第3节 遗传密码的破译(选学)
- 格式:doc
- 大小:504.00 KB
- 文档页数:15
遗传密码的破译素材阅读一、历史的步伐1、1866年,孟德尔提出遗传定律。
2、1883年,科学家发现马蛔虫配中的染色体数目只有体细胞中的一半。
3、1890年,科学家确认了减数分裂产生配子。
4、1891年,科学家描述了减数分裂的全过程。
5、1902年,鲍维丰(T.Boveri)和1903年萨顿(W.Sutton)在研究减数分裂时,发现遗传因子的行为与染色体行为呈平行关系,提出染色体是遗传因子载体,可说是染色体遗传学说的初步论证。
6、1909年的约翰逊(W.Johannsen)称孟德尔假定的“遗传因子”为“基因”,并明确区别基因型和表型。
7、1909年,詹森斯(F.A.Janssen)观察到染色体在减数分裂时呈交叉现象,为解释基因连锁现象提供了基础。
8、1909年,摩尔根(T.H.Morgan,1866-1945)开始对果蝇迸行实验遗传学研究,发现了伴性遗传的规律。
他和他的学生还发现了连锁、交换和不分离规律等。
并进一步证明基因在染色体上呈直线排列,从而发展了染色体遗传学说。
1926年摩尔根提出基因学说,发表《基因论》。
9、20世纪中叶,科学家发现染色体主要是由蛋白质和DNA组成的。
10、1928年格里菲思的肺炎双球菌实验。
11、1940年艾弗里用纯化因子研究肺炎双球菌的转化的实验。
12、1941年提出了一个基因一种酶的假说。
一个基因一种酶假说暗示了基因的作用是指导蛋白质分子的最后构型,从而决定其特异性。
13、1944年,理论物理学家薛定谔发表的《什么是生命》一书中就大胆地预言,遗传物质是一种信息分子,可能类似作为一般民用的莫尔斯电码的两个符号:“·”、“—”,通过排列组合来储存遗传信息。
14、1952年赫尔希和蔡斯的T2噬菌体侵染大肠杆菌的实验。
确认DNA是遗传物质。
15、1953年,沃森和克里克发现DNA双螺旋结构。
16、1957年提出一个中心法则:遗传信息可以从DNA流向DNA,也可以从DNA 流向RNA,进而流向蛋白质。
《遗传密码的破译(选学)》教学设计方案(第一课时)一、教学目标1. 知识目标:学生能够理解并描述基因、密码子和终止子等基本概念。
2. 能力目标:学生能够通过实验分析,推断遗传密码的具体含义和作用。
3. 情感目标:培养学生的科学探索精神,提高团队协作和沟通能力。
二、教学重难点1. 教学重点:讲解遗传密码的基本概念和作用,通过实验分析破译遗传密码。
2. 教学难点:如何引导学生正确理解遗传密码的含义及其在生物体内的具体应用。
三、教学准备1. 准备相关的教学PPT和实验器材。
2. 安排学生进行小组实验,要求学生认真观察和分析实验结果。
3. 提前布置阅读相关文献的作业,以便在课堂中进行讨论和交流。
4. 准备一些相关视频和图片,以增加学生对遗传密码的感性认识。
四、教学过程:(一)导入新课1. 介绍密码子的概念。
引用一些关于基因工程、基因治疗、人类基因组计划等的研究实例,引导学生思考密码子的意义和重要性。
2. 引导学生回忆必修三单元的相关内容,对遗传学中的遗传信息和遗传密码有初步的认识。
(二)学习目标1. 了解密码子的概念。
2. 理解并掌握遗传密码的基本内容,包括种类、特征、影响等。
3. 理解并掌握遗传密码与生物多样性的关系。
(三)探究活动1. 学生分组讨论,尝试用自己的话解释密码子的概念和作用。
2. 通过小组合作,探讨不同物种中遗传密码的特点和差异性。
