2)2256.【解析】(1)利用直角三角形的性质先求得EB ,CF ,然后进行线段加减即可; (2)根据题意,得S 四边形ABCD =S 梯形AEFD -S △ABE -S △CDF ,计算可得. 解:(1)∵ AB =50,CD =40,∴AB +CD = EB +CF =EF =90. 在Rt △中,∵∠E =90°,∠ABE =30°,∴EB =253. 同理可得CF =203.∴BC =90-453(cm ).(2)根据题意,得AE =40, DF =32, EB =225040-=30,CF =224032-=24, ∴S 四边形ABCD =S 梯形AEFD -S △ABE -S △CDF=12(AE +DF )·EF -12AE ·EB -12CF ·DF=12(40+32)×90-12×40×30-12×24×32 =2256.t (日)s(里)P12O图3图2图1D AN B (C )NE (A )EF (D )MFM BC【知识点】勾股定理;锐角三角函数;相似三角形的判定与性质三、解答题(本大题共8小题,满分66分,各小题都必须写出解答过程)17.(2019浙江省金华市,17,6分)计算:|-3|-2tan60°+12+113-() 【思路分析】本题考查了实数的运算.先分别求出|-3|、tan60°、12、113-()的值,然后进行实数的运算即可.【解题过程】解:原式=3-23+23+3=6.【知识点】算术平方根;负整数指数幂的运算;特殊角的三角函数值;绝对值18.(2019浙江省金华市,18,6分)解方程组:34(2y)2 1.5x x x y ---==⎧⎨⎩,【思路分析】利用加减消元法解方程组..【解题过程】解:34(2y)2 1.5x x x y ---==⎧⎨⎩,①②由①,得-x +8y =5,③②+③,得6y =6,解得y =1.把y =1代入y =1,得x -2×1=1. 解得x =3.∴原方程组的解为31.x x ==⎧⎨⎩,.【知识点】解方程组 19.(2019浙江省金华市,19,6分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(第19题图)(1)求m ,n 的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.类别人数(人)抽取的学生最喜欢课程内容的条形统计图抽取的学生最喜欢课程内容的扇形统计图E .思想方法D .生活应用C .实验探究B .数学史话A .趣味数学A BC D E121596E D 30%C n B mA 20%181512963【思路分析】(1)抽取的学生人数=喜欢“趣味数学”的学生人数.÷所对应的百分比;m =15÷总人数,n =9÷总人数.(2)最喜欢“生活应用”的学生数=总人数×所对应的百分比,图略; (3)1200×最喜欢“数学史话”的人数所占的百分比. 【解题过程】解:(1)抽取的学生人数为12÷20%=60(人),m =15÷60=25%,n =9÷60=15%. (2)最喜欢“生活应用”的学生数为60×30%=18(人). 条形统计图补全如下.(3)该校共有1200名学生,估计全校最喜欢“数学史话”的学生有1200×25%=300(人). 【知识点】条形统计图;扇形统计图 20.(2019浙江省金华市,20,8分)如图,在7×6的方格中,△ABC 的顶点均在格点上.试按要求画出线段EF (E ,F 均为格点),各画出一条即可.(第20题图)【思路分析】根据网格的特点,画出符合相应条件的图形即可.(1)利用平行四边形的对角线互相平分先定点E ,F ,再画线线EF ;(2)利用一线三直角先确定经过点A 垂直于AC 的垂线,再利用平行线的性质画线线EF ;(3)利用一线三直角先确定经过点A 垂直于AB 的垂线,再利用三角形中位线的性质画线线EF ;【解题过程】解:如图,【知识点】平行四边形的性质;三角形中位线的性质 21.(2019浙江省金华市,21,8分)如图,在Y OABC 中,以O 为圆心,OA 为半径的圆与BC 相切于点B ,与OC 相交于点D .类别人数(人)61891512ED C BA181512963图1:EF 平分BCACB图2:EF ⊥AC ACB图3:EF 垂直平分ABACB图3:EF 垂直平分AB图2:EF ⊥AC 图1:EF 平分BCAECFBEA CFBA CEFB(1)求»BD 的度数;(2)如图,点E 在⊙O 上,连结CE 与⊙O 交于点F .若EF =AB ,求∠OCE 的度数.(第21题图)【思路分析】本题考查了切线的性质;垂径定理;平行四边形的性质;等腰直角三角形的判定;勾股定理;特殊角的锐角三角函数的综合运用.(1)连结OB ,利用切线的性质;平行四边形的性质证△AOB 是等腰直角三角形得∠ABO =45°.利用平行线的性质得∠BOC =45°.由圆心角的弧度就是所对弧的度数得出结论.(2)连结OE ,作OH ⊥EC .设EH =t ,先利用垂径定理,平行四边形的性质证得CO =2t ,再利用等腰直角三角形的性质,勾股定理求得OH =t ,最后利用特殊角的锐角三角函数求出∠OCE 的度数. 【解题过程】解: 1)连结OB . ∵BC 是⊙O 的切线, ∴OB ⊥BC ,∵四边形OABC 是平行四边形 ∴OA ∥BC ,∴OB ⊥OA .∴△AOB 是等腰直角三角形. ∴∠ABO =45°. ∵OC ∥AB ,∴∠BOC =∠ABO =45°.∴»BD的的度数为45°;(2)连结OE ,过点O 作OH ⊥EC 于点H ,设EH =t ,∵OH ⊥EC ,∴EF =2HE =2t ,∵四边形OABC 是平行四边形 ∴AB =CO =EF =2t ,∵△AOB 是等腰直角三角形. ∴⊙O 的半径OA =2t .∴在R t △EHO 中,OH =22OE EH -=222t t -=tF D CO AB E HFD CO AB E在R t △OCH 中,∵OC =2OH ,∴∠OCE =30°.【知识点】切线的性质;垂径定理;平行四边形的性质;等腰直角三角形的判定;勾股定理;特殊角的锐角三角函数 22.(2019浙江省金华市,22,10分)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =k x(k >0,x >0)的图像上,边CD 在x 轴上,点B 在y 轴上,已知CD =2. (1)点A 是否在该反比例函数的图像上?请说明理由.(2)若该反比例函数图像与DE 交于点Q ,求点Q 的横坐标.(3)平移正六边形ABCDEF ,使其一边的两个端点恰好都落在该反比例函数的图像上,试描述平移过程.(第22题图)【思路分析】本题主要考查了反比例函数解析式,正六边形的性质及图形的平移.(1)根据正六边形的性质先求出点P 的坐标,进而求得反比例函数的表达式.由题意先求得点的坐标,进而判断是否在反比例函数图像上.(2)设点Q 的坐标为(b +3,3b ),根据点Q 在反比例函数图像上构建关于b 的方程,解方程可求得点Q 的横坐标.(3)平移正六边形ABCDEF ,并描述平移过程. 【解题过程】解:(1)连结PC ,过点P 作PH ⊥x 轴于点H , ∵在正六边形ABCDEF 中,点B 在y 轴上,∴△OBD 和△PCH 都含有30°角的直角三角形,BC =PC =CD =2. ∴OC =CH =1,PH =3. ∴点P 的坐标为(2,3) ∴k =23.∴反比例函数的表达式为y =23x(x >0). 连结AC ,过点B 作BG ⊥AC 于点G , ∵∠ABC =120°,AB =BC =2, ∴BG =1,AG =CG =3. ∴点A 的坐标为(1,23). 当x =1时,y =23,xyQ PE F A B DC O所以点A 该反比例函数的图像上.(2)过点Q 作QM ⊥x 轴于点M ,∵六边形ABCDEF 是正六边形,∴∠EDM =60°. 设DM =b ,则QM =3b .∴点Q 的坐标为(b +3,3b ). ∴3b (b +3)=23. 解得b 1=3172-+,b 2=3172--(舍去) ∴b +3=3172+. ∴点Q 的横坐标为3172+. (3)连结AP .∵AP =BC =EF ,AP ∥BC ∥EF ,∴平移过程:将正六边形ABCDEF 先向右平移1个单位,再向上平移3个单位,或将正六边形ABCDEF 向左平移2个单位.【知识点】反比例函数的表达式;正六边形的性质;图形的平移;含有30°角的直角三角形性质 23.(2019浙江省金华市,23,10分)如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA ,OC 分别在x 轴,y 轴的正半轴上,把正方形OABC 的内部及边上,横、纵坐标均为整数的点称为好点.