运筹学案例
- 格式:doc
- 大小:150.00 KB
- 文档页数:13
简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。
下面将介绍几个简单的运筹学实际应用案例。
1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。
公司希望通过优化生产线的调度,以达到最大的产出和利润。
运筹学可以通过数学模型和算法,对生产线进行优化调度。
例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。
2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。
运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。
例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。
3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。
运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。
例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。
4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。
运筹学可以通过数学模型和算法,帮助超市优化员工调度。
例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。
以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。
通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。
案例1. 工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。
其中有五项住宅工程,三项工业车间。
由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。
有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50011 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800试建立此问题的数学模型。
解:设承包商承包X 1项住宅工程,X 2项工业车间工程可获利最高,依题意可建立如下整数模型:目标是获利最高,故得目标函数为21X 80000X 50011z Max +=根据企业工程量能力限制与项目本身特性,有约束:利用WinSQB 建立模型求解:1080002X 4801X 25000≤+3680X 880X 28021≤+13800X 1800X 420021≤+为整数,;,2121X X 3X 5X ≤≤综上,承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340022 元。
案例2. 生产计划问题某厂生产四种产品。
每种产品要经过A,B两道工序加工。
设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。
产品D可在A,B任何一种规格的设备上加工。
产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。
产品F可在A2及B2 ,B3上加工。
产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。
已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设设产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108601110000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设Xia(b)j为i产品在a(b)j设备上的加工数量,i=1,2,3,4;j=1,2,3,得变量列表设备产品设备有效台时Ta(b)j1 2 3 4A1 A2 B1 B2 B3X1a1X1a2X1b1X1b2X1b3X2a1X2a2X2b1X3b2X3b3X3a1X3a2X3b1X3b2X3b3X4a1X4a2X4b1X4b2X4b3601110000400070004000原料费Ci (元/件) 单价Pi (元/件) 0.25 1.25 0.352.00 0.50 2.80 0.4 2.4其中,令X 3a 1,X 3b 1,X 3b 2,X 3b 3,X 4b 3=0 可建立数学模型如下: 目标函数: ∑∑==-=4121)](*[Maxi j iaj Ci Pi X z=1.00*(X 1a 1+X 1a 2)+1.65*(X 2a 1+X 2a 2)+2.30* X 3a 2+2.00*( X 4a 1+X 4a 2)约束条件:利用WinSQB 求解(X1~X4,X5~X8,X9~X12,X13~X17,X18~X20分别表示各行变量):4,3,2,1X21j 31==∑∑==i X j ibjiaj2,1T X 41iaj=<=∑=j Taj i iaj 3,2,141=<=∑=j TbjT Xi ibj ibj2,1;4,3,2,10X iaj ==>=j i 且为整数32,1;4,3,2,10X ibj ,且为整数==>=j i 0X X X X X 4b33b33b23b13a1=====综上,最优生产计划如下:设备产品1 2 3 4A1 A2 B1 B2 B3774235004004008732875目标函数zMax=3495,即最大利润为3495案例3. 高校教职工聘任问题 (建摸)由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。
运筹学经典案例案例一:鲍德西((B AWDSEY)雷达站的研究20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。
以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。
欧洲上空战云密布。
英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。
他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。
1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。
丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。
当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。
在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。
雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett为首,组织了一个小组,代号为“Blachett 马戏团”,专门就改进空防系统进行研究。
这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。
研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。
二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。
“Blackett马戏团”是世界上第一个运筹学小组。
在他们就此项研究所写的秘密报告中,使用了“Operational Research”一词,意指作战研究”或“运用研究”。
运筹学在实际问题中的应用案例分析运筹学作为一门研究如何最优化地解决决策问题的学科,在实际问题中得到了广泛的应用。
本文将通过分析两个实际案例来探讨运筹学在解决复杂问题和优化资源利用方面的应用。
案例一:物流配送优化物流配送是一个典型的运筹学应用领域。
在现代社会,物流配送环节对于企业的运营效率和成本控制至关重要。
如何合理安排车辆路线、调度和配送是一项复杂且具有挑战性的任务。
运筹学可以通过数学建模和优化算法来解决这个问题。
首先,我们可以将物流配送问题建模为一个旅行商问题(Traveling Salesman Problem,TSP)。
TSP是一个经典的组合优化问题,目标是寻找一条最短路径,使得从一个地点出发经过所有其他地点后回到起点,且路径的总长度最小。
通过运筹学方法,可以利用算法来求解最佳路径并优化物流配送效率。
其次,为了进一步优化物流配送的效率,我们可以引入车辆调度问题。
例如,考虑到不同城市的交通堵塞情况,我们可以使用调度算法将不同城市的订单分配给不同的车辆,以减少整体行程时间和成本。
通过运筹学的应用,一家物流公司可以最大限度地减少行程时间、减少燃料消耗,提高物流配送的效率。
因此,运筹学在物流配送问题中的应用具有重要的意义。