3. 分析遗传密码与生物多样性之间的关系。
(四)精讲点拨1. 详细讲解密码子的概念和作用,结合一些生动的案例,使学生更深入地理解密码子的意义。
2. 讲解遗传密码的基本内容,包括种类、特征、影响等,并引导学生思考遗传密码与生物多样性的关系。
3. 针对探究活动中的问题,进行重点讲解和引导,帮助学生深入理解遗传密码的内涵和意义。
(五)课堂小结1. 回顾本节课的主要内容,包括密码子的概念、遗传密码的基本内容、与生物多样性的关系等。
2. 强调遗传密码在生物科学中的重要性和应用前景。
4.3 遗传密码的破译(选学)一、教学目标1.知识目标:(1)说出遗传密码的阅读方式;(2)说出遗传密码的破译过程。
2.能力目标:(1)运用已有的知识和经验提出假说;(2)运用证据和逻辑分析实验现象,得出结论;(3)尝试设计破译遗传密码的实验;(4)能够在今后的学习过程中合理运用科学研究的一般方法。
3.情感目标:(1)体验遗传密码破译的过程,感受科学知识发现过程的艰辛和漫长;(2)对科学家那种敏锐、大胆、睿智和创新的精神还有那种巧妙的构思表达敬佩;(3)认同遗传密码的破译对生物学发展的重要意义。
二、教学的重点和难点重点:遗传密码的破译过程;难点:尼伦伯格和马太设计的蛋白质体外合成实验。
三、对课程内容和学生的分析:1.教材分析:本节是人教版高中生物必修2《遗传与进化》第4章《基因表达》第3节的内容,在教材中属于选学内容。
是为了满足学生多样化的需求而设计的;面向基础较好、学有余力的学生;同时该内容蕴含丰富的生物科学史探究素材,适合学生进行探究性学习。
这节课的主要内容是遗传密码的破译过程,是本章第一节的重要补充。
而且遗传密码的特点是进一步理解基因突变的类型和基因工程部分的理论基础。
2.学情分析学生在本章第1节中已经学习了遗传密码,对遗传密码的位置、组成和作用有了清楚的认识,为学生进一步认识和理解遗传密码的破译创造了条件。
学生对科学探究的一般过程的理解程度,将是学习蛋白质体外合成试验设计思想时遇到的最主要的影响因素。
学生在学习过程中除了采用个体学习的方法外,在问题面前可能会采取小组讨论的合作性方式进行讨论学习。
四、教学策略以再现遗传密码破译的生物科学史做为课堂教学活动的背景,以设置问题的方法引导学生学习,以解决问题为主线,采用个体学习与合作学习相结合的教学策略展开教学活动,同时也体现了假说演绎推理的方法。
主要教具:多媒体课件、黑板、粉笔。
课型:新授课课时:一课时五、教学过程:导言:在第一节我们学习了遗传密码,知道了mRNA上决定1个氨基酸的3个相邻碱基叫1个密码子,同时科学家将64个遗传密码子编制出一个密码子表(显示密码子表)。
第四章基因的表达第3节遗传密码的破译(选学)教案教学目标1、说出遗传密码的阅读方式。
2、说出遗传密码的破译过程。
教学重点:遗传密码的破译过程。
教学难点:尼伦伯格和马太设计的蛋白质体外合成实验。
教学方法:直观教学法。
教学过程导入:1944年奥地利物理学家薛定谔就在他的《生命是什么》一书中,最早提出了遗传密码的设想。
他猜想染色体中的有机单体严格、精确地排列,构成了遗传密码。
遗传密码决定了生物的遗传性状。
这个大胆的猜想,吸引了一批优秀的科学家投身到生命科学的研究中,去破译遗传密码。
[问题探讨]展示教材P73莫尔斯密码表及相关问题,学生回答:译成英文为:Where are genes lo cated. 用莫尔斯密码回答为—··/—·/·基因位于DNA上。