点P 为抛物线y =-(x -2)2+m +2的顶点.(1)当m =0时,求该抛物线下放(包括边界)的好点个数. (2)当m =3时,求该抛物线上的好点坐标.(3)若点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.(第23题图)xy H MG Q P E F A B D C Oxy PCBAO【思路分析】本题一道阅读理解题,解题的关键是认真审题,弄清题意,弄清好点的定义,正确画出图形.(1)根据m 的取值,求满足条件的好点个数.(2)根据m 的取值,求满足条件的好点坐标.(3)根据点P 在正方形中的位置,确定m 的取值范围,根据好点的个数确定抛物线的位置(抛物线与线段EF 有交点),进而讨论的m 取值范围.【解题过程】解:(1)当m =0时,二次函数的表达式为y =-x 2+2,画出函数图象(图1), ∵当x =0时,y =2;当x =1时,y =1;∴抛物线经过点(0,2)和(1,1).∴好点有:(0,0),(0,1),(0,2).(1,0)和(1,1)共5个.(2)当m =3时,二次函数的表达式为y =-(x -3)2+5,画出函数图象(图2), ∵当x =1时,y =1;当x =4时,y =4;∴抛物线上存在好点,坐标分别是(1,1)和(4,4).(3)∵抛物线顶点P 的坐标为(m ,m +2),∴点P 在直线y =x +2上.由于点P 在正方形内 ,则0<m <2.如图3,点E (2,1),F (2,2).∴当顶点P 在正方形OABC 内,且好点恰好存在8个时,抛物线与线段EF 有交点(点F 除外). 当抛物线经过点E (2,1)时,-( 2-m )2+m +2=1,解得m 1=5132-,m 2=5132+(舍去). 当抛物线经过点F (2,2)时,-( 2-m )2+m +2=2,解得m 1=1,m 2=4(舍去). ∴当5132-<m <1时,点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点. 【知识点】阅读理解题;二次函数的图象与性质;一次函数表达式;一元二次方程的解法;正方形的性质;24.(2019浙江省金华市,24,12分)如图,在等腰Rt △ABC 中,∠ACB =90°,AB =142,点D ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90°得到EF .(1)如图1,若AD =BD ,点E 与点C 重合,AF 与DC 相交于点O ,求证:BD =2DO .(2)已知点G 为AF 的中点.①如图2,若AD =BD ,CE =2,求DG 的长.②若AD =6BD ,是否存在点E ,使得△DEG 是直角三角形?若存在,求CE 的长;若不存在,试说明理由. xy图1PCB A O x y 图2C B A O P x y 图3F E P C B A O(第24题图)【思路分析】本题综合考查等腰直角三角形、全等三角形的判定与性质.(1)根据直角三角形斜边上的中线等于斜边的一半得CD =BD ,证△ADO ≌△FCO 得DO =CO ,等量代换得BD =CD =2 DO .(2)①由点D ,G 分别为AB ,AF 的中点,想到三角形中位线定理,于是连结BF .分别过点D ,F 作DN ⊥BC 于点N ,FM ⊥BC 于点M .证△DNE ≌△EMF ,得DN =EM .根据已知条件计算出线段BF 的长,进而可得DG 的长;②存在.分∠DEG =90°,DG ∥BC ,∠EDG =90°时三种情况讨论,并求得CE 的长.【解题过程】解:(1)由旋转的性质得:CD =CF ,∠DCF =90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO =90°,CD =BD =AD .∴∠DCF =∠ADC .在△ADO 和△FCO 中AOD FOC ADO FCO AD FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADO ≌△FCO .∴DO =CO .∴BD =CD =2 DO .(2)①如答图1,连结BF ,分别过点D ,F 作DN ⊥BC 于点N ,FM ⊥BC 于点M .∴∠DNE =∠EMF =90°.又∵∠NDE =∠MEF ,DE =EF ,∴△DNE ≌△EMF .∴DN =EM .又∵BD =72,∠ABC =45°,∴DN =EM =7,∴BM =BC ―ME ―EC =5,∴MF =NE =NC -EC =5.∴BF =52.∵点D ,G 分别为AB ,AF 的中点.∴DG =12BF =522. 图3图2图1G F A F A OF ABB BC (E)DC ED G C D E②过点D 作DH ⊥BC 于点H .∵AD =6BD ,AB =142,∴BD =22.Ⅰ)当∠DEG =90°时,有如答图2,3两种情况,设CE =t .∵∠DEF =90°,∠=DEG °,∴点E 在线段AF 上.∴BH =DH =2,BE =14-t ,HE =BE -BH =12-t .∵△DHE ∽△ECA ,∴DH EC =HE CA ,即2t =1214t ,解得t =6±22, ∴CE =6+22或CE =6-22.Ⅱ)当DG ∥BC 时,如答图4.过点F 作FK ⊥BC 于点K ,延长DG 交AC 于点N ,延长AC 并截取MN =NA ,连结FM .则NC =DH =2,MC =10.设GN =t ,则FM =2t ,BK =14-2t .∵△DHE ≌△EKF .∴KE =DH =2,∴KF =HE =14-2t .∵MC =FK ,∴14-2t =10,t =2.∵GN =EC =2,GN ∥EC ,∴四边形GECN 是平行四边形.而∠ACB =90°,∴四边形GECN 是矩形.∴∠EGN =90°.∴当EC =2时,有∠DGE =90°.答图1MN FAB CE DG答图2HG F A B C E D答图3H G F AB C E DⅢ)当∠EDG =90°时,如答图5.过点G ,F 分别作AC 的垂线,交射线AC 于点N ,M ,过点E 作EK ⊥FM 于点K ,过点D 作GN 的垂线,交NG 的延长线于点P .则PN =HC =BC -HB =12.设GN =t ,则FM =2t ,∴PG =PN -GN =12-t .由△DHE ≌△EKF 可得FK =2,∴CE =KM =2t -2.∴HE =HC -CE =12-(2t -2)=14-2t ,∴EK =HE =14-2t ,AM =AC +CM =AC +EK =14+14-2t =28-2t ,.∴MN =12AM =14-t ,NC =MN -CM =t .∴PD =t -2.由△GPD ∽△DHE 可得PG HD =PD HE ,即122t -=2142t t --, 解得t 1=10-14,t 2=10+14(舍去),∴CE =2t -2=18-214.所以,CE 的长为6+22,6-22,2或18-214.【知识点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形的性质;直角三角形斜边上的中线性质;旋转的性质;矩形的判定;分类讨论的思想答图4N M K H G FAB CE D答图5H PK MNG F AB CE D。
浙江省金华市2019年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.初数4的相反数是()A. B. -4 C. D. 42.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a33.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 84.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=18.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.12.数据3,4,10,7,6的中位数是________.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。
