计量习题(实践中的回归)
- 格式:docx
- 大小:96.27 KB
- 文档页数:12
2计量经济学习题二、单选题1、在回归分析中,定义的变量满足( )A 、 解释变量和被解释变量都是随机变量B 、 解释变量为非随机变量,被解释变量为随机变量C 、 解释变量和被解释变量都为非随机变量D 、解释变量为随机变量,被解释变量为非随机变量2、样本回归方程的表达式为()A 、Y 二飞 JX i叫AAB 、E(Y|XJ =iXAAAc 、Y=B o +%X i+eiD 、Y =h +B iXi3、表示X 与Y 之间真实线性关系的是( )A 、Y 二 5」X i叫B 、E(Y|XJ =iXAAAAAc 、Y =P iX j+e iD 、Y=0o + %Xi' X i Y i - nX Y- 2 2X i -n (X)5、 最小二乘准则是指使(AA 、I'(Y i-Yi )lA C 、max 送 |Y -Y iI 6、 设样本回归模型为 Yc 、Y 的离差)达到最小值的原则确定样本回归方程AB 、送 |Y i- Y IAD 、瓦(Y -Y )2AA=b 0 bi X i e i ,则普通最小二乘法确定的AD 、Y 的离差"(X i-X )(Y i-Y )、(X i-X)2b l的公式中,错误的是()n' X jY j-、X 〕出A 、随机干扰项B 、残差7、下列样本模型中,哪一个模型通常是无效的()A 、 C i (消费)=5000.8I (收入)B 、 Q id (商品需求)=10・0.8l i (收入)・0.9P i (价格) C 、 Q 「(商品供给)=20・0.75R (价格) D 、 Y (产出量)二0.65L :.6(劳动)心04(资本)&对回归模型 Y 二一:0 • -X j•叫进行统计检验时,通常假定 A 、N (0,G 2)B 、t (n 一2)9、参数-的估计量-具备有效性是指()A 、Var ( J =0B 、Var ( ?)为最小 叫服从C 、N (0,J ) D 、t(n)10、下列哪个性质不属于估计量的小样本性质( C 、( ?_ J =0D 、(?「>)为最小A 、无偏性B 、有效性AA11、 对于 Y = ■ -1x i - e iA 、;? =0时,(Y i-Y?) =0C 、;? =0时,,(Y i-Y?)最小12、 对于YC 、线性性,以?表示估计的标准差, AA 二0 •:i X i• c ,以?表示估计的标准差,r 二 1 B 、D 、A 、■:? =0 时,C 、;? =0时,r 二 013、 在总体回归直线 E (Y| X )=1:0「「X i中,Y 增加:1个单位 Y 平均增加 \个单位X 增加:1个单位 X 平均增加打个单位 Y?表示OLS 回归估计值,则下列哪项成立( A 、当 B 、当 C 、当 D 、当 X 增加一个单位时,X 增加一个单位时, Y 增加一个单位时, Y 增加一个单位时, D 、 表示 致性 Y?表示回归值,则( );? =0时,(Y -Y?)2 =0 ■:? = 0时,,(Y -Y?)2最小r 表示样本相关系数,则有():? =0时,r = -1;? = 0时,r = 1或 r = -1 ( )A 、 Y? -YB 、—YC 、Y?D 、15、 电视机的销售收入(Y ,万兀)与销售广告支岀 ,(X ,万元)之间的回归方程为 Y?^3562.4X这说明( )A 、 销售收入每增加 1万兀,广告支出平均减少 2.4力兀B 、 销售收入每增加 1万兀,广告支出平均增加 2.4力兀C 、 广告支出每增加 1万兀,销售收入平均增加 2.4力兀D 、 广告支出每增加 1万兀,销售收入平均减少AAA2.4力兀16、 用OLS 估计线性回归方程 Y - ■ -1 Xi ,其代表的样本回归直线通过点() A 、 (X,Y) B 、(X,Y)C 、(X,Y)D 、(X,Y )17、 对回归模型应用 OLS ,会得到一组正规方程组,下列方程中不是正规方程组的是 ( )A 、 ■- (Y -?0 -?XJ =0B 、(Y - '?0 - ?Xi)X i=0C 、、(Y -Y?)2:=0D 、.一 e jX i= 0) 14、设Y 表示实际观测值,A A A18、以Y 表示实际观测值,Y?表示回归估计值,则用 OLS 得到的样本回归直线 X i 满足()A 、、(Y -Y?) =0B 、、(Y -Y 2 = 0C 、、(Y -Y )2 =0D 、' (Y? —Y )2 二 019、对于总离差平方和 TSS ,回归平方和ESS 与残差平方和 RSS 的相互关系,正确的是( B 、TSS=RSS+ESS2 2 2D 、TSS 2=RSS 2+ESS 220、反映由模型中解释变量所解释的那部分离差大小的是( ) A 、总离差平万和 B 、回归平万和 C 、残差平万和 D 、(A )和(B )21、已知某一直线回归方程的样本可决系数为 0.64,则解释变量与被解释变量间的相关系数为()A 、0.64B 、0.8C 、0.4D 、0.3222、样本可决系数 R 2的取值范围()、於》1B2D 、-1 < R W 127、应用某市1978-2005年年人均可支配收入与年人均消费支出的数据资料建立简单的一元线性消 费模型,估计结果得样本可决系数 R 2=0.9938,总离差平方和TSS=480.12,则随即误差项J的标准差估计值为()A 、4.284B、0.326C、0.338D、0.345A 、TSS>RSS+ESS C 、TSS<RSS+ESSYi=:023、 用一组由20个观测值的样本估计模型 著性作t 检验,则 S 显著地不等于零的条件是其统计量A 、t (0.05)(20) B 、t(0.025)(20)24、 考察某地区农作物种植面积与农作物产值的关-'-1X ^'.