自1953年DNA双螺旋结构模型提出以后,科学家就围绕遗传密码的破译展开了全方位的探索。
一、遗传密码的阅读方式1954年科普作家伽莫夫对破译密码首先提出了挑战。
他设想:若一种碱基与一个氨基酸对应的话,那么只可能产生4种氨基酸,而已知天然的氨基酸有20种,因此不可由一个碱基编码一种氨基酸;若2个碱基编码一种氨基酸的话,4种碱基共有42=16种,也不足以编码20种氨基酸;因此他认为3个碱基,编码一种氨基酸。
伽莫夫用数学的排列组合的方法在理论上作出推测的,后来的实验证实这一推测是完全正确的。
接下来,人们不禁又要问在三联体中的每个碱基作为信息只读一次还是重复阅读呢?以重叠和非重叠方式阅读DNA序列会有什么不同呢?呈现教材P74图片。
[思考与讨论]1、学生回答:如密码子是非重叠的可能影响1个氨基酸,如是重叠的,可能影响3个氨基酸。
2、学生回答:插入1个A,非重叠将会影响后面所有的氨基酸。
插入2个碱基,非重叠则影响后面所有的氨基酸。
插入3个碱基,非重叠将会在原氨基酸序列中多一个氨基酸;插入1个A,重叠将会影响3个氨基酸,多肽比原来正常多肽多1个氨基酸。
第4章第3节 遗传密码的破译〖学习目标〗1、说出遗传密码的阅读方式。
2.说出遗传密码的破译过程。
〖使用说明及学法指导〗课前自行完成预习内容和预习自测,探究案,我们在课堂上会进行讨论,当堂检测是你们在课内最后5分钟要完成的。
〖预习自测〗一、知识梳理1.克里克是第一个用实验证明 ,同时实验还表明:遗传密码从一个固定的起点开始,以 ,编码之间没有 。
2.两个名不见经传的年轻人 破译了第一个遗传密码,苯丙氨酸对应的密码子是 。
二、知识点拔1.遗传信息和遗传密码的比较遗传信息是指基因中的脱氧核苷酸的排列顺序,遗传密码是指mRNA 中的碱基排列顺序,其中决定一个氨基酸的三个相邻的碱基叫一个密码子。
2.遗传密码的特点:①.不间断性:mRNA 的三联体密码是连续排列的,相邻密码之间无核苷酸间隔。
所以若在某基因编码区(能指导蛋白质合成的区域)的DNA 序列或mRNA 中间插入或删除1—2个核苷酸,则其后的三联体组合方式都会改变,不能合成正常的蛋白质。
②.不重叠性:对于特定的三联体密码而言,其中的每个核苷酸都具有不重叠性。
例如如果RNA 分子UCAGACUGC 的密码解读顺序为:UCA 、GAC 、UGC,则它不可以同时解读为:UCA 、CAG 、AGA 、GAC ……等.不重叠性使密码解读简单而准确无误.并且,当一个核苷酸被异常核苷酸取代时,不会在肽链中影响到多个氨基酸.③.简并性:绝大多数氨基酸具有2个以上不同的密码子,这一现象称做简并性,编码相同氨基酸的密码子称同义密码子。
由于兼并性,某些DNA 碱基变化不会引起相应蛋白质的氨基酸序列改变。
④.通用性:除线粒体的个别密码外,生物界通用一套遗传密码,细菌、动物和植物等不同物种之间, 蛋白质合成机制及其mRNA 都是可以互换的。
例如,真核生物的基因可以在原核生物中表达,反之亦然。
⑤.起始密码与终止密码: UAG 、UAA 、UGA 为终止码,它们不为任何氨基酸编码,而代表蛋白质翻译的终止。