2019年浙江省金华市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数4的相反数是()A. B. C. D. 42.计算a6÷a3,正确的结果是()A. 2B. 3aC.D.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 84.星期一星期二星期三星期四5.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东方向处B. 在5km处C. 在南偏东方向5km处D. 在南偏东方向5km处7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. B. C. D.8.如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是()A. B. C. D.9.如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.不等式3x-6≤9的解是______.12.数据3,4,10,7,6的中位数是______.13.当x=1,y=-时,代数式x2+2xy+y2的值是______.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是______.15.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是______.16.图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=______cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为______cm2.三、解答题(本大题共8小题,共66.0分)17.计算:|-3|-2tan60°++()-1.18.解方程组19.某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(1)求m,n的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.20.如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.21.如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.22.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.23.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=-(x-m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.24.如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.答案和解析1.【答案】B【解析】解:∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是-4;故选:B.根据互为相反数的定义即可判定选择项.此题主要考查相反数的定义:只有符号相反的两个数互为相反数.2.【答案】D【解析】解:由同底数幂除法法则:底数不变,指数相减知,a6÷a3=a6-3=a3.故选:D.根据同底数幂除法法则可解.本题是整式除法的基本运算,必须熟练掌握运算法则.本题属于简单题.3.【答案】C【解析】解:由三角形三边关系定理得:5-3<a<5+3,即2<a<8,即符合的只有3,故选:C.根据三角形三边关系定理得出5-3<a<5+3,求出即可.本题考查了三角形三边关系定理,能根据定理得出5-3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4.【答案】C【解析】解:星期一温差10-3=7℃;星期二温差12-0=12℃;星期三温差11-(-2)=13℃;星期四温差9-(-3)=12℃;故选:C.用最高温度减去最低温度,结果最大的即为所求;本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.5.【答案】A【解析】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是.故选:A.让白球的个数除以球的总数即为摸到白球的概率.本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.【答案】D【解析】解:由图可得,目标A在南偏东75°方向5km处,故选:D.根据方向角的定义即可得到结论.此题主要考查了方向角,正确理解方向角的意义是解题关键.7.【答案】A【解析】解:用配方法解方程x2-6x-8=0时,配方结果为(x-3)2=17,故选:A.方程利用完全平方公式变形即可得到结果.此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.8.【答案】C【解析】解:A、∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意;B、在Rt△ABC中,tanα=,即BBC=m•tanα,故本选项不符合题意;C、在Rt△ABC中,AC=,即AO=,故本选项符合题意;D、∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,故本选项不符合题意;故选:C.根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形求出即可.本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.9.【答案】D【解析】解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.10.【答案】A【解析】解:连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,∴正方形EFGH的边长GF==∴HF=GF=∴MF=PH== a∴=a÷=故选:A.连接HF,设直线MH与AD边的交点为P,根据剪纸的过程以及折叠的性质得PH=MF且正方形EFGH的面积=×正方形ABCD的面积,从而用a分别表示出线段GF和线段MF的长即可求解.本题主要考查了剪纸问题、正方形的性质以及折叠的性质,由剪纸的过程得到图形中边的关系是解题关键.11.【答案】x≤5【解析】解:3x-6≤9,3x≤9+63x≤15x≤5,故答案为:x≤5根据移项、合并同类项、化系数为1解答即可.本题考查了解一元一次不等式,能根据不等式的性质求出不等式的解集是解此题的关键.12.【答案】6【解析】解:将数据重新排列为3、4、6、7、10,∴这组数据的中位数为6,故答案为:6.将数据重新排列,再根据中位数的概念求解可得.考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.【答案】【解析】解:当x=1,y=-时,x2+2xy+y2=(x+y)2=(1-)2==故答案为:.首先把x2+2xy+y2化为(x+y)2,然后把x=1,y=-代入,求出算式的值是多少即可.此题主要考查了因式分解的应用,要熟练掌握,根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.14.【答案】40°【解析】解:过A点作AC⊥OC于C,∵∠AOC=50°,∴∠OAC=40°.故此时观察楼顶的仰角度数是40°.故答案为:40°.过A点作AC⊥OC于C,根据直角三角形的性质可求∠OAC,再根据仰角的定义即可求解.考查了解直角三角形的应用-仰角俯角问题,仰角是向上看的视线与水平线的夹角,关键是作出辅助线构造直角三角形求出∠OAC的度数.15.【答案】(32,4800)【解析】解:令150t=240(t-12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.16.【答案】90-452556【解析】解:∵A、D分别在E、F处,门缝忽略不计(即B、C重合)且AB=50cm,CD=40cm.∴EF=50+40=90cm∵B到达E时,C恰好到达F,此时两门完全开启,∴B、C两点的路程之比为5:4(1)当∠ABE=30°时,在Rt△ABE中,BE=AB=25cm,∴B运动的路程为(50-25)cm∵B、C两点的路程之比为5:4∴此时点C运动的路程为(50-25)×=(40-20)cm∴BC=(50-25)+(40-20)=(90-45)cm故答案为:90-45;(2)当A向M方向继续滑动15cm时,设此时点A运动到了点A'处,点B、C、D分别运动到了点B'、C'、D'处,连接A'D',如图:则此时AA'=15cm∴A'E=15+25=40cm由勾股定理得:EB'=30cm,∴B运动的路程为50-30=20cm∴C运动的路程为16cm∴C'F=40-16=24cm由勾股定理得:D'F=32cm,∴四边形A'B'C'D'的面积=梯形A'EFD'的面积-△A'EB'的面积-△D'FC'的面积=-30×40-24×32=2556cm2.