案例二:生产排产优化生产排产是制造业中的一个重要环节,它关系到企业的生产效率、生产能力和订单交付时间。
运筹学在生产排产中的应用可以帮助企业提高生产效率,降低成本并及时交付产品。
在生产排产中,我们通常需要考虑到多个因素,如机器的利用率、工人的工作时间和任务的优先级等。
通过运筹学的方法,可以构建一个数学模型,通过数学规划算法来优化生产排产方案。
例如,假设一个工厂有多个机器和多个订单需要排产,每个订单有不同的完成时间和优先级。
我们可以通过运筹学的方法,将这个问题建模为一个调度问题。
然后,利用调度算法来确定每个订单的完成时间和最优的生产顺序,从而实现生产排产的优化。
通过运筹学的应用,企业可以有效地优化生产排产计划,提高生产效率,减少资源浪费,并保证订单能够及时交付。
运筹学应用在生产计划的案例咱来唠唠运筹学在生产计划里的一个超有趣的案例。
就说有个小饼干厂吧。
这个饼干厂啊,有好多款饼干要生产,什么奶油味的、巧克力味的、还有蔬菜味的(给那些想健康点又嘴馋的人准备的)。
老板之前那叫一个头疼啊,为啥呢?因为生产饼干需要考虑老多事儿了。
比如说原料吧,面粉、糖、油这些东西,仓库里的存货就那么多,每次进货还得花钱花时间。
而且啊,不同口味的饼干需要的原料比例还不一样,就像巧克力味饼干那肯定得用不少巧克力原料不是?再就是生产线的事儿。
厂里有几条生产线,但是每条生产线的效率不太一样,有的生产奶油味饼干特别快,但是生产蔬菜味的就老是出小故障,速度慢得像乌龟爬。
这时候,运筹学就闪亮登场啦。
首先呢,运筹学专家来分析原料这块。
他把仓库里的原料库存、进货成本、不同饼干的原料需求比例啥的都列出来,就像整理一个超级详细的购物清单一样。
然后通过一种叫线性规划的神奇方法,算出在现有的原料库存和进货计划下,怎么分配原料能生产出最多的饼干,还不会让某种原料突然不够用。
比如说,发现这段时间面粉库存有点紧张,那就少生产一些特别费面粉的那种厚饼干,多生产薄一点的饼干,这样就能多做几种口味,还不浪费原料。
接着就是生产线的安排了。
专家根据每条生产线生产不同饼干的效率和成本,给老板出主意。
像那个生产蔬菜味饼干老是出故障的生产线,就少安排点蔬菜味饼干的生产任务,多让它去生产相对比较稳定的奶油味饼干。
而对于生产巧克力味饼干特别拿手的生产线呢,就可着劲儿让它多生产巧克力味的,这样整体的生产速度就提上去了。
还有啊,市场需求这块也得考虑进去。
要是最近奶油味饼干在市场上特别火,订单像雪花一样飞过来,那在生产计划里就得把奶油味饼干的产量比重加大。
但是又不能一下子加太多,得看看其他口味的饼干老顾客会不会不高兴。
运筹学就能通过分析市场销售数据,找到一个最佳的产量分配比例,既能满足市场上最热门的需求,又能照顾到其他口味的忠实粉丝。
生活中的运筹学案例生活中的运筹学案例700字运筹学是一门应用数学学科,研究如何在有限资源下,进行有效的决策和优化问题的解决方案。
在生活中,我们可以看到许多与运筹学相关的案例。
以下是一个关于旅行规划的案例:小明计划去旅行,他希望在有限的时间和预算内尽可能多地游览不同的城市。
他事先收集了一些信息,包括各个城市之间的距离、景点的开放时间和门票价格等。
他希望通过运筹学的方法来制定最佳的旅行计划。
首先,小明将问题抽象为一种图论问题。
他将每个城市表示为图中的一个节点,城市之间的距离表示为节点之间的边。
然后,他使用运筹学的方法来解决该问题。
他使用最短路径算法来确定游览不同城市的最佳路线。
他还利用旅行时间来优化他的旅游计划,以便在每个城市的开放时间内尽可能多地游览。
然后,小明使用线性规划来确定在有限预算内的最佳旅行路径。
他将每个城市的开销作为变量,并设置目标函数来最小化总成本。
他还添加了一些约束条件,例如每个城市的开销不能超过他的预算,以及他必须在旅行时间内完成游览。
最后,小明使用调度理论来制定他的旅行日程。
他将每个景点的开放时间和游览时间作为变量,并设置目标函数来最大化他的游览时间。
他还添加了一些约束条件,例如每个景点的开放时间不能与其他景点冲突,以及他的总游览时间不能超过他的旅行时间限制。
通过运筹学的分析和优化,小明制定了最佳的旅行计划。
他按照所确定的路线和日程,游览了尽可能多的城市和景点,并在有限的时间和预算内取得了最好的旅行体验。
这个案例展示了运筹学在生活中的应用。
通过分析问题,抽象问题,使用适当的数学模型和方法,可以制定最佳的解决方案。
运筹学并不仅仅适用于旅行规划,还可以应用于许多其他领域,如供应链管理、生产调度、资源分配等。
运筹学的方法和技术可以帮助人们在有限的资源下做出更好的决策,达到最优化的结果。
运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。