-i ,在0.05的显著性水平下对 t 大于( )-1的显(18)(X 表示农作物种植面积, Y 表示农作物产值),米用 的标准差S b ? =0.045,那么,'-1对应的t 统计量为(12、t (0.05)(18)D、t (0.025)建立一元线性回归模型 Y =2。
计量经济学综合练习题(二元回归)设某商品的需求量Y(百件)、消费者平均收入X1(百元)、该商品价格X2(元)的统计数据如下:∑Y =800 ∑X1 = 80 ∑X2 = 60 n = 10 ∑X1X2 =439∑Y2 = 67450 ∑X12= 740 ∑X22 = 390 ∑YX1 = 6920 ∑YX2 = 4500经TSP计算,部分结果如下(表一、表二、表三中被解释变量均为Y, n = 10):表一VARIABLE COEFFICIENT STD.ERROR T-STAT 2-TAILSIGC 99. 13. 7. 0.000X1 2. 0. 3. 0.013X2 - 6. 1. - 4. 0.002R-squared 0. Mean of dependent var 80.00000Adjusted R- squared 0. S.D. of dependent var 19.57890S.E of regression 4. Sum of squared resid 174.7915Durbin-Watson stat 1. F – statistics 65.58230表二VARIABLE COEFFICIENT STD.ERROR T-STAT 2-TAILSIGC 38.40000 8. 4. 0.002X1 5. 0. 5. 0.001R-squared 0. Mean of dependent var 80.00000Adjusted R- squared 0. S.D. of dependent var 19.57890S.E of regression 9. Sum of squared resid 746.0000Durbin-Watson stat 1. F – statistics 28.99732表三VARIABLE COEFFICIENT STD.ERROR T-STAT 2-TAILSIGC 140.0000 8. 16. 0.000X2 -10.00000 1. -7. 0.000R-squared 0. Mean of dependent var 80.00000Adjusted R- squared 0. S.D. of dependent var 19.57890S.E of regression 7. Sum of squared resid 450.0000Durbin-Watson stat 0. F – statistics 53.33333要求:完成以下任务,并对结果进行简要的统计意义和经济意义解释(要求列出公式、代入数据及计算结果,计算结果可以从上面直接引用)。
《计量经济学》第⼀学期课程试题(三)《计量经济学》第⼀学期课程试题(三)⼀、选择题(单选题1-10每题1分,多选题11-15每题2分,共20分,答案填⼊下表)1、回归分析中定义A.解释变量和被解释变量都是随机变量B.解释变量为⾮随机变量,被解释变量为随机变量C.解释变量和被解释变量都为⾮随机变量D.解释变量为随机变量,被解释变量为⾮随机变量2、下⾯哪⼀项不能⽤于回归模型⾼阶⾃相关的检验: A.D-W 检验 B.偏⾃相关检验 C. B-G 检验 D. 拉格朗⽇乘数检验3、设M 为货币需求量,Y 为收⼊⽔平,r 为利率,流动性偏好函数M=β0+β1Y+β2r+ε,⼜设a.b 分别是β1β2的估计值,则根据经济理论,⼀般来说A. a 应为正值,b 应为负值B. a 应为正值,b 应为正值C. a 应为负值,b 应为负值D. a 应为负值,b 应为正值4.利⽤容量⼤于30的年度数据样本对某市2005年GNP 进⾏预测得点预测值为18400万,回归标准差为183。
该市2005年GNP 的95%置信区间。