∴四边形ABCD的面积为2556cm2.故答案为:2556.(1)先由已知可得B、C两点的路程之比为5:4,再结合B运动的路程即可求出C运动的路程,相加即可求出BC的长;(2)当A向M方向继续滑动15cm时,AA'=15cm,由勾股定理和题目条件得出△A'EB'、△D'FC'和梯形A'EFD'边长,即可利用割补法求出四边形四边形ABCD的面积.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.17.【答案】解:原式=.【解析】按顺序依次计算,先把绝对值化简,再算出2tan60°=,然后根据二次根式的性质以及负指数幂化简即可求解.本题考查了二次根式的混合运算和分式的加减法,设计到的知识点有零指数幂、特殊角的三角函数值,一定要牢记.18.【答案】解:,将①化简得:-x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴ ;【解析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.19.【答案】解:(1)观察条形统计图与扇形统计图知:选A的有12人,占20%,故总人数有12÷20%=60人,∴m=15÷60×100%=25%n=9÷60×100%=15%;(2)选D的有60-12-15-9-6=18人,故条形统计图补充为:(3)全校最喜欢“数学史话”的学生人数为:1200×25%=300人.【解析】(1)先用选A的人数除以其所占的百分比即可求得被调查的总人数,然后根据百分比=其所对应的人数÷总人数分别求出m、n的值;(2)用总数减去其他各小组的人数即可求得选D的人数,从而补全条形统计图;(3)用样本估计总体即可确定全校最喜欢“数学史话”的学生人数.本题考查了扇形统计图、条形统计图及用样本估计总体的知识,解题的关键是能够读懂两种统计图并从中整理出进一步解题的有关信息,难度不大.20.【答案】解:如图:从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EG平分BC;EC=,EF=,FC=,借助勾股定理确定F点,则EF⊥AC;借助圆规作AB的垂直平分线即可;【解析】从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;EC=,EF=,FC=,借助勾股定理确定F点;本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直、中点是解题的关键.21.【答案】解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.【解析】(1)连接OB,证明△AOB是等腰直角三角形,即可求解;(2)△AOB是等腰直角三角形,则OA=t,HO===t,即可求解.本题主要利用了切线和平行四边形的性质,其中(2),要利用(1)中△AOB是等腰直角三角形结论.22.【答案】解:(1)过点P作x轴垂线PG,连接BP,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴PG=,∴P(2,),∵P在反比例函数y=上,∴k=2,∴y=,由正六边形的性质,A(1,2),∴点A在反比例函数图象上;(2)D(3,0),E(4,),设DE的解析式为y=mx+b,∴ ,∴ ,∴y=x-3,联立方程解得x=,∴Q点横坐标为;(3)E(4,),F(3,2),将正六边形向左平移两个单位后,E(2,),F(1,2),则点E与F都在反比例函数图象上;【解析】(1过点P作x轴垂线PG,连接BP,可得BP=2,G是CD的中点,所以P(2,);(2)易求D(3,0),E(4,),待定系数法求出DE的解析式为x-3,联立反比例函数与一次函数即可求点Q;(3)E(4,),F(3,2),将正六边形向左平移两个单位后,E(2,),F (1,2),则点E与F都在反比例函数图象上;本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标将结合是解题的关系.23.【答案】解:(1)如图1中,当m=0时,二次函数的表达式y=-x2+2,函数图象如图1所示.∵当x=0时,y=2,当x=1时,y=1,∴抛物线经过点(0,2)和(1,1),观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.(2)如图2中,当m=3时,二次函数解析式为y=-(x-3)2+5.如图2.∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,∴抛物线经过(1,1),(2,4),(4,4),共线图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).(3)如图3中,∵抛物线的顶点P(m,m+2),∴抛物线的顶点P在直线y=x+2上,∵点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),当抛物线经过点E时,-(2-m)2+m+2=1,解得m=或(舍弃),当抛物线经过点F时,-(2-m)2+m+2=2,解得m=1或4(舍弃),∴当≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.【解析】(1)如图1中,当m=0时,二次函数的表达式y=-x2+2,画出函数图象,利用图象法解决问题即可.(2)如图2中,当m=3时,二次函数解析式为y=-(x-3)2+5,如图2,结合图象即可解决问题.(3)如图3中,∵抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时D m的值,即可判断.本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题,属于中考压轴题.24.【答案】(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC=BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DDBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG=BF=.②解:如图3-1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC 于H.设EC=x.∵AD=6BD,∴BD=AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12-x,∵FH∥AC,∴=,∴=,整理得:x2-12x+28=0,解得x=6±2.如图3-2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF=(12-x),OG=BF=(12-x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴=,∴=,整理得:x2-36x+268=0,解得x=18-2或18+2(舍弃),如图3-3中,当∠综上所述,满足条件的EC的值为6±2或18-2.【解析】(1)如图1中,首先证明CD=BD=AD,再证明四边形ADFC是平行四边形即可解决问题.(2)①作DT⊥BC于点T,FH⊥BC于H.证明DG是△ABF的中位线,想办法求出BF即可解决问题.②分两种情形:如图3-1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.构建方程解决问题即可.如图3-2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.构建方程解决问题即可.本题属于几何变换综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.第21页,共21页。
