初中竞赛圆知识点
- 格式:docx
- 大小:165.44 KB
- 文档页数:6
第18讲 四点共圆……对数学之美的感觉,对数与形之和谐的感觉,对几何学之优雅的感觉。
这是一种所有数学家都深知的真正的美感。
而这就是一种敏感性。
——庞加莱知识方法扫描“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.证明四点共圆常常利用以下一些方法思考:(1) 要证明四点共圆,可证明以这点为顶点的四边形的对角互补,或证某两点视另两点所连线段的视角相等.特别是先设法发现其中以某两点为端点的线段恰为一直径,然后证明其他点对这条线段的视角均为直角;此外若四边形一个外角等于其内对角,则四边形的四顶点共圆.(2) 若两线段AB ,CD 相交于E 点,且AE·EB=CE·ED ,则A ,B ,C ,D 四点共圆;若相交直线PA ,PB 上各有一点C ,D ,且PA·PC=PB·PD ,则A ,B ,C ,D 四点共圆.共圆点问题不但是几何中的重要问题,而且也是直线形和圆之间度量关系或位置关系相互转化的媒介.经典例题解析例1.在锐角△ABC 中,以BC 为直径作圆与BC 边上的高AD 及其延长线交于M ,N 。
以AB 为直径作圆与AB 边上的高CF 及其延长线交于P ,Q 。
求证:M ,P ,N ,Q 四点共圆。
证明 连接BM ,MC ,在Rt △BMC 中,∠BMC =90°,MD ⊥BC ,故BM 2=BD ·BC 。
即 BM =BN =BC BD ⋅,同理 BP =BQ =BA BF ⋅.因为∠AFC =∠ADC =90°,故A ,F ,D ,C 四点共圆。
由割线定理,得 BD ·BC =BF ·BA 。
故BM =BN =BP =BQ 。
于是,M ,N ,P ,Q 四点同在以B 为圆心、BM 为半径的圆上,即M ,N ,P ,Q 四点共圆。
圆竞赛知识点总结圆是我们在数学中常见的一个几何形状,它在数学的各个分支中都有着重要的地位。
在数学竞赛中,圆的知识是必不可少的,它涉及了很多基础的几何知识和运算技巧。
本文将对圆的相关知识进行总结,希望可以对参加数学竞赛的同学有所帮助。
1. 圆的基本概念圆是平面上到一个定点距离等于一个定长的点的全体。
这个定点叫做圆心,这个定长叫做半径。
而圆的直径是穿过圆心的两个点,并且圆的任何一条直径都被分成两个半圆。
2. 圆的基本性质(1)圆的面积和周长圆的面积公式是S=πr^2,其中r是圆的半径。
而圆的周长(也就是圆的边长)公式是C=2πr。
(2)圆的内接四边形和外接四边形圆的内接四边形是指在圆内部的四边形,而外接四边形是指在圆外部的四边形。
圆的内接四边形和外接四边形在数学竞赛中常常需要应用一些性质来进行相关的计算。
3. 圆的相关定理(1)切线与圆的交点圆的切线与圆的交点的性质是数学竞赛中经常考察的问题。
具体来说,如果一个线段与圆只有一个交点,那么这个线段就可以称为是圆的切线。
切线与圆的交点有着很多相关的性质,如切线与切线的交点、切线与半径的交点等。
(2)弦的性质圆上的弦是在圆内部连接两点的线段。
圆的弦有着很多性质,如弦与切线的交点、弦长的计算等。
在数学竞赛中,考察弦的性质是一个很常见的问题。
(3)圆心角和弧度圆心角是指以圆心为顶点的角。
圆心角的角度是以角的顺时针旋转所在的弧长来度量的。
而弧度是用角度的弧长来度量的。
圆心角和弧度在数学竞赛中是比较常见的计算题目。
(4)圆的判定定理圆的判定定理是指给定几个点的时候如何确定一个圆。
这个问题在数学竞赛中也是比较常见的题目。
4. 圆与其他图形的关系(1)圆与三角形的关系圆和三角形有着很多关系,比如三角形内外接圆的性质、三角形内外接圆的圆心位置等。
圆和三角形的关系是数学竞赛中经常考察的内容。
(2)圆与四边形的关系圆和四边形的关系也是数学竞赛的常见题目。
比如四边形内外接圆的性质、四边形内接圆和外接圆的圆心位置等。
初中圆相关知识点总结一、圆的定义与性质1. 圆的定义:在平面上,到一个定点的距离等于定长的点的全体组成的图形就是圆。
2. 圆的元素:圆心、半径。
3. 圆的性质:- 圆心到圆上任意一点的距离都相等。
- 圆上任意一点都与圆心连线构成的线段叫做半径。
- 圆的直径是连接圆上任意两点的线段,且经过圆心,直径是半径的两倍。
- 圆的周长公式:C = 2πr。
- 圆的面积公式:S = πr²。
二、弧、弦和扇形1. 弧的概念:在圆上任意取两点,圆上这两点之间的线段叫做圆的弧。