A. [18217, 18583 ]B. [18034, 18766 ]C. [18126, 18583 ]D. [18126, 18675 ] 5.下列哪种检验,A. Park 检验B. Gleiser 检验C. Park 检验和Gleiser 检验D. White 检验6、模型变换法可⽤于解决模型中存在A、异⽅差B、⾃相关C、多重共线性D、滞后效应7、变量的显著性检验主要使⽤A F 检验B t 检验C DW 检验D 2χ检验8、下列属于统计检验的是A、多重共线性检验B、⾃相关性检验C、F 检验D、异⽅差性检验9、当回归模型存在⾃相关性时,t 检验的可靠性会A. 降低B.增⼤C.不变D.⽆法确定10、分布滞后模型中,反映中期乘数的是A 0bB biC ∑=s i i b 0D ∑∞=0i i b11、⾃相关系数的估计⽅法有ABCDA、近似估计法;B、迭代估计法C、Durbin 估计法;D、搜索估计法12、构造模型时,若遗漏了重要的解释变量,则模型可能出现BCA、多重共线性B、异⽅差性C、⾃相关性D、滞后效应13、关于多重共线性的影响,下⾯哪些不正确:ABCDA. 增⼤回归标准差B.难以区分单个⾃变量的影响C. t 统计量增⼤D.回归模型不稳定14、虚拟变量的作⽤有ABCA、描述定性因素B、提⾼模型精度C、便于处理异常数据D、便于测定误差15、产⽣滞后效应的原因有 ABDA、⼼理因素B、技术因素C、随机因素D、制度因素⼆、判断正误(正确打√,错误打×,每题1分,共10分,答案填⼊下表)1、回归模型i i i i X b X b b Y ε+++=22110中,检验0:10=b H 时,所⽤的统计量)?(?111b s b b ?服从于)22?n (χ 2.⽤⼀阶差分变换消除⾃相关性是假定⾃相关系数为1。
期中练习题1、回归分析中使用的距离是点到直线的垂直坐标距离。
最小二乘准则是指( )A .使∑=-n t tt Y Y 1)ˆ(达到最小值 B.使∑=-n t t t Y Y 1达到最小值C. 使∑=-n t t t Y Y12)(达到最小值 D.使∑=-n t t t Y Y 12)ˆ(达到最小值 2、根据样本资料估计得出人均消费支出 Y 对人均收入 X 的回归模型为ˆln 2.00.75ln i iY X =+,这表明人均收入每增加 1%,人均消费支出将增加 ( )A. 0.75B. 0.75%C. 2D. 7.5%3、设k 为回归模型中的参数个数,n 为样本容量。
则对总体回归模型进行显着性检验的F 统计量与可决系数2R 之间的关系为( ) A.)1/()1()/(R 22---=k R k n F B. )/(1)-(k )R 1/(R 22k n F --= C. )/()1(22k n R R F --= D. )1()1/(22R k R F --= 6、二元线性回归分析中 TSS=RSS+ESS 。
则 RSS 的自由度为( )A.1B.n-2C.2D.n-39、已知五个解释变量线形回归模型估计的残差平方和为8002=∑t e ,样本容量为46,则随机误差项μ的方差估计量2ˆσ为( ) 1、经典线性回归模型运用普通最小二乘法估计参数时,下列哪些假定是正确的( )A.0)E(u i =B. 2i )V ar(u i σ=C. 0)u E(u j i ≠D.随机解释变量X 与随机误差i u 不相关E. i u ~),0(2i N σ 2、对于二元样本回归模型ii i i e X X Y +++=2211ˆˆˆββα,下列各式成立的有( ) A.0=∑i e B. 01=∑i i X e C. 02=∑i i X e D.0=∑i i Y e E. 021=∑i i X X 4、能够检验多重共线性的方法有( )A.简单相关系数矩阵法B. t 检验与F 检验综合判断法C. DW 检验法D.ARCH 检验法E.辅助回归法计算题1、为了研究我国经济发展状况,建立投资(1X ,亿元)与净出口(2X ,亿元)与国民生产总值(Y ,亿元)的线性回归方程并用13年的数据进行估计,结果如下:S.E=(2235.26) (0.12) (1.28)2R =0.99 F=582 n=13问题如下:①从经济意义上考察模型估计的合理性;(3分) ②估计修正可决系数2R ,并对2R 作解释;(3分)③在5%的显着性水平上,分别检验参数的显着性;在5%显着性水平上,检验模型的整体显着性。
多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.83272.下列样本模型中,哪一个模型通常是无效的() A. i C (消费)=500+0.8i I (收入) B. d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C. s i Q (商品供给)=20+0.75i P (价格)D. i Y (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( ) A. )30(05.0t B. )28(025.0t C. )27(025.0t D. )28,1(025.0F4.模型t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数与多重判定系数 之间有如下关系( ) A.2211n R R n k −=−− B. 22111n R R n k −=−−− C. 2211(1)1n R R n k −=−+−− D. 2211(1)1n R R n k −=−−−− 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( )。
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
A 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系2、相关关系是指__________。
