练习2_解直角三角形
- 格式:ppt
- 大小:134.21 KB
- 文档页数:5
2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。
青岛版九年级上册数学第二章《解直角三角形》测试题一、单选题(共12题;共24分)1. 如图,在坡度为1:2的山坡上种树,要求相邻两棵树的水平距离是6m,则斜坡上相邻两棵树的坡面距离是()A.3mB.3√5mC.12mD.6m2. 如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30∘和60∘.若A,B两个目标点之间的距离是100米,则此时无人机与目标点A之间的距离(即AC的长)为()A.100米B.100√3米C.50米D.50√3米3. 如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68∘方向上,航行2小时后到达N处,观测灯塔P在西偏南46∘方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68∘≈0.9272,sin46∘≈0.7193,sin22∘≈0.3746,sin44∘≈0.6947)()A.22.48海里B.41.68海里C.43.16海里D.55.63海里4. 如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A.a+b tanαB.a+b sinαC.a+btanαD.a+bsinα5. 如图,一棵珍贵的树倾斜程度越来越厉害了.出于对它的保护,需要测量它的高度,现采取以下措施:在地面上选取一点C,测得∠BCA=37∘,AC=28米,∠BAC=45∘,则这棵树的高AB约为()(参考数据:sin37∘≈,tan37∘≈,≈1.4)A.14米B.15米C.17米D.18米6. 如图,轮船在A处观测灯塔C位于北偏西70∘方向上,轮船从A处以每小时20海里的速度沿南偏西50∘方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25∘方向上,则灯塔C与码头B的距离是()A.10√2海里B.10√3海里C.10√6海里D.20√6海里7. 如图,A,B两景点相距20km,C景点位于A景点北偏东60∘方向上,位于B景点北偏西30∘方向上,则A,C两景点相距()A.10kmB.10√3kmC.10√2kmD.203√3km8. 如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28∘,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为( )(参考数据:sin28∘≈0.47,cos28∘≈0.88,tan28∘≈0.53)A.76.9mB.82.1mC.94.8mD.112.6m9. 如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45∘,向前走6m到达B点,测得顶端点P和杆底端点Q的仰角分别是60∘和30∘,则该电线杆PQ的高度()A.6+2√3B.6+√3C.10−√3D.8+√310. 某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36∘,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:tan36∘≈0.73,cos36∘≈0.81,sin36∘≈0.59)A.5.6B.6.9C.11.4D.13.911. 某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角45∘的传送带AB,调整为坡度i=1:√3的新传送带AC(如图所示).已知原传送带AB的长是4√2米,那么新传送带AC的长是()A.8米B.4米C.6米D.3米12. 如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为10m,DE的长为5m,则树AB的高度是()m.A.10B.15C.15√3D.15√3−5二、填空题(共8题;共9分)如图,航模小组用无人机来测量建筑物BC的高度,无人机从A处测得建筑物顶部B的仰角为45∘,测得底部C的俯角为60∘,若此时无人机与该建筑物的水平距离AD为30m,则该建筑物的高度BC为________m.(结果保留根号)如图,点C在线段AB上,且AC=2BC,分别以AC,BC为边在线段AB的同侧作正方形ACDE,BCFG,连接EC,EG,则tan∠CEG=________.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是________.如图,小明在距离地面30米的P处测得A处的俯角为15∘,B处的俯角为60∘.若斜面坡度为1:√3,则斜坡AB的长是________米.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为________.计算sin60∘tan60∘−√2cos45∘cos60∘的结果为________ 。
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。
解三角形的实际应用问题专练一、选择题1.从A处望B处的仰角为,从B处望A的俯角为,则与的关系为()A .>B.=C.+=90°D.+=180°【答案】B【解析】根据仰角和俯角的概念,根据平行线的性质得解.【详解】因为与为两平行线的内错角,所以=.故答案为:B【点睛】本题主要考查仰角和俯角的概念,意在考查学生对这些知识的掌握水平和分析推理能力.2.有一长为1 km的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A.0.5 km B.1 km C.1.5 km D. km【答案】B【解析】根据题意作图,设出相应参数,根据∠BAC=∠ABD﹣∠C,求得∠BAC=∠C,判断出三角形ABC 为等腰三角形,进而求得BC.【详解】如图设坡顶为A,A到地面的垂足为D,坡底为B,改造后的坡底为C,根据题意要求得BC的长度,∵∠ABD=20°,∠C=10°,∴∠BAC=20°﹣10°=10°.