高中生物遗传密码的破译(选学) 选择题 2019.3(考试总分:100 分考试时长: 120 分钟)一、单选题(本题共计 20 小题,每题 5 分,共计100分)1、(5分)对下图所表示的生物学意义的描述,正确的是A.若图甲表示雄果蝇精原细胞染色体组成图,体细胞中最多含有四个染色体组B.对图乙代表的生物测交,其后代中,基因型为AADD的个体的概率为1/4C.图丙细胞处于有丝分裂后期,染色单体数、DNA数均为8条D.图丁所示家系中男性患者明显多于女性患者,该病是伴X隐性遗传病2、(5分)下列关于核酸的叙述,错误的是A.核酸分子多样性取决于核酸中核苷酸的数量和排列顺序B.RNA具有传递信息、催化反应、转运物质等功能C.细胞凋亡和细胞分化的根本原因相同D.叶绿体与线粒体中含有RNA3、(5分)下图为真核细胞中蛋白质合成的部分过程示意图,②③④⑤为正在合成中的四条多肽链。
有关叙述不正确的是A.①是mRNA分子,其合成的主要场所是细胞核B.②③④⑤最终形成的蛋白质通常是相同的C.①上碱基的改变可改变多肽链中氨基酸的种类D.合成过程中所需tRNA种类数与氨基酸种类数相等4、(5分)某哺乳动物的毛色由位于常染色体上、独立遗传的3对等位基因控制,其控制过程如下图所示。
下列分析正确的是A.图示说明基因与性状之间是一一对应的关系B.图示说明基因通过控制酶的合成来控制该生物的所有性状C.一个基因型为ddAaBb的精原细胞在不考虑变异的情况下可产生4种精子D.基因型为ddAaBb的个体相互交配,子代表现型及比为黄色:褐色:黑色=4:3:95、(5分)抗生素P能有效抑制细胞内蛋白质的合成,原因是具有与tRNA结构中“结合氨基酸部位”类似的结构。
在进行试管内翻译时,将足量抗生素P加到反应试管内,可能会观察到的现象是A.试管内翻译的最终产物为不完整蛋白质B.携带氨基酸的tRNA无法与mRNA进行碱基互补配对C.mRNA无法与核糖体结合D.抗生素P与游离的核糖核苷酸结合6、(5分)如图为原核细胞中转录、翻译的示意图。
第3节遗传密码的破译(选学)课时过关·能力提升一、基础巩固1.第一个用实验证明遗传密码中3个碱基编码1个氨基酸的科学家是( )3个碱基编码1个氨基酸的设想;克里克第一个用实验证明了遗传密码中3个碱基编码1个氨基酸;尼伦伯格和马太用蛋白质的体外合成法破译了第一个三联体密码。
2.蛋白质体外合成实验破译出的第一个密码子是哪一种氨基酸对应的密码子?( )3.尼伦伯格和马太采用蛋白质体外合成技术,用人工合成的RNA多聚尿嘧啶核苷酸合成多聚苯丙氨酸的肽链时,加入细胞液。
下列是合成过程中利用的细胞液成分,其中正确的是( ) ①ATP ②酶③tRNA ④苯丙氨酸⑤mRNA⑥DNA ⑦rRNAA.①②③④⑦B.①②④⑤⑦C.②③④⑤⑥D.③④⑤⑥⑦4.遗传密码的阅读方式为( )5.人类免疫缺陷病毒在逆转录酶的作用下,能形成DNA。
下列哪项是人类免疫缺陷病毒依据碱基互补配对原则进行的逆转录过程?( )模板AGCU AGCT AGCU AGCT产物UCGAA TCGABTCGACUCGAD6.若细胞质中tRNA1(AUU)可转运氨基酸a,tRNA2(ACG)可转运氨基酸b,tRNA3(UAC)可转运氨基酸c,今以DNA中一条链……A—C—G—T—A—C—A—T—T……为模板合成蛋白质,该蛋白质基本组成单位的排列顺序可能为( )A.a—b—cB.c—b—aC.b—c—aD.b—a—c二、能力提升1.下列关于遗传信息和遗传密码的叙述, 正确的是( )A.遗传信息位于mRNA上,遗传密码位于DNA上,构成的碱基相同B.遗传信息位于DNA上,遗传密码位于mRNA上,构成的碱基相同C.遗传信息和遗传密码都位于DNA上,构成的碱基相同D.遗传信息位于DNA上,遗传密码位于mRNA上,若含有遗传信息的模板链碱基组成为TCA,则遗传密码的碱基构成为AGU2.下列有关蛋白质合成的叙述,错误的是( )64种,其中3种为终止密码,没有与之对应的反密码子。