A 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系3、进行相关分析时的两个变量__________。
A 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以4、表示x 和y 之间真实线性关系的是__________。
A 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2i i ˆˆ0Y Y σ∑=时,(-)=0C i i ˆˆ0Y Y σ∑=时,(-)为最小D 2i i ˆˆ0Y Y σ∑=时,(-)为最小7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是__________。
A ()()()i i 12i X X Y -Y ˆX X β--∑∑= B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122X Y -nXY ˆX -nX β∑∑= i 01i iY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
A ˆ0r=1σ=时, B ˆ0r=-1σ=时, C ˆ0r=0σ=时, D ˆ0r=1r=-1σ=时,或 9、产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为ˆY356 1.5X -=,这说明__________。
第三章练习题及参考解答3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)R 2=0.934331 92964.02=R F=191.1894 n=311)从经济意义上考察估计模型的合理性。
2)在5%显著性水平上,分别检验参数21,ββ的显著性。
3)在5%显著性水平上,检验模型的整体显著性。
练习题3.1参考解答:(1)由模型估计结果可看出:从经济意义上说明,旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。
平均说来,旅行社职工人数增加1人,旅游外汇收入将增加0.1179百万美元;国际旅游人数增加1万人次,旅游外汇收入增加1.5452百万美元。
这与经济理论及经验符合,是合理的。
(2)取05.0=α,查表得048.2)331(025.0=-t 因为3个参数t 统计量的绝对值均大于048.2)331(025.0=-t ,说明经t 检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。
(3)取05.0=α,查表得34.3)28,2(05.0=F ,由于34.3)28,2(1894.19905.0=>=F F ,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立。
3.2 表3.6给出了有两个解释变量2X 和.3X 的回归模型方差分析的部分结果:表3.6 方差分析表RSS 的自由度各为多少?2)此模型的可决系数和调整的可决系数为多少?3)利用此结果能对模型的检验得出什么结论?能否确定两个解释变量2X 和.3X 各自对Y 都有显著影响?练习题3.2参考解答:(1) 因为总变差的自由度为14=n-1,所以样本容量:n=14+1=15因为 TSS=RSS+ESS 残差平方和RSS=TSS-ESS=66042-65965=77回归平方和的自由度为:k-1=3-1=2残差平方和RSS 的自由度为:n-k=15-3=12(2)可决系数为:2659650.99883466042ES R TSS S === 修正的可决系数:222115177110.998615366042i ie n R n ky--=-=-=ᄡ--¥¥(3)这说明两个解释变量2X 和.3X 联合起来对被解释变量有很显著的影响,但是还不能确定两个解释变量2X 和.3X 各自对Y 都有显著影响。
第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且?练习题4.1参考解答:(1) 存在3322ˆˆˆˆβγβα==且。
因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x x x y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i ix x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2) 111ˆˆˆβαγ会等于或的某个线性组合 因为 12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-= 11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-= 则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且。