圆的周长等于圆的周长等于圆的周长等于⚠圆的周长等于圆的周长等于⚠。
2. 弧长公式:L = rθ。
3. 弧度制:弧度制是用圆的半径长作为角的度量单位。
当圆的半径等于1时,所对应的角的弧长就是角的弧度数。
4. 弦的概念:在圆上连接圆上两点的线段叫做圆的弦。
5. 扇形的概念:由圆的两条半径和它们所对应的弧组成的面积叫做扇形,扇形的面积公式为S = (1/2)r²θ。
三、与圆相关的几何问题1. 圆的判定:- 判断一个点是否在圆内:点到圆心的距离小于半径。
- 判断一个点是否在圆上:点到圆心的距离等于半径。
- 判断一个点是否在圆外:点到圆心的距离大于半径。
2. 圆内切四边形:内接四边形的四个顶点都在圆上,与四边形的边刚好相切。
3. 圆的相似:若两个圆之间的半径比相等,则这两个圆是相似的。
4. 圆与直线的位置关系:- 直线和圆相切:直线和圆只有一个公共点。
- 直线和圆相离:直线和圆没有公共点。
- 直线和圆相交:直线和圆有两个公共点。
四、圆相关的解题方法1. 圆的相关计算:包括圆的周长、面积、弧长、扇形面积等的计算。
2. 圆的位置关系题:通过位置关系判断直线、圆、点之间的关系。
3. 圆的判定题:判断点的位置关系,或者通过已知条件判断到底是在圆内、圆上还是圆外。
4. 圆的应用题:包括在实际问题中应用圆相关的知识进行分析和解决问题。
五、圆的相关解题技巧1. 确定圆的相关元素:在解题前,要充分理解题目中涉及到的圆相关元素,包括圆心、半径、直径、弧等。
初中圆知识点总结一、圆的定义圆是指平面上到一个固定点的距离等于定值的所有点的集合。
这个固定点叫做圆心,这个固定值称为半径。
二、圆的元素1. 圆心:圆的中心点2. 半径:连接圆心和圆上任意一点的线段3. 直径:穿过圆心并且两端在圆周上的线段4. 弦:连接圆周上的两个点的线段5. 弦长:弦的长度6. 弧:连接圆周上的两个点的曲线部分7. 弧长:弧的长度8. 圆周:连接圆周上的所有点的曲线9. 圆内切角:在圆内部,以弦为两边的角。
10. 圆外切角:在圆外部,以弦为两边的角。
11. 圆心角:以圆心为顶点的角。
三、圆的性质1. 圆周率:圆周的长度与直径的比值,为圆周率π,大约3.14159。
2. 圆内角等于180度。
3. 圆内切角等于其对应的弧所对的圆周角的一半。
4. 圆周角等于对应的圆心角。
5. 弧长公式:弧长 = 弧度 x 半径6. 弧度公式:弧度 = 弧长 / 半径7. 圆心角与对应的弧度的关系:圆心角 = 弧度x 180°/π8. 弧度与角度转换公式:弧度 = 角度x π/180°, 角度 = 弧度x 180°/π9. 一个圆的面积等于π乘以半径的平方。
四、圆的相关定理1. 同位角定理:位于同一个圆的两条相交弦上的两对角互为对顶角。
2. 相交弦定理:相交弦所截的弧在他们的对应边上互相等于的。
3. 切线定理:切线与圆在切点处垂直。
4. 切线定理:切线与半径的夹角是直角。
5. 切线定理:切线长度等于切点到圆心的距离。
五、圆的常见问题1. 已知圆心和一点,求圆的方程。
2. 已知圆心和半径,求圆的方程。
3. 已知圆上的点与圆心的位置关系,求圆的方程。
4. 已知圆上的两点,求圆的方程。
5. 求圆的切点。
6. 求圆的切线方程。
7. 求圆的面积和周长。
8. 求圆内切四边形的面积。
9. 求圆的弧长和扇形面积。
以上就是关于圆的知识点总结,希望对大家的学习和理解有所帮助。
初中数学竞赛辅导讲义---辅助圆在处理平面几何中的许多问题时,常需要借助于圆的性质,问题才得以解决.而我们需要的圆并不存在(有时题设中没有涉及圆;有时虽然题设涉及圆,但是此圆并不是我们需要用的圆),这就需要我们利用已知条件,借助图形把需要的实际存在的圆找出来,添补辅助圆的常见方法有:1.利用圆的定义添补辅助圆;2.作三角形的外接圆;3.运用四点共圆的判定方法:(1)若一个四边形的一组对角互补,则它的四个顶点共圆.(2)同底同侧张等角的三角形,各顶点共圆.(3)若四边形ABCD的对角线相交于P,且PA·PC=PB·PD,则它的四个顶点共圆.(4)若四边形ABCD的一组对边AB、DC的延长线相交于P,且PA·PB=PC·PD,则它的四个顶点共圆.【例题求解】【例1】如图,直线AB和AC与⊙O分别相切于B、C,P为圆上一点,P到AB、AC的距离分别为4cm、6cm,那么P到BC的距离为.思路点拨连DF,EF,寻找PD、PE、PF之间的关系,证明△PDF∽△PFE,而发现P、D、B、F与P、E、C、F分别共圆,突破角是解题的关键.