遗传密码的破译1、AUG 是甲硫氨酸的密码子,又是肽链合成的起始密码子,但人体血清白蛋白的第一个氨基酸并不是甲硫氨酸。
下列表述正确的是( )A.转运甲硫氨酸的tRNA 由UAC 三个碱基构成B.经过加工后血清白蛋白中一定不含甲硫氨酸C.血清白蛋白合成时起始密码子不决定氨基酸D.原有血清白蛋白起始氨基酸序列在内质网被剪切2、关于蛋白质生物合成的叙述,正确的是( )A.一种tRNA 只能转运一种氨基酸B.DNA 聚合酶是在细胞核中合成的C.密码子是位于DNA 上相邻的三个碱基D.每一种密码子都有相对应的tRNA 3、下表表示枯草杆菌野生型与某一突变型的差异。
下列叙述错误的是( )枯草杆菌 核糖体S 12蛋白第55-58位的氨 基酸序列 链霉素与核糖体 的结合 在含链霉素培养基中的存活率(%) 野生型 …—P —K —K —P —…能 0突变型 …—P —R —K —P —… 不能 100注:P:脯氨酸;K:赖氨酸;R:精氨酸A.S l2蛋白结构改变使突变型具有链霉素抗性B.突变型的产生是由于碱基对的缺失所致C.链霉素通过与核糖体结合抑制其翻译功能D.突变型的出现为枯草杆菌进化提供了条件4、STR 是DNA 分子上以2?6个核苷酸为单元重复排列而成的片段,单元的重复次数在不同个体间存在差异。
某女性7号染色体和X 染色体DNA 的STR 位点如图所示。
下列叙述错误的是( )A.筛选出用于亲子鉴定的STR 应具有不易发生变异的特点B.为保证亲子鉴定的准确率,应选择足够数量不同位点的STR 进行检测C.有丝分裂时,子细胞含有图中(GATA )8的概率是1/2D.该女性的儿子X 染色体含有图中(ATAG )13的概率是1/25、下图是某DNA 片段的碱基序列,该片段所编码蛋白质的氨基酸序列为“…甲硫氨酸一精氨酸一谷氨酸一丙氨酸一天冬氨酸一缬氨酸…”,其中甲硫氨酸的密码子是AUG ,谷氨酸的密码子是GAA 、GAG 。
则有关叙述正确的是( )A.转录过程的模板链为甲链,其中的碱基序列储存着遗传信息B.转录的mRNA —定与甲、乙两条链中的一条链碱基排序列相同C.转录形成的mRNA 片段中存18个核糖核苷酸6个密码子D.方框处碱基G、C分别被T、A替换,编码的氨基酸序列不会变6、某人染色体上的基因E突变为e导致编码的蛋白质中段一个氨基酸改变,下列叙述正确的是()A. E基因突变为e基因发生了碱莲对的增添或替换B. E基因突变为e基因,e基因中嘌呤与嘧啶的比值不会改变C. e基因转录时所需的tRNA数量发生改变D. E,e基因的分离只发生在减数第一次分裂过程中7、不参与遗传信息的翻译过程的物质是()A. mRNAB. rRNAC. tRNAD. DNA8、DNA分子具有多样性的主要原因是()A.碱基对的排列顺序不同B.碱基互补配对原则有多种C.碱基种类有许多种D.磷酸和脱氧核糖的排列顺序千变万化9、在全部遗传密码被破译之后,分子生物学家克里克提出一个假说,认为有的tRNA 的反密码子第3位碱基与密码子第3位碱基之间的互补配对是不严格的。