浙江省金华市2019年中考数学试卷一、选择题目(本题有10小题,每小题3分,共30分)1.初数4的相反数是()A. B. -4 C. D. 4【答案】 B【考点】相反数及有理数的相反数【解析】【解答】∵4的相反数是-4.故答案为:B.【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.2.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a3【答案】 D【考点】同底数幂的除法【解析】【解答】解:a6÷a3=a6-3=a3故答案为:D.【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 8【答案】 C【考点】三角形三边关系【解析】【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】 C【考点】极差、标准差【解析】【解答】解:依题可得:星期一:10-3=7(℃),星期二:12-0=12(℃),星期三:11-(-2)=13(℃),星期四:9-(-3)=12(℃),∵7<12<13,∴这四天中温差最大的是星期三.故答案为:C.【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.【答案】 A【考点】等可能事件的概率【解析】【解答】解:依题可得:布袋中一共有球:2+3+5=10(个),∴搅匀后任意摸出一个球,是白球的概率P= .故答案为:A.【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处【答案】 D【考点】钟面角、方位角【解析】【解答】解:依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=1【答案】 A【考点】配方法解一元二次方程【解析】【解答】解:∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.故答案为:A.【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=【答案】 C【考点】锐角三角函数的定义【解析】【解答】解:A.∵矩形ABCD,∴AB=DC,∠ABC=∠DCB=90°,又∵BC=CB,∴△ABC≌△DCB(SAS),∴∠BDC=∠BAC=α,故正确,A不符合题意;B.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴tanα= ,∴BC=AB·tanα=mtanα,故正确,B不符合题意;C.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴cosα= ,∴AC= = ,∴AO= AC=故错误,C符合题意;D.∵矩形ABCD,∴AC=BD,由C知AC= = ,∴BD=AC= ,故正确,D不符合题意;故答案为:C.【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得∠BDC=∠BAC=α,故A正确;B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,故正确;C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC= = ,再由AO= AC即可求得AO长,故错误;D.由矩形性质得AC=BD,由C知AC= = ,从而可得BD长,故正确;9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】 D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr· r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π× = .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr· r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.【答案】 A【考点】剪纸问题【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM= a,FM=GN= ,∴NO= = ,∴GO= = ,∵正方形EFGH与五边形MCNGF的面积相等,∴x2= + a2,∴a= x,∴= = .故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM= a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2,解之可得a= x,由,将a= x代入即可得出答案.二、填空题目(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.12.数据3,4,10,7,6的中位数是________.【答案】 6【考点】中位数【解析】【解答】解:将这组数据从小到大排列为:3,4,6,7,10,∴这组数据的中位数为:6.故答案为:6.【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;由此即可得出答案.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.【答案】【考点】代数式求值【解析】【解答】解:∵x=1,y=- ,∴x2+2xy+y2=(x+y)2=(1- )2= .故答案为:.【分析】先利用完全平方公式合并,再将x、y值代入、计算即可得出答案.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。
一、选择题(本题有10小题,每小题3分,共30分).1.实数4的相反数是( )A 、−41B 、−4C 、41 D 、4 2.计算a 6÷a 3,正确的结果是( )A 、2B 、3aC 、a 2D 、a 33.若长度分别为a ,3,5的三条线段能组成一个三角形,则a 的值可以是( )A 、1B 、2C 、3D 、8 )5.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球..的概率为( ) A 、21 B 、103 C 、51 D 、107 6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( )A 、在南偏东75°方向处B 、在5km 处C 、在南偏东15°方向5km 处D 、在南偏东75°方向5km 处7.用配方法解方程x 2−6x −8=0时,配方结果正确的是( )A 、(x −3)2=17B 、(x −3)2=14 C 、(x −6)2=44 D 、(x −3)2=1 8.如图,矩形ABCD 的对角线交于点O .已知AB =m ,∠BAC =∠α,则下列结论错误的是( )A 、∠BDC =∠αB 、BC =m •tan αC 、AO =αsin 2m D 、BD =αcos m 9.如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A 、2B 、3C 、23D 、210.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕.若正方形EFGH 与五边形MCNGF 的面积相等,则GF FM 的值是( )A 、225B 、2−1C 、21 D 、22二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x −6≤9的解是__________.12.数据3,4,10,7,6的中位数是_____________.13.当x =1,y =−31时,代数式x 2+2xy +y 2的值是__________.14.如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是________.(第14题)(第15题)15.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是__________.16.图2,图3是某公共汽车双开门的俯视示意图,ME 、EF 、FN 是门轴的滑动轨道,∠E =∠F =90°,两门AB 、CD 的门轴A 、B 、C 、D 都在滑动轨道上,两门关闭时(图2),A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合);两门同时开启,A 、D 分别沿E →M ,F →N 的方向匀速滑动,带动B 、C 滑动:B 到达E 时,C 恰好到达F ,此时两门完全开启,已知AB =50cm ,CD =40cm .(1)如图3,当∠ABE =30°时,BC =___________cm .(2)在(1)的基础上,当A 向M 方向继续滑动15cm 时,四边形ABCD 的面积为______cm 2.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程。