注:圆具有丰富的性质:(1)圆的对称性;(2)等圆或同圆中不同名称量的转化;(3)与圆相关的角;(4)圆中比例线段.适当发现并添出辅助圆,就为圆的丰富性质的运用创造了条件,由于图形的复杂性,有时在图中并不需画出圆,可谓“图中无圆,心中有圆”.【例2】如图,若PA=PB,∠APB=2∠ACB,AC与PB交于点P,且PB=4,PD=3,则AD·DC等于( )A.6 B.7 C.12 D.16思路点拨作出以P点为圆心、PA长为半径的圆,为相交弦定理的应用创设了条件.注:到一个定点等距离的几个点在同一个圆上,这是利用圆的定义添辅助圆的最基本方法.【例3】如图,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,求证:△ABC的外心O与A,P,Q四点共圆.思路点拨先作出△ABC的外心O,连PO、OQ,将问题转化为证明角相等.【例4】 如图,P 是⊙O 外一点,PA 切⊙O 于A ,PBC 是⊙O 的割线,AD ⊥PO 于D .求证:CD PC PD PB .思路点拨 因所证比例线段不是对应边,故不能通过判定△PBD 与△PCD 相似证明.PA 2=PD ·PO=PB ·PC ,B 、C 、O 、D 共圆,这样连OB ,就得多对相似三角形,以此达到证明的目的.注:四点共圆既是一类问题,又是平面几何中一个重要的证明方法,它和证明三角形全等和相似三角形有着同等重要的地位,这是因为,某四点共圆,不但与这四点相联系的条件集中或转移,而且可直接运.用圆的性质为解题服务.【例5】如图,在△ABC 中,高BE 、CF 相交于H ,且∠BHC=135°,G 为△ABC 内的一点,且GB=GC ,∠BGC =3∠A ,连结HG ,求证:HG 平分∠BHF .思路点拨 经计算可得∠A=45°,△ABE ,△BFH 皆为等腰直角三角形,只需证∠GHB=∠GHF=22.5°.由∠BGC=3∠A=135°=∠GHC ,得B 、G 、H 、C 四点共圆,运用圆中角转化灵活的特点证明.注:许多直线形问题借助辅助圆,常能降低问题的难度,使问题获得简解、巧解或新解.学力训练1.如图,正方形ABCD 的中心为O ,面积为1989cm 2,P 为正方形内一点,且∠OPB=45°,PA :PB=5:14,则PB 的长为 .2.如图,在△ABC 中,AB=AC=2,BC 边上有100个不同的点P l 、P 2,…P 100,记C P BP AP m i i i i ⋅+=2(i=1,2,…100),则10021m m m +++Λ= .3.设△ABC 三边上的高分别为AD 、BE 、CF ,且其垂心H 不与任一顶点重合,则由点A 、B 、C 、D 、E 、F 、H 中某四点可以确定的圆共有( )A .3个B .4个C .5个D .6个4.如图,已知OA=OB=OC ,且∠AOB=k ∠BOC ,则∠ACB 是∠BAC 的( )A .k 21倍 B .是k 倍 C .k 2 D .k1 5.如图,在等腰梯形ABCD 中,AB ∥CD ,AB=998,CD=1001,AD=1999,点P 在线段AD 上,满足条件的∠BPC=90°的点P 的个数为( )A .0B .1C .2 1D .不小于3的整数6.如图,AD 、BE 是锐角三角形的两条高,S △ABC = 18,S △DEC =2,则COSC 等于( )A .3B .31C . 32D .43 7.如图;已知H 是△ABC 三条高的交点,连结DF ,DE ,EF ,求证:H 是△DEF 的内心.8.如图,已知△ABC 中,AH 是高,AT 是角平分线,且TD ⊥AB ,TE ⊥AC .求证:(1)∠AHD=∠AHE ;(2)CECH BD BH =9.如图,已知在凸四边形ABCDE 中,∠BAE=3α,BC=CD=DE ,且∠BCD=∠CDE=α2180-ο.求证:∠BAC=∠CAD=∠DAK ,10.如图,P 是⊙O 外一点,PA 和PB 是⊙O 的切线,A ,B 为切点,P O 与AB 交于点M ,过M 任作⊙O 的弦CD .求证:∠CPO=∠DPO .11.如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线PAB ,交⊙O A 、B 两点,与ST 交于点C .求证:)11(211PBPA PC +=参考答案。
初中数学竞赛知识点整理初中数学竞赛是培养学生数学思维能力和解题能力的重要途径之一。