∴AB=BC,∴BC=1,即坡底要加长1km,故选:B.【点睛】本题主要考查了解三角形的实际应用.考查了学生分析问题和解决问题的能力,属于中档题.3.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20 n mile,随后货轮按北偏西30°的方向航行30 min后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A.n mile/h B.n mile/hC.n mile/h D.n mile/h【答案】B【解析】由题意可知:,与正东方向的夹角为,与正东方向的夹角为,,中利用正弦定理可得货轮的速度故选4.要测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A、B两点,观察对岸的点C,测得∠CAB=45°,∠CBA=75°,且AB=120m ,由此可得河宽为(精确到1 cm)()A .170 mB .98 mC .95 mD .86 m 【答案】C【解析】在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45406sin60︒=︒.设△ABC 中,AB 边上的高为h ,则h 即为河宽,所以h =BC ·sin ∠CBA =406 ×sin 75°≈95(m).故选C.【点睛】正弦定理对于任意三角形都成立,它指出三角形三条边与对应角的正弦之间的关系式,描述了任意三角形中边与角的数量关系,主要功能是实现三角形中边角的关系转化.本题的关键是根据正弦定理利用角大小来求出边长大小.5.两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在C 北偏东300,B 在C 南偏东600,则A 、B 之间相距: A .a km B .3a km C .2a km D .2a km【答案】C【解析】如图,由题意可得90ACB ∠=︒,在Rt ACB ∆中, 22222AB CA CB a a =+=+ 22a =,∴2AB a =。
一、直角三角形的性质《解直角三角形》专题复习1、直角三角形的两个锐角互余A几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
1D几何表示:【∵∠C=90°∠A=30°∴BC= AB 】23、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为 AB 的中点 ∴ CD= 1 AB=BD=AD 】2C B4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在 Rt△ABC 中∵∠ACB=90° ∴ a 2 + b 2 = c 2 】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项, 每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD⊥AB∴ CD 2 = AD • BDAC 2 = AD • AB BC 2 = BD • AB 】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
( a • b = c • h )由上图可得:AB • CD=AC • BC二、锐角三角函数的概念如图,在△ABC 中,∠C=90°sin A = ∠A 的对边 =a斜边 c cos A = ∠A 的邻边 =b斜边 c tan A = ∠A 的对边 =a∠A 的邻边 b cot A = ∠A 的邻边 =b ∠A 的对边 a锐角 A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sinα≤1,0≤cosα≤1,tanα≥0,cotα≥0.三、锐角三角函数之间的关系(1) 平方关系(同一锐角的正弦和余弦值的平方和等于 1) sin 2 A + cos 2 A = 1 (2) 倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA • tan(90°—A)=1; cotA • cot(90°—A)=1; (3) 弦切关系tanA= sin A cos A cotA= cos Asin A (4) 互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A)30°23 60°C仰角俯角北东南iα1tanA=cot(90°—A),cotA=tan(90°—A)四、特殊角的三角函数值A说明:锐角三角函数的增减性,当角度在 0°~90°之间变化时. (1) 正弦值随着角度的增大(或减小)而增大(或减小) B(2)余弦值随着角度的增大(或减小)而减小(或增大) A(3) 正切值随着角度的增大(或减小)而增大(或减小) (4) 余切值随着角度的增大(或减小)而减小(或增大)2五、 解直角三角形2 在 Rt△中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三 角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
专题训练(二) 解直角三角形应用中的六种基本模型►模型一“独立”型1.如图2-ZT-1,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好遇见渔船,那么救援船航行的速度为( )图2-ZT-1A.10 3海里/时B.30海里/时C.20 3海里/时D.30 3海里/时2.2017·台州如图2-ZT-2是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)图2-ZT-2►模型二“背靠背”型3.如图2-ZT-3,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为( )图2-ZT-3A.160 3 m B.120 3 mC.300 m D.160 2 m4.如图2-ZT-4,湖中的小岛上有一标志性建筑物,其底部有一点A,某人在岸边的点B处测得点A在点B的北偏东30°的方向上,然后沿岸边直行4千米到达点C处,再次测得点A在点C的北偏西45°的方向上(其中点A,B,C在同一平面上).