北京信息科技大学-[2010年]-数字信号处理-试卷A及参考答案
- 格式:pdf
- 大小:329.51 KB
- 文档页数:6
一、单项选择题(10小题,每小题2分,共20分)在每小题列出的三个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1. 下面说法中正确的是。
A.连续非周期信号的频谱为周期连续函数B.连续周期信号的频谱为周期连续函数C.离散非周期信号的频谱为周期连续函数D.离散周期信号的频谱为周期连续函数2. 要处理一个连续时间信号,对其进行采样的频率为3kHz,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为。
A.6kHz B.1.5kHz C.3kHz D.2kHz3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为。
A.有限长序列B.右边序列C.左边序列D.双边序列4. 下列对离散傅里叶变换(DFT)的性质论述中错误的是。
A.DFT是一种线性变换B. DFT可以看作是序列z变换在单位圆上的抽样C. DFT具有隐含周期性D.利用DFT可以对连续信号频谱进行精确分析5. 下列关于因果稳定系统说法错误的是。
A.极点可以在单位圆外B.系统函数的z变换收敛区间包括单位圆C.因果稳定系统的单位抽样响应为因果序列D.系统函数的z变换收敛区间包括z=∞6. 设系统的单位抽样响应为h(n),则系统因果的充要条件为。
A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠07. 要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条?答。
(I)原信号为带限II)抽样频率大于两倍信号谱的最高频率(III)抽样信号通过理想低通滤波器A.I、IIB.II、IIIC.I、IIID.I、II、III8. 在窗函数设计法,当选择矩形窗时,最大相对肩峰值为8.95%,N增加时,2π/N减小,起伏振荡变密,最大相对肩峰值则总是8.95%,这种现象称为。
A.吉布斯效应B.栅栏效应C.泄漏效应D.奈奎斯特效应9. 下面关于IIR滤波器设计说法正确的是。
通信原理_北京信息科技大学中国大学mooc课后章节答案期末考试题库2023年1.答案:100Hz~300Hz2.设m (t) 是均值为零的模拟基带信号,下列已调信号中,______是 DSB-SC 信号。
答案:3.码字 00110010 与码字 00110000 之间的汉明距离是( )。
答案:14.正交频分复用(OFDM)是一种()技术。
答案:多载波传输5.在码元速率相同的条件下,M进制数字调制系统的信息速率是二进制的()倍。
答案:log2M6.相干解调器要求接收载波与发送载波()。
答案:同步7.如果对频率限制在65MHz~90MHz的模拟信号进行抽样,根据带通抽样定理,当抽样频率取值范围为()时,能根据抽样序列无失真恢复原信号。
答案:60MHz~65MHz8.PCM系统采用A律13折线编码,量化器量化范围为[-10, 10],若输入采样值为1.4,则输出二进制码组的极性码与段落码分别为()。
答案:1、1019.下列论述正确的是()。
答案:正常量化区内,均匀量化的最大量化误差与样值信号的大小无关10.以下属于数字信号的是()信号。
答案:PCM11.对10路带宽均为300Hz-3400Hz的模拟信号进行PCM时分复用传输。
设抽样速率为8000Hz,抽样后进行8级量化,并编为自然二进制码,码元波形是宽度为t的矩形脉冲,且占空比为1。
请回答:时分复用PCM信号的第一零点带宽是()Hz。
答案:24000012.ADPCM能够以()的速率达到PCM的64kb/s的速率的话音质量要求。
答案:32kb/s13.二进制基带传输系统信元输出的信息比特率为100 kb/s,已知输出的信息代码为1000000001100001,其对应的HDB3码为()。
答案:+1000+V-B00-V+1-1+B00+V-114.设数字基带传输系统的带宽为1kHz,采用32进制传输,则理想情况下此系统无码间串扰传输的最高码元速率为()Baud。
《数字信号处理》课程期末考试试卷(A )填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是 ,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至 为线性卷积结果。
2. DFT 是利用nkN W 的 、 和 三个固有特性来实现FFT 快速运算的。
3. IIR 数字滤波器设计指标一般由 、 、 和 等四项组成。
4. FIR 数字滤波器有 和 两种设计方法,其结构有 、和 等多种结构。
一、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。
( )2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。
( )3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。
( )4. 冲激响应不变法不适于设计数字带阻滤波器。
( )5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。
( )6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。
( )7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。
( )8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。
( )二、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k ==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?三、IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。
1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。