为了在竞赛中取得好成绩,学生们必须掌握并熟练运用一些关键的数学知识点。
下面,我将为大家整理一些常见的初中数学竞赛知识点,帮助大家更好的备战比赛。
一、代数与方程1. 等式的性质与运算:包括等式的基本性质、等式的加减乘除运算、消元法等。
2. 一元一次方程与方程的应用:包括一元一次方程的基本概念、解一元一次方程的方法、方程在实际问题中的应用等。
3. 整式与分式的乘法:包括整式乘以整式、整式乘以分式、分式乘以分式等运算。
4. 分式方程与不等式:包括分式方程的基本概念、解分式方程的方法、分式不等式的基本性质及解法等。
二、几何与图形1. 平面几何基础知识:包括平行线与相交线、三角形的特殊定理与性质、相似三角形及其应用等。
2. 长方体与正方体:包括长方体与正方体的基本概念、表面积与体积的计算等。
3. 圆与圆的性质:包括圆的基本概念、圆的面积与周长计算等。
4. 空间几何基础知识:包括空间图形的基本概念、球的表面积与体积的计算等。
三、概率与统计1. 概率基础知识:包括随机事件与样本空间、概率的计算方法等。
2. 排列与组合:包括排列的基本概念、排列与组合的计算公式等。
3. 统计与数据分析:包括数据的收集与整理、频率分布表与统计图、平均数与中位数的计算等。
四、函数1. 函数的基本概念与性质:包括函数的定义域与值域、函数的图像与性质等。
2. 一次函数与二次函数:包括一次函数与二次函数的基本概念、图像、性质等。
3. 函数的应用:包括函数在实际问题中的应用,如函数模型求解问题等。
五、立体几何1. 立体几何基本概念:包括多面体的基本概念、正多面体的特性等。
2. 空间坐标系与空间向量:包括空间坐标系的建立及利用、空间向量的运算、空间平面的方程等。
3. 空间几何基本定理:包括空间图形的投影、直线与平面的位置关系等。
以上仅列举了一些常见的初中数学竞赛知识点,希望对大家备战数学竞赛有所帮助。
联赛题型解读之六圆联赛和高中联赛二试几何题难度在不断降低可以看出,难度虽然降低,考察学生的知识点和几何能力却愈加清晰而明确。
下面我们通过统计近 15 年初中数学联赛中圆的分值,帮助大家更好的了解圆这个模块的考察比重和题型分布。
近15年"圆"考察分值5045 40 35 30 25 20 15 10 5总体来看每年都会考察1到2 道圆的题目,而且整体趋势是在二试大题中对圆进行考察,所以大家需要思考如何去攻克二试中的圆几何题。
关系,可以隐身极多的问题,但是大问题是由小的知识点堆砌起来的,一切都需要回到知识本质。
我们这里先将圆内的一些知识,以及一些简单的结论进行梳理。
1. 垂径定理四大元素:直径,弦中点,优弧中点,劣弧中点。
393225 25252520141477777OBO2. 圆周角与圆心角同弧所对圆周角相等;半圆所对圆周角为直角;圆内接四边形对角互补,外角等于不相邻的内角;DBC3. 切线第三幅图中, ∠ACO = ∠BCD性质与判断;弦切角;切线长定理;内切圆B直角三角形的内切圆半径: r =a +b - c24. 圆与圆:三条线:公共弦;公切线;连心线;五种位置关系:包含,内切,相交,外切,外离P∠CPD =∠O 1FO 1=90°圆与圆的问题中有以下几个结论经常用到:三个图中都有 AB ∥ CD ,第一幅图中∠AQD 为定值 5. 圆幂定理相交弦;切割线;图中: QA ⋅ QB = QC ⋅ QD = R 2 - OQ 2 , PE 2 = PA ⋅ PD = PB ⋅ PC = PO 2 - R 2PDA 3 4 6B6. 四点共圆判定;辅助圆;(1) 与角相关的判定12C∠1=∠2;∠3+∠4=180°;∠5=∠6 则A 、B 、C 、D 共圆。
(2) 与线段相关的判定PA∙PB=PC∙PD(3) 角与边CAB=AD,∠ACB=∠ACD7. 托勒密定理圆内接四边形有: AB ⋅ CD + BC ⋅ DA = AC ⋅ BD .三、联赛中圆的考察方式让我们看看近20 年联赛中,对圆的知识和题型考察。