浙江省金华市2019年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)2.(3分)(2019•金华)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )3.(3分)(2019•金华)一个几何体的三视图如图,那么这个几何体是( )B4.(3分)(2019•金华)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色B5.(3分)(2019•金华)在式子,,,中,x可以取2和3的是()B6.(3分)(2019•金华)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()=28.(3分)(2019•金华)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()9.(3分)(2019•金华)如图是二次函数y=﹣x2+2x+4的图象,使y≤1成立的x的取值范围是()10.(3分)(2019•金华)一张圆心角为45°的扇形纸板盒圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是():2 :OD===,)二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2019•金华)写出一个解为x≥1的一元一次不等式x+1≥2.12.(4分)(2019•金华)分式方程=1的解是x=2.13.(4分)(2019•金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.14.(4分)(2019•金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是240°.×=24015.(4分)(2019•金华)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是7.EG=EF=24+2x=216.(4分)(2019•金华)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH ﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B 与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是;(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是(11﹣3)cm≤r≤8cm.,根据求解,,得出=HP=BP=rML=HP===,故答案为:=DH+2+2PL=HP+LH=8,解得﹣4)三、解答题(共8小题,满分66分)17.(6分)(2019•金华)计算:﹣4cos45°+()﹣1+|﹣2|.×18.(6分)(2019•金华)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=﹣2.19.(6分)(2019•金华)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)20.(8分)(2019•金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?21.(8分)(2019•金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?22.(10分)(2019•金华)【合作学习】如图,矩形ABCD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G.回答下面的问题:①该反比例函数的解析式是什么?②当四边形AEGF为正方形时,点F的坐标时多少?(1)阅读合作学习内容,请解答其中的问题;(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.======23.(10分)(2019•金华)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.的比值,即可以得,;,,=12,的路径是的路径的长度为:24.(12分)(2019•金华)如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.,解得(1=.PD=PF PFEF==((PE=PE=PF=即(=PF=EF=,则PE=4=(PE=PF=即(=4,,)PF=EF=2a=PF=PE=PF2a=(PE=PF=(,故此种情形不存在.MD=)3﹣1+24,4。
42531135 2 A4 α O浙江省 2019 年初中学业水平考试(金华卷)数学试题卷一.选择题(本题有 10 小题,每小题 3 分,共 30 分) 1.实数 4 的相反数是( )A. - 1 4B.-4C. 14D.42. 计算a 6÷ a 3,正确的结果是()A.2B.3 aC. a 2D. a 33. 若长度分别为a ,3,5 的三条线段能组成一个三角形,则a 的值可以是( ) A.1 B. 2 C.3 D. 84.某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A. 星期一B.星期二C.星期三D.星期四5. 一个布袋里装有 2 个红球、3 个黄球和 5 个白球,除颜色外其它都相同. 搅匀后任意摸出一个球,是白.球.的概率为( ) A. 12 B. 10C.1 5D.106. 如图是需达屏幕在一次探测中发现的多个目标,其中对目标 A 的位置表述正确的是()A. 在南偏东 75°方向处B. 在 5 km 处C. 在南偏东 15°方向 5 km 处D. 在南偏东 75°方向 5 km 处90°180°0°A Dm270°BC(第 6 题图)(第 8 题图) 7. 用配方法解方程 x 2- 6x - 8 = 0 时,配方结果正确的是() A. (x - 3)2 = 17B. (x - 3)2 = 14C. (x - 6)2 = 44D. (x - 3)2 = 18. 如图,矩形 ABCD 的对角线交于点O ,已知 AB =m ,∠BAC =∠ α ,下列结论错误的是()A. ∠BDC =∠ αB. BC = m ∙ t an αC. AO =m2sin αD. BD =mcos α9. 如图物体由两个圆锥组成,其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )2G HFEA.2B. C.3 D.2ABD(第 9 题图) (第14 题图)10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中 FM 、GN 是折痕,若正方形 EFGH 与与变形 MCNGF 面积相等,则 FM的值GF是( )A. 5 - 2 2B. - 1C. 1 2D.2DCM①② ③ ④A⑤B二、填空题(本题有 6 小题,每小题 4 分,共 24 分)11. 不等式3x - 6≤9 的解是 . 12.数据 3,4,10,7,6 的中位数是 . 13. 当 x =1 , y = - 1 时,代数式 x 2 + 2xy + y 2的值是 3.14. 如图,在量角器的圆心 O 处下挂一铅锤,制作了一个简易测倾仪, 量角器的 0 刻度线 AB 对准楼顶时,铅垂线对应的度数是 50°,则此时观察楼顶的仰角度数是 .15. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马现形一十二日,问良马几何日追及之”,如图是两匹马行走路程 s 关于行走时间 t 的函数图象, 则两图象交点 P 的坐标是 .16. 