北京信息科技大学2014 ~ 2015学年 第一学期《高等数学A(1)》课程期末考试试卷A参考答案及评分标准一、填空题(共15分,每题3分)1. 若53lim(1)x x e x λ--→∞+=,则λ=53.2. 函数22()||(2)x x f x x x +-=+的间断点的个数为2. 3. 函数3()3f x x x =-的极小值为2-.4. 曲线3231025y x x x =--+的拐点是(1,13).5. 曲线()31y x x =-在点()1,0二、解答题(共60分,每题6分)1. 求极限2240sin lim x x x x →-. 解 224300sin 2sin cos 2lim lim 4x x x x x x x x x→→--=——————3分 2002cos 224sin 21lim lim 12243x x x x x x →→--===-———————3分 2. 求函数()sin cos y x x =的微分.解(sin(cos ))sin(cos )(sin(cos ))dy d x x x dx xd x ==+——3分 [sin(cos )sin cos(cos )]x x x x dx =-—————————3分3. 求曲线sin 1cos x t t y t =-⎧⎨=-⎩在3t π=处的切线方程. 解sin 1cos t y t'=-————3分32|12x y π='==1232y x π-=-+——3分 4. 设,1(),1x e x f x ax b x ⎧≤=⎨+>⎩在点1x =处可导,求,a b 和(1)f '. 解 1lim()x ax b a b e +→+=+=——2分 1lim 1x x e e e x -→-=-,1lim 1x ax b e a x +→+-=-,,0a e b ==——3分 (1)f e '=——————————1分5. 设函数()y y x =由方程()1cos ln1x xy y +-=确定,求0d d x y x =. 解 ()2(1)sin ()01y y y x xy y xy x y '-+'-+-=+——4分 11011y '--=,0d 1d x y x ==——————————2分6. 求不定积分5ln x xdx ⎰. 解5651ln [ln ]6x xdx x x x dx =-⎰⎰——————4分 56611ln [ln ]66x xdx x x x C =-+⎰——————2分7. 设(21)x f x xe +=,求53()d f x x ⎰。
数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
(10). The DTFT of a sequence x[n] is denoted as )(ωj e X , then the DTFT of the time shifted version x[n-1] of x[n] is ( ).(11). We can use three basic operations to construct an arbitary complicated discrete-time LTI system. These three basic operations are addition, ( ) and unit delay.(12). A causal LTI discrete-time system is described by the difference equation ][]2[15.0]1[8.0][n x n y n y n y =-+--, then the transfer function is ( ).(13). The continuous-time signal xa(t) = 3cos(200πt) + 5cos(1200πt) is sampled at a 2000Hz rate generating a discrete-time sequence x[n], then the expression of the discrete-time sequence is x[n] = ( ).(14). The DTFT of a sequence x[n] is denoted as )(ωj e X , then the DTFT of ][0n x e n j ω is ( ).(15). Suppose that )(ωj e X is the DTFT of a real sequence x[n], the magnitude spectrum )(ωj e X is an ( ) function of ω.(16). For a real and nonperiodic sequence x[n], its DTFT is ( ) and periodic of ω, and the period is 2π.(17). Given two N-point real sequences g[n] and h[n], we construct a complex sequence x[n] = g[n] + jh[n]. Assume that the N-point DFT of x[n] is known and denoted by X[k], then we can determine the N-point DFTs G[k] and H[k] from X[k], and G[k] = ( ).(18). A sequence x[n] = {1, -1, 1, -1, -1, 1}, let X(e j ω) be the DTFT of x[n], then X(e j π) = ( ).(19). The fundamental period of the discrete-time sequence x[n] = cos(0.1πn) is ( ).