初中数学竞赛辅导讲义---圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC 交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB 与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则: (1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ; (4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.学力训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . (2003年上海市中考题)3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ;(2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( )A .2B .221+C .231+D .231+6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( )A .5B .52C .52+D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( )A .1B .2C .3D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A.一定内切B.一定外切C.相交D.内切或外切9.如图,⊙O l和⊙O2内切于点P,过点P的直线交⊙O l于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.(1)求证:PC平分∠APD;(2)求证:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的长.10.如图,已知⊙O l和⊙O2外切于A,BC是⊙O l和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O l于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙O l的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D.1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆B有外接圆无内切圆C.既有内切圆,也有外接圆D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案。
初中圆的知识点归纳总结初中圆的知识点归纳总结圆是初中数学中的重要内容之一,它具有很多独特的性质和特点。
在初中学习阶段,学生需要掌握与圆相关的基本定义、性质和定理,以及运用这些知识解决各种与圆相关的问题。
本文将对初中圆的知识点进行归纳总结,旨在帮助学生更好地理解和掌握这一知识。
一、基本概念1. 圆:由平面上所有到一个固定点的距离等于定值的点所组成的图形称为圆。
固定点称为圆心,距离称为半径。
2. 弧:在圆上取两个点A和B,在圆上从点A到点B所经过的部分称为弧。
弧上的任意一点都与圆心有相等的距离。
3. 弦:在圆上取两个点A和B,在圆上连接点A和点B的线段称为弦。
4. 垂径:从圆心引垂直于弦的线段称为垂径。
5. 切线:与圆只有一个交点的直线称为切线,切线与半径垂直。
二、性质和定理1. 圆的性质:(1)圆上的任意弧都小于圆的周长,并且圆上的任意弧所对应的圆心角是不变的。
(2)圆的直径是圆上的最长弦,并且等于2倍的半径。
(3)圆的半径相等。
(4)在同一个圆中,圆心角相等的弧也是相等的。
2. 圆的定理:(1)圆的内角和定理:在圆上的任意三角形中,三个内角的和等于180°。
(2)圆的切线定理:如果直线在圆上切割出的弦垂直于该直线,那么直线就是圆的切线。
(3)切线定理:如果直线与圆相交,且过交点引圆心连线,则圆心连线垂直于直线。
(4)弧、弦和角的关系:在圆上,相等的弧所对应的圆心角和弦所对应的外角相等。
三、圆的相关计算1. 周长:圆的周长等于2πr,其中r表示半径。
2. 面积:圆的面积等于πr²,其中r表示半径。
3. 弧长和扇形面积:弧长等于弧所对应的圆心角除以360°再乘以圆的周长;扇形面积等于扇形所对应的圆心角除以360°再乘以圆的面积。
四、几何证明1. 同弧所对的圆心角相等证明:假设在圆上有两条弦AB和CD,且弦AB和CD所对应的圆心角相等,证明AD与BC平行。
2. 弦割定理证明:假设在圆上有两条弦AB和CD,且弦AB和CD相交于点E,证明AE×EB=CE×ED。
圆中竞赛定理大全