下列事实不能..支持上述假说的是A.细胞中的tRNA种类远少于61种B.某tRNA的反密码子第三位碱基是U,密码子与之配对的碱基是A或G C.UAA、UAG和UGA是终止密码,细胞中没有能识别它们的tRNAD.某tRNA的反密码子第三位碱基是次黄嘌呤,与C、U和A均可配对10、为在酵母中高效表达丝状真菌编码的植酸酶,通过基因改造,将原来的精氨酸密码子CGG改变为酵母偏爱的密码子AGA,由此发生的变化不包括()A.植酸酶基因的碱基序列改变B.植酸酶氨基酸序列改变C.编码植酸酶的DNA热稳定性降低D.配对的反密码子为UCU11、有关蛋白质合成的叙述,不正确的是()A.终止密码子不编码氨基酸B.一种氨基酸对应一种或多种密码子C.核糖体可在mRNA上移动D.tRNA的反密码子携带了氨基酸序列的遗传信息12、关于如图所示生理过程的说法,正确的是()A.该图表示的是复制、转录和翻译B.该图所示的生物细胞无以核膜为界限的细胞核C.mRNA上所含有的密码子均能在tRNA上找到相对应的反密码子D.该图所示的生理过程所需要的能量主要由线粒体提供13、下列叙述错误的是()A.DNA与ATP中所含元素的种类相同B.一个tRNA分子中只有一个反密码子C.T2噬菌体的核酸由脱氧核糖核苷酸组成D.控制细菌性状的基因位于拟核和线粒体中的DNA上14、某条多肽的相对分子质量为2778,若氨基酸的平均相对分子质量为110,如考虑终止密码子,则编码该多肽的基因长度至少是()A.75对碱基B.78对碱基C.90对碱基D.93对碱基15、某原核生物因一个碱基对突变而导致所编码蛋白质的一个脯氨酸(密码子有CCU、CCC、CCA、CCG)转变为组氨酸(密码子有CAU、CAC)。
基因中发生改变的是()A.G≡C变为T=A B.A=T变为C≡GC.鸟嘌呤变为胸腺嘧啶D.胞嘧啶变为腺嘌呤16、下列是某同学关于真核生物基因的叙述,其中正确的是()①携带遗传信息②能转运氨基酸③能与核糖体结合④能转录产生RNA ⑤每相邻三个碱基组成一个反密码子⑥可能发生碱基对的增添、缺失、替换.A.①③⑤B.①④⑥C.②③⑥D.②④⑤17、下列哪位科学家第一个用实验证明遗传密码中每相邻三个碱基编码一个氨基酸()A.伽莫夫 B.克里克 C.尼伦伯格 D.马太18、1959年,人们终于实验证实了三联体的密码,现用人工制成的CUCUCUCU…这样一条多核苷酸链,给予适当的条件(即供给核糖体、腺苷三磷酸、酶和20种氨基酸),最多可形成几种氨基酸构成的多肽链()A.1 B.2 C.3 D.419、下列碱基组成肯定不是密码子的是()A.AGCUC.UGAD.ATG20、组成人体蛋白质的20种氨基酸所对应的密码子共有()A.4个 B.20个 C.61个 D.64个21、下列关于密码子的叙述,不正确的是()。
[来源:学。
科。
网]A.能决定氨基酸的密码子为64个B.一种氨基酸可有多种对应的密码子C.同一种密码子在人和猴子细胞中决定同一种氨基酸D.CTA肯定不是密码子22、下列关于遗传密码子的叙述中,正确的是()A、一种氨基酸可能有多种与之相对应的遗传密码子B、GTA肯定不是遗传密码子C、每种密码子都有与之对应的氨基酸D、信使RNA上的GCA在人细胞中和小麦细胞中决定不同的氨基酸23、决定氨基酸的密码子是指()A.DNA上的3个相邻的碱基B.tRNA上的3个相邻的碱基C.mRNA上的3个相邻的碱基D.基因上的3个相邻的碱基24、下图是某DNA片段的碱基序列,该片段所编码蛋白质的氨基酸序列为“…甲硫氨酸-精氨酸-谷氨酸-丙氨酸-天冬氨酸-缬氨酸…”(甲硫氨酸的密码子是AUG,谷氨酸的密码子是GAA、GAG)。