(20). Under the sampling frequency F T = 1000Hz, the corresponding analog frequency of the sequence x[n] = cos(0.2πn) is ( ) Hz.2、Determine the linear convolution of x[n] and h[n], where][3.0][][2.0][n n h n n x nn μμ== (12’)3、Solving the following difference equation(12’)][]2[02.0]1[3.0][n x n y n y n y =-+-+Determine the unit step response.4、Determine the transfer function of the system described by the following block diagram: (12’)5、The windowed Fourier series method is often used in FIR digital filter design. The parameters of several commonly used window functions are listed in the following table. Now given the frequency specifications of an FIR digital lowpass filter below:dB p 1=α, dB s 40=α, πω2.0=p , πω4.0=s⊕][n y(a). Choose an appropriate window function. (6’) (b). Determine the order of the FIR digital filter. (6’)6、A sequence x[n] is generated by sampling a real continuous-time signal x a (t) with sampling frequency F T = 1000Hz. Its 16-point DFT X[k] is:X[k] =[0 -j4 -j4 -j4 -j4 0 0 0 0 0 0 0 j4 j4 j4 j4]Or expressed as ⎪⎩⎪⎨⎧==-=otherwise k j k j k X ,015,14,13,12,44,3,2,1,4][ Assume that the time-domain and the frequency-domain sampling processes have no aliasing.(1). Determine the IDFT x[n] of X[k]. (6’)(2). Determine the expression of the continuous-time signal x a (t). (6’)。
数字信号处理的技术考试试卷(附答案)数字信号处理的技术考试试卷(附答案)选择题(10分)1. 数字信号处理是指将连续时间信号转换为离散时间信号,并利用数字计算机进行处理。
这种描述表明数字信号处理主要涉及哪两个领域?- [ ] A. 数学和物理- [ ] B. 物理和电子工程- [x] C. 信号处理和计算机科学- [ ] D. 电子工程和计算机科学2. 数字滤波是数字信号处理的重要内容,其主要作用是:- [ ] A. 改变信号的频率- [x] B. 改变信号的幅度响应- [ ] C. 改变信号的采样率- [ ] D. 改变信号的量化级别3. 在离散时间信号处理中,离散傅里叶变换(Discrete Fourier Transform, DFT)和快速傅里叶变换(Fast Fourier Transform, FFT)有何区别?- [ ] A. DFT和FFT是完全相同的概念- [x] B. DFT是FFT的一种特殊实现- [ ] C. FFT是DFT的一种特殊实现- [ ] D. DFT和FFT无法比较4. 信号的采样率决定了信号的带宽,下面哪个说法是正确的?- [ ] A. 采样率越高,信号带宽越小- [ ] B. 采样率越低,信号带宽越小- [x] C. 采样率越高,信号带宽越大- [ ] D. 采样率与信号带宽无关5. 数字信号处理常用的滤波器包括:- [x] A. 低通滤波器- [x] B. 高通滤波器- [x] C. 带通滤波器- [x] D. 带阻滤波器简答题(20分)1. 简述离散傅里叶变换(DFT)的定义和计算公式。
2. 什么是信号的量化?请说明量化的过程。
3. 简述数字信号处理的应用领域。
4. 请解释什么是数字滤波器的频率响应。
5. 快速傅里叶变换(FFT)和傅里叶级数的关系是什么?编程题(70分)请使用Python语言完成以下程序编写题。
1. 编写一个函数`calculate_average`,输入一个由整数组成的列表作为参数,函数应返回列表中所有整数的平均值。
数字信号处理期末考试试题以及参考答案1. 说明数字信号处理的基本概念和应用领域。
数字信号处理(Digital Signal Processing,简称DSP)是利用计算机和数字技术对信号进行处理的一种方法。
与传统的模拟信号处理相比,数字信号处理具有精度高、灵活度大以及易于集成等优势。
它广泛应用于通信、音频处理、图像处理、雷达信号处理等领域。
2. 解释采样定理的原理,并举例说明其应用。
采样定理是数字信号处理的基础理论,它规定了采样频率必须满足一定条件,以保证从连续信号中恢复出完整的原始信息。
根据采样定理,采样频率必须大于信号最高频率的两倍,即Nyquist采样频率。
例如,对于音频信号处理,人耳可以接受的最高频率为20kHz,因此需要以至少40kHz的采样频率进行采样,才能保证恢复出高质量的音频信号。
3. 描述离散时间信号和离散序列的特点,并给出示例。
离散时间信号是在离散时间点上获取的信号,相邻时间点之间存在离散性。
离散时间信号可以用离散序列来表示,离散序列是按照离散时间点取样的数字信号。
例如,某地区每天的气温是一个离散时间信号,每天不同的时间点测量一次气温,将其离散化后可以得到一个离散序列,表示该地区每天的气温变化。
4. 详述时域和频域分析在数字信号处理中的作用。
时域分析是对信号在时间上进行分析,通过观察信号的波形和幅度变化,可以了解信号的时序特性、周期性以及脉冲等特征。
频域分析是将信号变换到频率域进行分析,通过观察信号的频谱和频率特征,可以了解信号的频率分布、频率成分以及谐波情况等。
在数字信号处理中,时域分析和频域分析是互补的工具。
通过时域分析可以了解信号的时间特性,而频域分析则更适合对信号的频率特性进行研究,两者结合可以全面分析信号的性质和特点。
5. 介绍常见的数字滤波器类型,并分别阐述其特点和应用场景。
常见的数字滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
- 低通滤波器:可以通过滤除高频噪声、保留低频信号来平滑信号。