1. 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
2. 圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
3. 切线判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
4. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
5. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。
6. 相交弦定理:弦与直径垂直相交,则弦被直径分成的两段之积等于直径与弦交点的积。
7. 割线定理:从圆外一点引圆的两条割线,这一点到割线与圆交点的两条线段之积等于这一点到圆心的距离与圆的半径的乘积。
8. 射影定理:圆心到直线的距离等于从直线所作的圆的切线长与半径之比。
9. 弦心距定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;在同圆或等圆中,如果两个圆心角、两条弦或两条弦心距中有一条相对应相等,那么这两个圆心角、两条弦或两条弦心距所对应的其余各条也相等。
圆的基本性质知识定位圆在初中几何或者竞赛中占据非常大的地位,它的有关知识如圆与正多边形的关系,圆心角、三角形外接圆、弧、弦、弦心距间的关系,垂径定理是今后我们学习综合题目的重要基础。
圆的基本性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中圆相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、圆的定义:(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.⊙”,(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O读作“圆O”。
(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.2、弦和弧:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B弧AB.(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3、垂径定理:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.4、圆心角和圆周角:(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.(3)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(4)圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.5、正多边形:各边相等,各角也相等的多边形是正多边形。
初中圆必考知识点总结一、基本概念圆是平面内的一个点到另一个点的距离恒等于一个定值的点的集合,这个定值就是圆的半径。
圆的直径是圆上任意两点间的最长的距禬所以直径的长度是半径的两倍。
二、圆的元素1. 圆心:圆的中心点2. 圆周:圆心周围的一条完整的线3. 圆弧:圆周上的一段弧线4. 弦:连接圆上的任意两点的线段三、圆的性质1. 圆周上的任意一点到圆心的距离都是相等的,等于圆的半径。
2. 圆周上的任意一点和另外一点之间的弧长与圆周上的圆心角之间有着相同的比例关系。
四、圆的相关定理1. 圆的直径定理:直径是一个圆上的最长的线段,且直径的长度是半径的两倍。
2. 圆心角定理:同一个圆的圆弧的圆心角相等。
3. 弧长定理:同一个圆的两个圆心角相等的圆弧所对应的弧长相等。
4. 弧与角的关系:同一个圆的圆心角与其所对应的圆弧的关系满足角度与弧长之间的比例关系。
五、圆的相关公式1. 圆的周长公式:圆的周长等于直径乘以π(C=π*d)2. 圆的面积公式:圆的面积等于半径的平方乘以π(A=π*r^2)3. 弧长的计算:若知道圆的半径和圆心角的大小,则可以通过弧长公式计算出圆周上任意弧的长度。
六、圆与角的关系1. 圆心角:连接圆上两点的线段与半径构成的角度叫做圆心角。
2. 弦切角:切割圆的弦和切线所构成的角度。
3. 弦弧角:连接圆周上的两点与弦所构成的角度。