因为()()∑-=22322221ˆvar r x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑iixr x 同理,有()()33ˆvar ˆvar γβ=4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。
第三章习题解答3.1 写出二元线性回归模型表达式:(1)总体回归函数表达式; (2)总体回归函数随机设定形式;(3)样本回归函数的表达式; (4)样本回归函数的随机设定形式; (5)回归模型的矩阵表达式。
答:(1)总体回归表达式为:(|)()i i i E Y X f X = 当函数形式为线性的时候,总体回归表达式为: 12(|)i i i E Y X X ββ=+上述为个别值的表达形式,也可以写成抽象形式,如(|)()E Y X f X = 线性表达式也可以写成多元的形式,如122(|)i i i ki E Y X X X ββ=+++(2)总体回归函数随机设定形式为:(|)i i i i Y E Y X u =+或()i i i Y f X u =+ 当函数是线性的时候,总体回归函数随机设定形式为:12i i i Y X u ββ=++同样,也可以写成抽象的形式:12Y X u ββ=++ 线性表达式可以写成多元的形式:122i i ki i Y X X u ββ=++++(3)、(4)样本回归函数的表达式为:12ˆˆˆi iY X ββ=+ 随机设定形式为:12ˆˆi i iY X e ββ=++ 多元线性回归模型时,样本回归函数的表达式为:12233ˆˆˆˆˆi i i k kiY X X X ββββ=++++ 随机设定形式为:12233ˆˆˆˆi i ik ki iY X X X e ββββ=+++++(5)回归模型的矩阵表达式:=+Y X βu3.2 对多元线性回归模型进行检验时,为什么在做了F 检验之后还要做t 检验呢?答:F 检验是各解释变量联合起来对被解释变量影响的显著性检验,是模型的整体性检验,其效果相等于R 2检验,但不能说明具体每个变量的统计显著性问题,因此,需要对每个变量进行t 检验才能看出其对应参数估计值的统计显著性。
3.3 多元线性回归模型的经典假定与简单线性回归模型有什么区别?答:区别在于多元线性回归模型的经典假定设置了解释变量之间无多重共线性的假定。
第二、三章 回归方程复习题一、 单项选择题1、将内生变量的前期值作解释变量,这样的变量称为( D )。
A .虚拟变量 B. 控制变量 C .政策变量 D. 滞后变量2、把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为( B )。
A .横截面数据 B. 时间序列数据 C .修匀数据 D. 原始数据3、在简单线性回归模型中,认为具有一定概率分布的随机数量是( A )。
A .内生变量 B. 外生变量 C .虚拟变量 D. 前定变量 4、回归分析中定义的(B ) 。
A .解释变量和被解释变量都是随机变量B .解释变量为非随机变量,被解释变量为随机变量C .解释变量和被解释变量都为非随机变量D .解释变量为随机变量,被解释变量为非随机变量5、双对数模型μββ++=X Y ln ln ln 10中,参数β1的含义是( C )。
A .Y 关于X 的增长率 B. Y 关于X 的发展速度 C .Y 关于X 的弹性 D. Y 关于X 的边际变化6、半对数模型i i i X Y μββ++=ln 10中,参数β1的含义是( D )。
A .Y 关于X 的弹性 B. X 的绝对量变动,引起Y 的绝对量变动 C .Y 关于X 的边际变动 D. X 的相对变动,引起Y 的期望值绝对量变动 7、在一元线性回归模型中,样本回归方程可表示为:( C )。
A .t t t X Y μββ++=10 B. t t t t X Y E Y μ+=)|(C .tt X Y 10ˆˆˆββ+= D. t t t X X Y E 10)|(ββ+= (其中t=1,2,…,n ) 8、设OLS 法得到的样本回归直线为ii i e X Y ++=10ˆˆββ,以下说法不正确的是( D )。
A .0=∑ieB. ),(Y X 在回归直线上C .Y Y=ˆ D. 0),(≠i i e X COV 9、同一时间,不同单位相同指标组成的观测数据称为( B )。
单选题5、 回归模型中具有异方差性时,仍用OLS 估计模型,则以下说法正确的是( )A. 参数估计值是无偏非有效的B. 参数估计量仍具有最小方差性C. 常用F 检验失效D. 参数估计量是有偏的10、设tu 为随机误差项,则一阶线性自相关是指( )1211221.cov(,)0()...t s t t t t t t tt t tA u u t sB u uC u u uD u u ρερρερε----≠≠=+=++=+18、更容易产生异方差的数据为 ( ) A. 时序数据 B. 修匀数据C. 横截面数据D. 年度数据26、Goldfeld-Quandt 检验法可用于检验( ) A.异方差性 B.多重共线性 C.序列相关 D.设定误差27、用于检验序列相关的DW 统计量的取值范围是( )A. 0≤DW ≤1B.