运筹学的应用范围非常广泛,涉及到各个领域。
以下是一个关于运筹学应用的实际案例。
某公司是一家制造业企业,主要生产产品A和产品B。
这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。
公司的目标是最大化利润。
产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。
产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。
物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。
同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。
另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。
为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。
首先,公司需要确定目标函数。
由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。
假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。
那么公司的目标函数可以定义为:Z=10A+8B。
然后,公司需要确定约束条件。
根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。
由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。
最后,公司需要使用线性规划算法来求解最优解。
线性规划算法可以通过求解目标函数的最大值来找到最优解。
在这个案例中,可以使用单纯形法来求解最优解。
通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。
对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。
运筹学在工业领域的应用案例运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。
它广泛应用于工业领域,帮助企业提高生产效率、优化资源利用以及优化决策。
本文将以一些实际案例来展示运筹学在工业领域的应用。
案例一:物流调度在现代物流中心,卡车调度是一个重要而复杂的问题。
一家物流企业面临着如何合理安排卡车的运输路线以及如何将货物分配给不同的卡车的问题。
运筹学通过建立数学模型和优化算法,可以帮助企业快速找到最佳的调度方案。
通过考虑货物的重量、体积、运输距离等因素,运筹学能够帮助企业节省时间和成本,提高物流效率。
案例二:生产计划在工业生产中,合理的生产计划对企业的运营至关重要。
运筹学可以通过建立生产计划的数学模型,考虑原材料、人力资源、设备利用率等因素,制定最优的生产计划。
这种方法可以帮助企业合理安排生产任务、减少生产成本,并确保产品按时交付。
案例三:库存管理有效的库存管理对于企业的正常运营非常重要。
过多的库存会增加企业的成本,而库存不足则会导致订单无法及时完成。
运筹学可以利用数学模型和优化算法,预测需求并制定合理的库存策略。
通过运筹学的方法,企业可以实时调整库存水平,减少库存成本,同时确保生产进度和客户需求之间的平衡。
案例四:供应链优化供应链优化是一个复杂的问题,涉及到多个环节和多个参与者之间的协调。
运筹学可以帮助企业建立供应链的数学模型,考虑供应商、生产商、分销商等各个环节的需求和约束,通过优化算法找到最佳的供应链配置方案。
通过运筹学的方法,企业可以提高供应链的响应速度和灵活性,降低整体成本,提供更好的服务。
案例五:设备维护与优化在工业领域,设备的维护和优化是保证生产连续性和降低成本的关键。
运筹学可以利用数据分析和模型建立,制定设备的维护计划和优化方案。
通过预测设备故障、制定维护策略和排班方案,运筹学可以帮助企业降低设备故障率,最大限度地提高设备利用率,进而提高生产效率和降低成本。
综上所述,运筹学在工业领域有着广泛的应用。
《运筹学》案例分析案例1:超级食品公司的广告混合问题超级食品公司的营销部副总裁克莱略·希文生正面临着一个棘手的挑战:如何才能大规模地进入已有许多供应商的早点谷类食品市场。
值得庆幸的时,该公司的早点谷类食品“脆始”(Crunchy Start)有许多受欢迎的优点:口味佳、营养、松脆。
克莱略·希文生对这一切都如数家珍,她知道这一食品是能够赢得这次促销活动的。
然而,克莱略清楚她必须避免上一次产品促销活动中所犯的错误。