七、圆与直线的关系1. 切线:与圆相切且只有一个交点的直线。
2. 正切线:与圆相切且切点是圆外部的直线。
3. 角切线:与圆相切且切点是圆内部的直线。
八、圆的应用1. 圆的图形应用:常见的有钟表,车轮等、2. 圆的几何应用:定点转动的电动机、环体积的计算、圆形操场的设计等以上是初中圆必考知识点的总结,掌握这些知识将对学生在初中数学学习中有很大的帮助。
初中圆的知识点归纳总结:
1. 圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
2. 圆的性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆有无数条对称轴。
3. 圆的半径:连接圆心到圆上任意一点的线段叫做圆的半径,用字母r表示。
4. 圆的直径:通过圆心且两个端点都在圆周上的线段叫做圆的直径,用字母d 表示。
5. 圆直径与半径的关系:在同圆或等圆中,直径的长度是半径的2倍,半径的长度是直径的1/2。
6. 圆心角:顶点在圆心上的角叫做圆心角,圆心角的大小与所对的弧长有关。
7. 弧长与扇形面积:在同圆或等圆中,弧长与扇形面积成正比关系。
8. 圆的周长:圆的周长等于2πr,其中r为圆的半径。
9. 圆的面积:圆的面积等于πr²,其中r为圆的半径。
10. 直线与圆的位置关系:直线与圆有三种位置关系,分别是相交、相切和相离。
11. 切线与切线长:过圆外一点作圆的切线,这一点到切点的线段叫做切线,圆的切线长度叫做切线的长度。
12. 正多边形与圆的关系:正多边形的外接圆直径叫做正多边形的直径,正多边形的内切圆直径叫做正多边形的半径。
13. 弧长公式:弧长公式可以用来计算弧长,其公式为L = nπr/180,其中n 为扇形的圆心角度数,r为扇形的半径。
14. 扇形面积公式:扇形面积公式可以用来计算扇形面积,其公式为S =
nπr²/360,其中n为扇形的圆心角度数,r为扇形的半径。
15. 圆的切线定理:圆的切线定理指出,圆的切线垂直于经过切点的半径。
最新最全的初中圆的知识点归纳初中圆的知识点归纳如下:1.定义和性质:-圆是平面内与给定点(圆心)距离相等的一组点的集合。
-圆心:与圆上任意一点相连的线段的中点。
-半径:圆心到圆上任意一点的线段。
-直径:通过圆心的两个端点的线段。
-弦:圆上的任意一条线段,且两个端点在圆上。
-弧:圆上的一段部分,由两个端点和弦组成。
2.圆的角度关系:-弦切角:圆上的弦与圆上的切线所成的角,其大小等于其所对的弧所对的圆心角。
-弦心角:以弦为对边的角,其大小等于所对的弧所对的圆心角的一半。
-圆内接角:对于圆上的三个点A、B、C,若点C在弧AB的一侧,则角ACB叫做圆内接角。
-圆内切角:对于圆上的三个点A、B、C,若点C在弦AB的一侧,则角ACB叫做圆内切角。
3.圆的相交现象:-相切:两个圆的圆心之间的距离等于两个圆半径之和。
-外切:两个圆的圆心之间的距离等于两个圆半径之差。
-内切:一个圆的圆心在另一个圆内部,且两个圆的圆心之间的距离等于两个圆半径之差。
-相离:两个圆的圆心之间的距离大于两个圆半径之和。
4.圆的性质:-弧长公式:圆的弧长等于圆心角的弧度数除以360°再乘以圆的周长。
-弦长公式:圆上一条弦等于两倍的半径乘以正弦角度的一半。
-切线和半径的关系:一条切线与半径的交点是切点,切线与半径的夹角为直角。
-切线定理:半径与切点连线的垂直平分线也是切线。
-相交弦定理:两条相交的弦,其所夹的弧相等。
5.圆的相关计算:-圆的面积:半径乘以半径再乘以π。
-扇形的面积:圆心角的弧度数除以360°再乘以圆的面积。
-弓形的面积:扇形的面积减去扇形弧所对的三角形的面积。
以上是初中圆的知识点的主要内容,了解这些知识点可以帮助学生理解圆的相关概念,掌握圆的性质和相交关系,并能进行相关计算。
这些知识点对于初中数学的学习和应用都具有一定的重要性。
圆的全部知识点总结初中一、基本概念圆是平面上的一个几何图形,由平面上离一个固定点距离不超过一定值的所有点组成。
这个固定点称为圆心,这个固定距离称为半径。
圆的边界叫做圆周,两个半径的端点连线叫做直径。
圆的基本元素包括圆心、半径、圆周、直径。
二、圆的性质1. 圆的半径相等在同一个圆中,所有的半径都相等,这是圆的基本性质之一。
2. 圆的周长和面积圆的周长和面积是圆的重要属性。
圆的周长可以通过公式C=2πr进行计算,其中r为半径,π为圆周率。