图 2,图 3 是某公共汽车双开门的俯视示意图,ME 、EF 、FN 是门轴的滑动轨道,∠E =∠F =90°,两门 AB 、CD 的门轴 A 、B 、C 、D 都在滑动轨道上,两门关闭时(图 2),A 、D 分别在 E 、F 处,门缝忽略不计(即 B 、C 重合);两门同时开启,A 、D 分别沿E→M ,F →N 的方向匀速滑动,带动 B 、C 滑动;B 到达 E 时,C 恰好到达 F ,此时两门完全开启,已知AB =50 cm ,CD = 40cm . (1) 如图 3,当∠ABE =30°时,BC = cm .32O12 ⎨x - 2 y = 1. (2) 在图 1 的基础上,当 A 向 M 方向继续滑动 15 cm 时,四边形 ABCD 的面积为cm 2 .E ) 图1图2图3三、解答题(本题有 8 小题,共 66 分,各小题都必须写出解答过程)17.(本题 6 分)计算: -3 - 2 tan 60︒ + + (1)318.(本题 6 分)解方程组: ⎧3x - 4(x - 2 y ) = 5.⎩19.(本题 6 分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:抽取的学生最喜欢课程内容的扇形统计图 抽取的学生最喜欢课程内容的条形统计图1815A. 趣味数学 12 B. 数学史话 9 C. 实验探究 6 D. 生活应用 3E. 思想方法(1) 求m , n 的值. (2) 补全条形统计图.(3) 该校共有 1200 名学生,试估计全校最喜欢“数学史话”的学生人数.EA 20%D 30%B mC n-1FODABA CBA CBACB20.(本题 8 分)如图,在 7×6 的方格中,△ABC 的顶点均在格点上.试按要求画出线段 EF (E ,F 均为格点),各画出一条即可.图1:EF 平分BC图2:EF ⊥AC 图3:EF 垂直平分BC21.(本题 8 分)如图,在□OABC 中,以 O 为圆心,OA 为半径的圆与 BC 相切于点 B ,与OC 相交于点 D .(1) 求弧 AD 的度数;(2) 如图,点 E 在⊙O 上,连结 CE 与⊙O 交于点 F .若 EF =AB ,求∠OCE 的度数.EC22.(本题 10 分)如图,在平面直角坐标系中,正六边形 ABCDEF 的对称中心 P 在反比例函数 y = k(k >0,x >0)的图像上,边CD 在 x 轴上,点 B 在 y 轴上,已知CD = 2 。
浙江省金华市2019年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.数4的相反数是()A. B. -4 C. D. 42.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a33.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 84.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=18.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.12.数据3,4,10,7,6的中位数是________.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。
425311352 A4αO浙江省 2019 年初中学业水平考试(金华卷)数学试题卷一.选择题(本题有 10 小题,每小题 3 分,共 30 分) 1.实数 4 的相反数是( )A. - 1 4B.-4C. 14D.42. 计算a 6÷ a 3,正确的结果是()A.2B.3 aC. a 2D. a 3 3. 若长度分别为a ,3,5 的三条线段能组成一个三角形,则a 的值可以是( )A.1B. 2C.3D. 8 4.某地一周前四天每天的最高气温与最低气温 如右表,则这四天中温差最大的是( )A. 星期一B.星期二C.星期三D.星期四5. 一个布袋里装有 2 个红球、3 个黄球和 5 个白球,除颜色外其它都相同. 搅匀后任意摸出一个球,是白.球.的概率为( ) A. 1 2 B. 10C.1 5D.106. 如图是需达屏幕在一次探测中发现的多个目标,其中对目标 A 的位置表述正确的是()A. 在南偏东 75°方向处B. 在 5 km 处C. 在南偏东 15°方向 5 km 处D. 在南偏东 75°方向 5 km 处90°180°0°A Dm270°BC(第 6 题图)(第 8 题图) 7. 用配方法解方程 x 2- 6x - 8 = 0 时,配方结果正确的是()A. (x - 3)2 = 17B. (x - 3)2 = 14C. (x - 6)2 = 44D. (x - 3)2 = 18. 如图,矩形 ABCD 的对角线交于点O ,已知 AB =m ,∠BAC =∠ α ,下列结论错误的是()A. ∠BDC =∠ αB. BC = m ∙ t an αC. AO =m2sin αD. BD =mc o s9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()2GH FEA.2B.C.3D.2AB DAC(第9 题图)(第14 题图)10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM、GN 是折痕,若正方形EFGH 与与变形MCNGF 面积相等,则FM的值GF是()A.5 - 22B.-1C.12D.2D CM①②③④A⑤B二、填空题(本题有6 小题,每小题4 分,共24 分)11.不等式3x - 6≤9 的解是.12.数据3,4,10,7,6 的中位数是.13.当x=1 , y= -1时,代数式x2 + 2xy +y2 的值是3.14.如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪,量角器的0 刻度线AB 对准楼顶时,铅垂线对应的度数是50°,则此时观察楼顶的仰角度数是.15.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,O驽马日行一百五十里,驽马现形一十二日,问良马几何日追及之”,如(日)图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是.16.图2,图3 是某公共汽车双开门的俯视示意图,ME、EF、FN 是门轴的滑动轨道,∠E= ∠F=90°,两门AB、CD 的门轴A、B、C、D 都在滑动轨道上,两门关闭时(图2),A、D分别在E、F 处,门缝忽略不计(即B、C 重合);两门同时开启,A、D 分别沿E→M,F→N 的方向匀速滑动,带动B、C 滑动;B 到达E 时,C 恰好到达F,此时两门完全开启,3 2O已知AB=50 cm ,CD= 40cm .(1)如图3,当∠ABE=30°时,BC= cm .12 ⎨x - 2 y = 1. (2) 在图 1 的基础上,当 A 向 M 方向继续滑动 15 cm 时,四边形 ABCD 的面积为cm 2 .ME (A )F图1图2图3三、解答题(本题有 8 小题,共 66 分,各小题都必须写出解答过程)17.(本题 6 分)计算: -3 - 2 tan 60︒ + + (1) 318.(本题 6 分)解方程组: ⎧3x - 4(x - 2 y ) = 5.⎩19.(本题 6 分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:抽取的学生最喜欢课程内容的扇形统计图 抽取的学生最喜欢课程内容的条形统计图18 15A. 趣味数学 12B. 数学史话 9C. 实验探究 6D. 生活应用 3E. 思想方法(1) 求m , n 的值. (2) 补全条形统计图.(3) 该校共有 1200 名学生,试估计全校最喜欢“数学史话”的学生人数.EA 20%D 30%B mC n-1FODABA CBA CBACB20.(本题 8 分)如图,在 7×6 的方格中,△ABC 的顶点均在格点上.试按要求画出线段 EF (E ,F 均为格点),各画出一条即可.图1:EF 平分BC图2:EF ⊥AC 图3:EF 垂直平分BC21.(本题 8 分)如图,在□OABC 中,以 O 为圆心,OA 为半径的圆与 BC 相切于点 B ,与OC 相交于点 D .(1) 求弧 AD 的度数;(2) 如图,点 E 在⊙O 上,连结 CE 与⊙O 交于点 F .若 EF =AB ,求∠OCE 的度数.EC22.(本题 10 分)如图,在平面直角坐标系中,正六边形 ABCDEF 的对称中心 P 在反比例函数 y = k(k >0,x >0)的图像上,边CD 在 x 轴上,点 B 在 y 轴上,已知CD = 2 。
2019浙江金华
一、选择题(本题有10小题,每小题
3分,共30分)1.实数4的相反数是(
)A .