那是她晋升以后第一项重大任务,结果简直是个悲剧!她本以为已经大功告成,却没想到那次活动并没有触及至关重要的目标市场——幼年儿童以及幼年儿童的父母。
同时,她还领悟到未将优惠卷包含在杂志与报纸的广告中是另一大失误。
哎,学习是永无止境的。
这一次,必须吸取上次的教训。
公司的总裁大卫·斯隆已经向她表示脆始这一产品成功与否对公司前途有着重要影响。
她清楚地记得大卫在结束与她的谈话时说:“公司的股东对公司的现状极为不满,我们必须再次纠正方向,增加公司收入。
”克莱略以前也曾听到过这样的语调,但这一次,她从大卫极为严肃的目光中意识到了问题的严重性。
克莱略在攻读MBA管理运筹学课程时,曾经学习过如何通过建立数学模型来解决管理决策问题。
现在是时候让她仔细考虑一下问题,并准备应用所学知识解决问题了。
问题克莱略已经雇佣了一家一流的广告公司G&J公司来帮助设计全国性的促销活动,以使脆始取得尽可能多的消费者的认可。
超级食品公司将根据该广告公司所提供的服务付给一定的酬金(不超过100万美元)并已经预留了另外的400万美元作为广告费用。
G&J公司已经确定了这一产品最有效的三种广告媒介:媒介1:星期六上午儿童节目的电视广告。
媒介2:食品与家庭导向的杂志上的广告。
媒介3:主要报纸星期天增刊上的广告。
现在,要解决的问题是如何确定各广告活动的使用水平(levels)以取得最有效的绩效。
为了确定这一广告投放问题的最佳活动水平组合,首先必须明确该问题的总绩效测度(overall measure of performance)以及每一活动对该测度的贡献。
运筹学经典案例案例一:鲍德西((B AWDSEY)雷达站的研究20世纪 30 年代,德国内部民族沙文主义及纳粹主义日渐抬头。
以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。
欧洲上空战云密布。
英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。
他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。
1935 年,英国科学家沃森—瓦特( R.Watson-Wart )发明了雷达。
丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的 Bawdsey 建立了一个秘密的雷达站。
当时,德国已拥有一支强大的空军,起飞 17 分钟即可到达英国。
在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。
雷达技术帮助了英国,即使在当时的演习中已经可以探测到160 公里之外的飞机,但空防中仍有许多漏洞,1939 年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett 为首,组织了一个小组,代号为“ Blachett 马戏团”,专门就改进空防系统进行研究。
这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。
研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。
二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。
“ Blackett 马戏团”是世界上第一个运筹学小组。
在他们就此项研究所写的秘密报告中,使用了“Operatio nal Research” 一词,意指作战研究”或"运用研究"。
运筹学案例(第一部分)案例1 高压电器强电流试验计划的安排某高压电器研究所属行业归口所,是国家高压电器试验检测中心,每年都有大量的产品试验、中试、出口商检等任务。
试验计划安排及实施的过程一般如下:·提前一个月接受委托试验申请·按申请的高压电器类别及台数编制下月计划·按计划调度,试验产品进入试验现场·试验检测,出检测报告·试验完成,撤出现场高压电器试验分强电流试验和高压电试验两部分,该研究所承担的强电流实验任务繁重,委托试验的电器量很大,因此科学地计划安排试验计划显得非常重要。
高压电器分十大类,委托试验的产品有一定随机性,但是试验量最多的产品(占85%以上)是以下八类:1.35KV断路器2.10KV等级断路器3.35KV开关柜4.10KV等级开关柜5.高压熔断器6.负荷开关7.隔离开关8.互感器这八类产品涉及全国近千个厂家,市场广阔,数量庞大。
当前的强电流产品试验收费标准见表1-1。
表1-1 强电流产品试验收费标准由于强电流试验用的短路发电机启动时,会给城市电网造成冲击,严重影响市网质量,故只能在中午1点用电低谷时启动,从而影响全月连续试验工时只有约108小时,任务紧张时只能靠加班调节。