则该DNA片段()A.含有两个游离态的磷酸,5种碱基B.转录的mRNA片段中至少有18个核糖核苷酸C.转录的模板是甲链,其中的碱基序列代表遗传信息D.箭头所指碱基对G被T替换,编码的氨基酸序列不会改变25、在某反应体系中,用固定序列的核苷酸聚合物(mRNA)进行多肽的合成,实验的情况及结果如下表:实验序号重复的mRNA序列生成的多肽中含有的氨基酸种类实验一(UUC)n,即UUCUUC……丝氨酸、亮氨酸、苯丙氨酸实验二(UUAC)n,即UUACUUAC……亮氨酸、苏氨酸、酪氨酸请根据表中的两个实验结果,判断下列说法不正确的是()A.上述反应体系中应加入细胞提取液,但必须除去其中的DNA和mRNAB.实验一和实验二的密码子可能有:UUC、UCU、CUU 和UUA、UAC、ACU、CUU C.通过实验二的结果推测:mRNA中不同的密码子有可能决定同一种氨基酸D.通过实验一和实验二的结果,能够推测出UUC为亮氨酸的密码子26、蛋白质体外合成的实验,破译出了第一个密码子是哪一种氨基酸对应的()A.亮氨酸B.甘氨酸C.苯丙氨酸D.丙氨酸27、蛋白质体外合成实验破译出的第一个密码子是哪一种氨基酸对应的()A.亮氨酸B.甘氨酸C.苯丙氨酸D.丙氨酸28、尼伦伯格和马太采用蛋白质体外合成的技术,用人工合成的RNA多聚尿嘧啶核苷酸合成多聚苯丙氨酸的肽链时,加入细胞液。
下列是合成过程中利用的细胞液成分,其中正确的是()①ATP②酶③tRNA④苯丙氨酸⑤mRNA⑥DNA⑦rRNAA.①②③④⑦ B.①②④⑤⑦C.②③④⑤⑥ D.③④⑤⑥⑦29、提出著名三联体密码学说的人是()A.沃森B.克里克C.迦莫夫D.尼伦伯格30、有关下图的叙述,正确的是()A.“甲→乙”和“丙→丁”过程主要发生在细胞核中;大肠杆菌细胞中不能进行这两个过程B.能进行“乙→甲”过程的生物的核酸中含有5种碱基C.假如丙所表示的分子含有200个碱基,其中胞嘧啶60个,且碱基可以任意排列,则理论上该分子有4100种D.乙中共显示2个密码子;能特异性识别密码子的分子的基本组成单位与乙的相同31、把未成熟的青香蕉和一只成熟的黄香蕉同放于一只封口的塑料袋内,发现青香蕉不久会变黄。
该过程中起作用的激素是()A.生长素B.C.脱落酸D.乙烯32、下列关于植物激素的叙述,错误的是()A.B.C.D.脱落酸能抑制细胞分裂和种子萌发33、某科学工作者准备从菜豆植株中提取细胞分裂素,最理想的部位是(A.幼叶B.C.幼根D.种子34、在胰淀粉酶的合成过程中,对其起决定作用的物质是()A.核苷酸B.脱氧核糖核酸C.核糖体D.高尔基体35、在酶合成过程中,决定酶种类的是()A.核苷酸B.核酸C.核糖体D. tRNA36、下列关于DNA复制意义的说法中,错误的是……()A.DNA复制使亲代的遗传信息有可能传给子代B.DNA复制使子代和亲代保持一定的连续性C.DNA复制是子女有许多性状与父母相像的缘故D.DNA复制出子女的许多性状与其父母性状相像37、mRNA碱基序列中,随机插入1个碱基,变化后的mRNA上的密码子的变化是()A.全部密码子改变B.只有一个密码子改变C.基本不变D.插入碱基后的所有密码子均改变38、mRNA碱基序列中,随机插入3个碱基,则此mRNA所控制的蛋白质的变化为()A.没有改变B.插入第一个碱基后的密码子所控制的氨基酸全部改变C.插入第三个碱基后的密码子所控制的氨基酸全部改变D.插入第一和第三个碱基间的密码子所控制的氨基酸全部改变39、mRNA中的碱基序列GAUCGA中,每三联确定一个氨基酸,按重复和不重复方式阅读,分别能控制几种氨基酸()A.4种和2种B.5种和2种C.6种和2种D.2种和2种40、microRNA(miRNA)是存在于动植物体内的短RNA分子,其虽然在细胞内不参与蛋白质的编码,但作为基因调控因子发挥重要作用。