14B .4C .14D .42.计算63a a ,正确的结果是(
)A .2 B .3a C .2a D .3a
3.若长度分别为a ,3,5的三条线段能组成一个三角形,则a 的值可以是()
A .1
B .2
C .3
D .8 4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是(
)A .星期一B .星期二
C .星期三
D .星期四星期
一二三四最高气温
10℃12℃11℃9℃最低气温3℃0℃2℃
3℃5.一个布袋里装有
2个红球、3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球..的概率为(
)A .1
2B .310C .1
5D .
7106.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标
A 的位置表述正确的是()A .在南偏东75方向处
B .在5km 处
C .在南偏东15方向5km 处
D .在南偏东75方向5km 处
7.用配方法解方程
2680x x 时,配方结果正确的是()A .23
17x B .2314x C .2644x
D .231x 8.如图,矩形ABCD 的对角线交于点
O .已知AB m ,BAC ,则下列结论错误..的是()A .BDC
B .tan B
C m C .2sin m AO
D .cos m BD 第8题图
第9题图9.如图物体由两个圆锥组成,其主视图中,
90A ,105ABC ,若上面圆锥的侧面积为1,则下
面圆锥的侧面积为()α
m O D C B
A
C D
B A A 长度单位:km 5314
24290°180°270°0°531
A .2
B .3
C .3
2D .2
10.将一张正方形纸片按如图步骤,通过折叠得到图①,再沿虚线剪去一个角,展开铺平后得到图⑤,其
中FM ,GN 是折痕.若正方形
EFGH 与五边形MCNGF 的面积相等,则FM GF 的值是()A .5
22B .21C .12D .2
2
二、填空题(本题有6个小题,每小题4分,共24分)
11.不等式369x 的解是.
12.数据3,4,10,7,6的中位数是.
13.当1x ,13y 时,代数式222x xy y 的值是.
14.如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易侧倾仪.量角器的0刻度线AB 对准楼顶时,
铅垂线对应的读数是50,则此时观察楼顶的仰角度数是
.第14题图
第15题图15.元朝朱世杰的《算学启蒙》一书记载:
“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.
”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是.
16.图2、图3是某公共汽车双开门的俯视示意图,
ME ,EF ,FN 是门轴的滑动轨道,90E F ,两门AB ,CD 的门轴A ,B ,C ,D 都在滑动轨道上.两门关闭时(图
2),A ,D 分别在E ,F 处,门缝忽略不计(即B ,C 重合);两门同时开启,A ,D 分别沿E →M ,F →N 的方向匀速滑动;带动
B ,
C 滑动;B 到达E 时,C 恰好到达F ,此时两门完全开启,己知
50cm AB ,40cm CD .(1)如图3,当30ABE 时,BC
cm ;(2)在(1)的基础上,当A 向M 方向继续滑动15cm 时,四边形ABCD 的面积为3
cm .N
M H G E F
D C
B A ⑤③
④②①?
O
B
A
铅锤
t (日)s (里)
O
12
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(本小题6分)计算:1
132tan 60123.
18.(本小题6分)解方程组:3425,
2 1.
x x y x y 19.(本小题6分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,
随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图
(不完整).请根据图中信息回答问题:
(1)求m ,n 的值;
(2)补全条形统计图;
(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.
20.(本小题8分)如图,在76的方格中,ABC △的顶点均在格点上.试按要求画出线段EF
(
E ,
F 均为格点),各画出一条即可.F (D )B(C)E(A)D
F
C B A E N N
M M A.趣味数学B.数学史话
C.
实验探究D.生活应用E.思想方法抽取的学生最喜欢课程内容的条形统计图
抽取的学生最喜欢课程内容的扇形统计图6
0人数(人)
类别
E E C n D 30%B m A 20%9
15
12
D C B A 3
69
121518
21
图1:EF 平分BC .图2:EF AC .图3:EF 垂直平分AB .
21.(本小题8分)如图,在? OABC 中,以O 为圆心,OA 为半径的圆与
BC 相切于点B ,与OC 相交于点D .
(1)求BD 的度数.
(2)如图,点E 在⊙O 上,连结CE 与⊙O 交于点F .若EF AB ,求OCE 的度数.
22.(本小题10分)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数
0,0k
y k x x 的图象上,边CD 在x 轴上,点B 在y 轴上.已知2CD
.(1)点A 是否在该反比例函数的图象上?请说明理由.
(2)若该反比例函数图象与
DE 交于点Q ,求点Q 的横坐标;(3)平移正六边形
ABCDEF ,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移
过程.
C
B A
C B A C
B A
D
E
F
C
B A O
x
y Q O F E D C B A P
23.(本小题10分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA、OC分别在x轴、y
轴的正半轴上.把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线2
2
y x m m的顶点.
(1)当0
m时,求该抛物线下方(包括边界)的好点个数;
(2)当3
m时,求该抛物线上的好点坐标;
(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
y O P
x
A
B
C
24.(本小题12分)如图,在等腰Rt ABC △,90ACB ∠,142AB .点D 、E 分别在AB 、BC 上,
将线段ED 绕点E 按逆时针方向旋转
90得到EF .(1)如图1,若AD BD ,点E 与点C 重合,AF 与DC 相交于点O ,求证:2BD
DO ;(2)已知点G 为AF 的中点;
①如图2,若AD
BD ,2CE ,求DG 的长;②若6AD BD ,是否存在点
E ,使得△DEG 是直角三角形?若存在,求CE 的长;若不存在,试说明理由.
E 图3
F
G C B D A A D B C G F 图2图1F
O
C(E)
B D
A。