正常情况下各种试验所需试验工时见表8-2。
表1-2 各类产品试验所需工时强电流试验特点是开机时耗电量大,而每次实验短路时,只持续几秒钟,虽然短路容量在“0”秒时达2500 MVA,但瞬时耗电量却很小。
每天试验设备提供耗电量限制为5000千瓦,每月135千千瓦,那麽每种产品耗量如表8-3所示。
各类产品的冷却水由两个日处理能力为14吨的冷却塔供给。
每月按27天计,冷却水月供给量为14×27=378吨。
每月各类产品冷却水处理量见表8-3。
表1-3 各类产品试验耗电量与冷却水处理量根据以往的经验和统计报表显示第一类产品和第二类产品每月最多试验台数分别为6台和4台,第三类和第四类产品则每月至少需分别安排8台和10台。
根据上述资料,尝试建立数学模型辅助产生排产计划,对模型的优化结果进行解释,并与实际情况做对比分析。
案例2.福州市某乡作物种植计划的制定福州市近郊某乡共有可耕地2000亩,其中沙质土地400亩,粘质土地600亩,中性土地1000亩,主要种植3类作物: 第1类是以水稻为主的粮食类作物,第2类是蔬菜类,第3类是经济作物,以本地特产茉莉花为代表作物。
乡政府希望能制定一个使全乡总收益最大的作物种植计划,据此指导个作业小组和农户安排具体生产计划。
研究所面临的困难是缺乏历史统计资料及定量数据,只能靠实地调研及与有经验的老农交谈而获得。
因此建立的模型及计算结果只能作为乡政府做决策的参考,但整个思路和运作过程无疑为科学决策起到了良好的示范作用。
为了简化问题,只考虑水稻、茉莉花作为粮食作物和经济作物的代表,蔬菜则以当地出产的主要品种为基础测算出每亩的收益及成本的平均值。
每亩土地的费用主要统计和测算外购化肥、劳力工时、灌溉用水及用电等可以计算的部分,每亩的收益也是根据可能收集到的数据如交公购粮、收购茉莉花以及在农贸市场上出售蔬菜所得销售收入的平均值,均为近似值。
通过以上调研和数据处理得到表2-1。
表2-1 种植各类作物所需费用及收益表考虑将不同土质土地上种植的各类作物的面积设置为决策变量,用表2-2表示。
表2-2 决策变量设置表为防止作物的单一种植倾向,在保证全乡留有足够口粮的基础上,各种作物种植的协调发展。
根据前些年的种植情况及取得的效益,乡政府认为水稻、蔬菜、茉莉花三种作物的播种面积比例大致以2:1:1为宜。
按全乡2000亩种植面积计算,可设定三种作物种植面积的最高限额分别为1000、500、500亩。
目标函数Z取总收益,要求极大化。
试通过建立优化模型给出当前条件下的最优种植方案,进行结果分析及进一步讨论。
案例3 南方某百泥矿合理配车问题的研究南方某白泥矿是一个南北狭长的露天矿,划分为北区、中区、南区三个开采区,主要开采生产盆、碗用的白泥,在采矿场附近设有5个排土场。
由于开采条件日趋恶化,矿山运输设备效率又不高,人们普遍认为运输问题已成为影响生产的主要矛盾,希望通过改善管理,挖掘运输潜力,提高经济效益。
全矿共有4种型号的运输车辆34台,当前的平均单位运费为0.6490元/t,运输车辆的数量和使用费见表3-1,核定的标准定额见表3-2。
表3-1运输车辆的数量及使用费表3-2 运输标准定额表由于不同型号的汽车在各类采区运输不同类型的采剥物时效率和成本均不相同,于是可以考虑按不同型号的汽车分配运输任务。
现有4类型号的汽车进行4类不同的作业,可以归结为“指派问题”,使运输作业的总成本最小。
根据表3-1和表3-2的数据,用各种型号汽车的使用费与核定的不同作业标准定额相除即可得到单位运输成本,见表3-3。
表3-3 单位运输成本表讨论给出使单位总运费最小最优分配车方案,请注意运输汽车必须是整数,该如何建模优化?案例4 某开发区养老保险定量分析模型养老保险属于社会保障系统的重要内容,社会保障系统作为一个国家社会制度的重要组成部分,其内容、形式和其中所使用的各种计算方法不仅关系到国民的自身利益,而且对一个国家的政治和社会经济的发展具有重要的作用。
社会保障系统中所包含的定量分析和计算是多种多样的,主要包括三个方面:第一,对社会保障基金提取量的测算;第二,对职工享受社会保障待遇的标准测算;第三,对社会保障基金各阶段收付额的预测。
基本养老保险金的提取比例一般是一年或若干年调整一次,从数学模型的角度看两者并无实质性区别,这里定义一年为一个阶段。
考虑到养老保险制度是一个长期制度,具体年限并不确定,因而阶段数可以根据实际问题的研究目标制定。
如:要确定10年内各年的提取比例,则阶段数就定为10;也可以将老龄化程度最高、养老保险金支付额最大的年份作为决策过程的终止年。
不失一般性,将整个决策过程定义为n个阶段。
状态变量x k定义为阶段k开始时的储备基金,M是最大储备金额。