-1≤DW ≤1C. -2≤DW ≤2D.0≤DW ≤430、如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量( ) A.不确定,方差无限大B.确定,方差无限大C.不确定,方差最小D.确定,方差最小31、应用DW 检验方法时应满足该方法的假定条件,下列不是其假定条件的为( ) A.解释变量为非随机的 B.被解释变量为非随机的C.线性回归模型中不能含有滞后内生变量D.随机误差项服从一阶自回归32、在具体运用加权最小二乘法时, 如果变换的结果是x ux x x 1xy 21+β+β=则Var(u)是下列形式中的哪一种?( )44、多元线性回归模型中,发现各参数估计量的t 值都不显著,但模型的,)(22很大或R R F 值确很显著,这说明模型存在( )xD x C x B x A log ....22222σσσσA .多重共线性B .异方差C .自相关D .设定偏误45、在异方差性情况下,常用的估计方法是( ) A .一阶差分法 B. 广义差分法 C .工具变量法 D. 加权最小二乘法 46、DW 检验中要求有假定条件,在下列条件中不正确的是( )A .解释变量为非随机的 B. 随机误差项为一阶自回归形式 C .线性回归模型中不应含有滞后内生变量为解释变量52、逐步回归法既检验又修正了( )A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性 53、已知模型的形式为u x y 21+β+β=,在用实际数据对模型的参数进行估计的时候,测得DW 统计量为0.6453,则广义差分变量是( ) A.1t t ,1t t x 6453.0x y 6453.0y ---- B.1t t 1t tx 6774.0x ,y 6774.0y----C.1t t 1t tx x ,y y---- D.1t t 1t t x 05.0x ,y 05.0y ----57、在异方差的情况下,参数估计值的方差不能正确估计的原因是( ))(.0)(.)(0)(.)(.22≠≠≠≠≠i i i j i i u E D u x E C j i u u E B u E A σ59、设)()(,2221i i i i i ix f u Var u x yσσββ==++=,则对原模型变换的正确形式为( )12212222212..()()()().()()()()i i i i i ii i i i i i i i i i i A y x u B y x u C f x f x f x f x D y f x f x x f x u f x βββββββ=++=++=++=++60、在修正序列自相关的方法中,能修正高阶自相关的方法是( )A. 利用DW 统计量值求出ρˆ B. Cochrane-Orcutt 法C. Durbin 两步法D. 移动平均法80、在模型有异方差的情况下,常用的补救措施是( )A.广义差分法B.工具变量法C.逐步回归法D.加权最小二乘法81、下列说法正确的有( )A.时序数据和横截面数据没有差异B.对总体回归模型的显著性检验没有必要C.总体回归方程与样本回归方程是有区别的D.判定系数2R 不可以用于衡量拟合优度82、所谓异方差是指( )83、在给定的显著性水平之下,若DW 统计量的下和上临界值分别为dL 和du,则当dL<DW<du 时,可认为随机误差项( )A.存在一阶正自相关B.存在一阶负相关C.不存在序列相关D.存在序列相关与否不能断定90、设线性回归模型为ii i iu x x y+++=33221βββ,下列表明变量之间具有完全多重共线性的是( )000.0000.0020.0020.321321321321=+*+*+*=*+*+*=+*++*=*++*v x x x D x x x C v x x x B x x x A其中v 为随机误差项96、在DW 检验中,当d 统计量为0时,表明( )A.存在完全的正自相关 B.存在完全的负自相关C.不存在自相关D.不能判定97、在下列产生序列自相关的原因中,不正确的是( )A.经济变量的惯性作用B.经济行为的滞后作用C.设定偏误D.解释变量的共线性 137、下列说法正确的是( ) A.序列自相关是样本现象 B.序列自相关是一种随机误差现象2222)(.)(.)(.)(.σσσσ==≠≠i i i i x Var D u Var C x Var B u Var AC.序列自相关是总体现象D.截面数据更易产生序列自相关194、下列说法不正确的是( ) A.自相关是一种随机误差现象 B.自相关产生的原因有经济变量的惯性作用 C.检验自相关的方法有F 检验法 D.修正自相关的方法有广义差分法等271、某企业的生产决策是由模型t t tP Sμββ++=10描述(其中tS 为产量,tP 为价格),又知:如果该企业在1-t 期生产过剩,决策者会削减t 期的产量。
由此判断上述模型存在()。
A. 异方差问题B. 序列相关问题C. 多重共线性问题D. 随机解释变量问题 计算题:1、根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立了如下回归模型x y6843.1521.2187ˆ+-= se=(340.0103)(0.0622)6066.733,2934.0,425.1065..,9748.02====F DW E S R试求解以下问题(1) 取时间段1978——1985和1991——1998,分别建立两个模型。