圆的面积可以通过公式A=πr^2进行计算。
3. 弧和角圆的圆周可以被分成若干个弧,当弧的长度正好等于半径时,这个角称为圆心角。
圆周上的任意一点和圆心之间的连线称为弧,圆周上的弧相对于圆心的角称为弧度。
4. 圆心角的性质在同一个圆中,圆心角的度数是弧长半径的两倍。
即圆心角的度数等于以这个角所对应的弧长所对应的圆心角的弧长的两倍。
5. 弧长和扇形面积弧是圆周的一部分,它的长度可以通过公式L=2πr×(α/360)进行计算,其中α为对应的圆心角的度数。
扇形是圆心角对应的部分,它的面积可以通过公式S=πr^2×(α/360)进行计算。
6. 相交圆的性质当两个圆相交时,它们的交点可以构成两个弧和四个圆心角,根据圆的性质可以得到诸多推论。
7. 圆与直线的关系圆与直线的关系包括内切、外切、相交、相离等情况,而且这些关系会受到垂直角、周角、对顶角等角的影响。
8. 圆的应用圆是几何学中最基本的图形之一,它在生活中有着广泛的应用。
例如,圆形的轮子、钟表、铁路、汽车轨道等都离不开圆的几何原理。
三、常见的圆的定理1. 切线定理当直线与圆相切时,切线与圆的切点之间的连线垂直于半径。
2. 圆的对称性圆具有各种对称性,包括中心对称、轴对称等。
3. 圆心角和弧的关系圆心角和其所对应的弧的关系是两者之间的重要性质,可以帮助解决各种与圆相关的题目。
四、圆的相关解题技巧1. 圆的基本计算掌握圆的周长和面积的计算公式是解题的基础。
九年级圆的常考知识点总结圆是我们日常生活中经常遇到的几何对象之一,也是数学中非常重要的一个概念。
在九年级的几何学习中,圆的相关知识点常常被考察。
下面,我将总结一些九年级圆的常考知识点,帮助大家更好地理解和掌握。
一、圆的定义与性质圆是平面上到一定距离的点的集合,这个固定距离称作圆的半径。
根据圆的定义,我们可以得出一些重要的性质:1. 圆心和半径:圆心是到圆上任意一点的距离相等的点,半径则是圆心到圆上任意一点的距离。
根据这一性质,我们可以得到等半径的圆是同心圆,同心圆的圆心是重合的。
2. 直径与半径:直径是通过圆心的一条线段,且两个端点都在圆上。
直径与半径之间有一个简单的关系:直径的长度等于半径的两倍。
3. 弧与弦:圆上两点之间的线段称为弦,而弧则是圆上两点之间的弧段。
一个弧对应一个弦,一个弦对应一个弧。
需要注意的是,对于同一条弧来说,不同的弦对应不同的拱长。
二、圆的角度与弧度1. 圆周角:以圆心为顶点的角称为圆周角,其对应的圆周称为全角。
在圆周角中,如果其度数为360度,则与之对应的全角是整个圆周。
2. 弧度制:弧度是一个用于衡量角度的单位,弧度制也是描述角度的重要方法之一。
一圆周等于2π弧度,即360度约等于6.28弧度。
弧度与度数之间的换算关系是π弧度=180度。
三、圆的内切与外接1. 内切与外切圆:如果一个圆与一个三角形的三条边都相切,那么这个圆就是这个三角形的内切圆。
类似地,如果一个圆与一个三角形的三条边的延长线都相切,那么这个圆就是这个三角形的外接圆。
2. 欧拉公式:对于任何一个三角形,其外心、内心和重心三点共线,且它们的连线互相垂直并且交于一点,这一点称为费马点。
欧拉公式指出,三角形的外心、内心和重心这三个点的连线长度之间有一定的关系。
四、圆的面积与周长1. 面积:圆的面积公式是S=πr²,其中S表示圆的面积,r表示圆的半径。
圆的面积是它的半径的平方乘以π。
需要注意的是,圆的面积没有单位,因为π是一个常数。
初中数学竞赛辅导讲义---圆的基本性质到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.熟悉如下基本图形、基本结论:【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论.思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.⌒ ⌒ ⌒ ⌒注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形.4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB=.11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB×AC .⌒ ⌒ ⌒17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒参考答案。