决策变量u为阶段k基本养老保险金按工资总额提取的比例,这一比例也k应在一定范围之内。
按照国际标准,提取比例达到20%时即为社会预警线,29%即达到社会承受的极限,因此我们设定R为提取的最大比例,若sk为阶段k的工资总额,则有:d k -xk≤sk•uk≤min{sk•R,dk+dk+1+…+dn+A-xk}其中sk•R就是基本养老保险金所能提取的最大金额。
已知阶段k开始时的储备基金是x k,阶段k的基本养老保险金收入额为sk•u k ,支付额是dk。
假定储备基金的年增值率为ik,考虑资金的时间价值,则阶段末即阶段k+1的初始储备基金为:x k+1=(1+ik)xk+sk•uk-dk,即状态转移方程。
可以看出,k+1阶段的储备基金xk+1完全由k阶段的储备基金xk和基本养老保险金的提取比例uk所决定,与前面的状态和决策无关,即满足无后效性。
设单位资金的管理费用为L,则阶段k的管理费用为:L•sk •uk;设储备基金的机会损失率为jk,,则阶段k时储备基金的机会损失额为:j k •xk+1=jk[(1+ik)xk+sk•uk-dk],于是可写出阶段效益的表达式:r k (xk,uk)=L•sk•uk+jk[(1+ik)xk+sk•uk-dk]目标函数为各阶段效益之和,即在此基础上,即可写出动态规划基本方程:根据这一模型得到的阶段k的提取比例u k对于全过程而言是最优的。
值得注意的是sk 、dk、jk都是利用预测技术得出的今后若干年的预测值,它们本身的准确程度会受到就业率、工资增长率,人口死亡率、退休率、生活费指数,各种投资利率等的影响,必须进一步进行理论分析以提高预测的准确程度。
根据开发区职工年龄结构上的特点是以中青年为主和职工平均年龄30岁的抽样统计结果,开发区在25年后养老保险金的支付将达到一次高潮。
因而在计算过程中选择整个计划期为25年,共分为5个阶段,每个阶段代表5年。
根据开发区各年龄段人数(见表4-1),期望寿命按70岁计算,推算出今后25年中各阶段的退休人数;结合开发区未来25年发展规模及经济增长速度,预测出各阶段新增职工人数和新增职工退休人数,在此基础上计算出开发区25年中各阶段退休职工人数,见表4-2。
表4-1 开发区职工按年龄段分布人数表4-2 开发区25年中各阶段退休职工人数各阶段每个职工平均养老保险金支付额的计算以年平均工资4800元为基数,分90%,80%,70%三个档次计算。
各期职工年平均工资分别按年平均工资增长率5%、10%来计算。
由于开发区内大多数企业属于电子及化工行业,查这两类企业平均投资利润率为14%,按银行三年整存整取利率10.8%计算,年机会损失率为3.2%,基金管理费按缴纳量的5%提取。
选取支付额占工资90%,年平均工资增长率5%的计算结果为代表,见表4-3。
表4-3 支付额占工资90%,年平均工资增长率5%的计算结果动态规划模型从开发区整体出发,以退休人员养老保险金的支付额来确定应从在职职工中按工资总额提出养老保险金的比例,并在保证各阶段最大提取比例限制条件基础上,使得整个计划期内总的费用或损失最小。
实际应用中,还结合其它模型的计算进行对比和综合调整,进一步进行了可行性分析和提出相应的政策建议。
案例5 利用最短路算法确定自动充气站位置电缆的气压维护是保障通讯完好畅通的重要手段,某城市经调查分析,并结合电缆分布情况确定安装14个传感器,建立相应的14个遥测点。
在选定的测试头上有3处可供建立自动充气站,见图5-1所示。
在详细分析了技术上的要求之后,最终将问题抽象成如何确定自动充气站位置,使以充气站为起点,所需建设的遥测点总线路最短的问题。
已知建立遥测点每100M的造价是1200元,因此归结为一个使总造价最省的问题。
试进行讨论分析自动充气站位置应如何确定?追踪该案例的研究实施过程与结果,得知,原计划要进行一周的调查、定线工作,现经计算并结合现场情况略加修正,仅用1天半的时间就确定了方案,费用比原计划至少节省了16800元,且缩短了工期,提前使自动充气站投入运行。
案例6 某厂运输网络改善方案设计v1、v2、v3为某工厂下属三个分厂所在地。
已知三个分厂的产品生产能力各为40、20、10个单位,产品每天均需运往车站仓库v t。
现有的运输网络如图8-3所示,箭杆边的数字为相应运输线路的日运输能力。
由于目前的运输网络不能保证每天将所有的产品及时运送到仓库,试分析原因何在?为了改善目前的运输状况,该厂计划在车站新建一个仓库,并考虑开通的单方向行驶运输道路(图8-3中虚线所示),对于新开通的运输通道设计运输能力要求如何确定才能保证每天将所有的产品及时运送到车站仓库?单行道方向如何确定?通过分析计算,对该厂改善运输状况的计划作简单评论,并提出一些有益的设想和建议。