模型1:x y3971.04415.145ˆ+-= 模型2:x y9525.1365.4602ˆ+-= t=(-8.7302)(25.4269) t=(-5.0660)(18.4094) ∑==202.1372,9908.0212e R∑==5811189,9826.0222e R计算F 统计量,即∑∑===9370.4334202.137********2122eeF ,对给定的05.0=α,查F 分布表,得临界值28.4)6,6(05.0=F 。
请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?(2)根据表1所给资料,对给定的显著性水平05.0=α,查2χ分布表,得临界值81.7)3(05.0=χ,其中p=3为自由度。
请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么? 表1 ARCH Test:F-statisti 6.0330.007410c 649 ProbabilityObs*R-squa red 10.14976 Probability0.017335Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 06/04/06 Time: 17:02Sample(adjusted): 1981 1998Included observations: 18 after adjusting endpointsVariable Coefficient Std.Errort-StatisticProb.C 244797.2 373821.30.654851 0.5232RESID^2(-1 ) 1.2260480.3304793.709908 0.0023RESID^2(-2 ) -1.4053510.379187-3.706222 0.0023RESID^2(-3 1.0150.32803.096397 0.0079) 853 76R-squared 0.563876Meandependent var 971801.3 Adjusted R-squared 0.470421 S.D.dependent var 1129283.S.E. of regression 821804.5 Akaike info criterion30.26952Sum squared resid 9.46E +12Schwarzcriterion30.46738Loglikelihood -268.4257 F-statistic 6.033649Durbin-Wat son stat2.124575Prob(F-statistic)0.0074102、根据某地区居民对农产品的消费y 和居民收入x 的样本资料,应用最小二乘法估计模型,估计结果如下,拟合效果见图。
由所给资料完成以下问题:(1) 在n=16,05.0=α的条件下,查D-W 表得临界值分别为371.1,106.1==U Ld d,试判断模型中是否存在自相关;(2) 如果模型存在自相关,求出相关系数ρˆ,并利用广义差分变换写出无自相关的广义差分模型。
x y3524.09123.27ˆ+= se=(1.8690)(0.0055)531.4122,6800.0,0506.22,9966.016122====∑=F DW e R i i9、下面结果是利用某地财政收入对该地第一、二、三产业增加值的回归结果,根据这一结果试判断该模型是否存在多重共线性,说明你的理由。
Dependent Variable: REVMethod: Least Squares Sample: 1 10Included observations: 10 Variable Coefficie ntStd. Error t-Statistic Prob. C17414.63 14135.10 1.232013 0.2640 GDP1 -0.2775100.146541 -1.893743 0.1071 GDP2 0.084857 0.093532 0.907252 0.3992 R-squared 0.993798 Mean dependent var 63244.0Adjusted R-squared 0.990697 S.D. dependent var 54281.99S.E. of regression 5235.544 Akaike info criterion 20.2535Sum squared resid1.64E+08 Schwarz criterion 20.37454 Log likelihood -97.26752 F-statistic 320.4848Durbin-Watson stat1.208127 Prob(F-statistic) 0.00000116、运用美国1988研究与开发(R&D )支出费用(Y )与不同部门产品销售量(X )的数据建立了一个回归模型,并运用Glejser 方法和White 方法检验异方差,由此决定异方差的表现形式并选用适当方法加以修正。