求这个标志性建筑物底部上的点A到岸边BC的最短距离.图2-ZT-4►模型三“母抱子”型5.如图2-ZT-5,某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在点C 处仰望建筑物顶端A处,测得仰角为48°,再往建筑物的方向前进6米到达点D处,测得建筑物顶端A的仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:sin48°≈710,tan48°≈1110,sin64°≈910,tan64°≈2)图2-ZT-56.2017·内江如图2-ZT-6,某人为了测量小山顶上的塔ED的高,他在山下的点A 处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)图2-ZT-6►模型四“拥抱”型7.如图2-ZT-7,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1 m(即BD=1 m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)图2-ZT-7►模型五梯形类8.如图2-ZT-8,梯形ABCD是拦水坝的横断面示意图,图中i=1∶3是指坡面的铅直高度DE与水平宽度CE的比,∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD的面积.(结果精确到0.1.参考数据:3≈►模型六“斜截”型9.“蘑菇石”是贵州省著名自然保护区梵净山的标志,小明从山脚点B处先乘坐缆车到达与BC平行的观景平台DE处观景,然后再沿着坡角为29°的斜坡由点E步行到达“蘑菇石”点A处,“蘑菇石”点A到水平面BC的垂直距离为1790 m.如图2-ZT-9,DE∥BC,BD=1700 m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1 m,参考数据:sin80°≈0.9848,sin29°≈0.4848)详解详析1.[解析] D 由“B 在海岛A 的南偏东20°方向”和“海岛C 在海岛A 的南偏西10°方向”得∠BAC =30°,同理得∠ABC =60°,∴∠ACB =90°.∵AB =20海里,∴BC =10海里,AC =10 3海里,再由“救援船由海岛A 开往海岛C 用时20分钟”可求得救援船航行的速度为30 3海里/时.故选D.2.解:车门不会碰到墙.理由如下:如图,过点A 作AC ⊥OB ,垂足为C .在Rt △ACO 中,∵∠AOC =40°,AO ∴AC =AO ·sin∠AOC ≈1.2×0.64=0.768(米).∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,0.8>0.768, ∴车门不会碰到墙.3.[解析] A 过点A 作AD ⊥BC 于点D , 则∠BAD =30°,∠CAD =60°,AD =120 m. 在Rt △ABD 中,BD =AD ·tan30°=120×33=40 3(m). 在Rt △ACD 中,CD =AD ·tan60°=120×3=120 3(m), ∴BC =BD +CD =40 3+120 3=160 3(m).4.解:过点A 作AD ⊥BC 于点D ,则AD 的长度就是点A 到岸边BC 的最短距离.在Rt △ACD 中,∠ACD =45°,设AD =x 千米,则CD =AD =x 千米. 在Rt △ABD 中,∠ABD =60°, 因为tan ∠ABD =AD BD ,即tan60°=x BD,所以BD =x tan60°=33x 千米.又因为BC =4千米, 所以BD +CD =4千米,即33x +x =4, 解得x =6-2 3,所以这个标志性建筑物底部上的点A 到岸边BC 的最短距离为(6-2 3)千米. 5.解:根据题意,得∠ADB =64°,∠ACB =48°. 在Rt △ADB 中,tan64°=AB BD ,则BD =AB tan64°≈12AB ,在Rt △ACB 中,tan48°=AB CB,则CB =ABtan48°≈1011AB ,∴CD =CB -BD ,即6=1011AB -12AB ,解得AB =1329≈14.7(米),∴建筑物的高度约为14.7米.6.[解析] 先求出∠DBE =30°,∠BDE =30°,得出BE =DE ,设EC =x ,则BE =2x ,DE =2x ,DC =3x ,BC =3x ,再根据∠DAC =45°,可得AC =DC ,列出方程求出x 的值,即可求出塔DE 的高度.解:由题意知,∠DBC =60°,∠EBC =30°, ∴∠DBE =∠DBC -∠EBC =60°-30°=30°. 又∵∠BCD =90°,∴∠BDC =90°-∠DBC =90°-60°=30°, ∴∠DBE =∠BDE ,∴BE =DE .设EC =x m ,则DE =BE =2EC =2x m ,DC =EC +DE =3x m , BC =BE 2-EC 2=3x m.由题意可知,∠DAC =45°,∠DCA =90°,AB =60 m , ∴△ACD 为等腰直角三角形,∴AC =DC , ∴3x +60=3x . 解得x =30+10 3.答:塔ED 的高度为(30+10 3)m. 7.解:设梯子的长为x m.在Rt △ABO 中,cos ∠ABO =OBAB,∴OB =AB ·cos∠ABO =x ·cos60°=12x m.在Rt △CDO 中,cos ∠CDO =OD CD, ∴OD =CD ·cos∠CDO =x ·cos51°18′≈0.625x m. ∵BD =OD -OB ,∴0.625x -12x =1,解得x =8.答:梯子的长约为8 m.8.解:过点A 作AF ⊥BC ,垂足为F . 在Rt △ABF 中,∠B =60°,AB =6, ∴AF =AB sin B =6sin60°=3 3, BF =AB cos B =6cos60°=3. ∵AD ∥BC ,AF ⊥BC ,DE ⊥BC , ∴四边形AFED 是矩形,∴DE =AF =3 3,FE =AD =4.在Rt △CDE 中,i =DE CE =13,∴CE =3DE =3×3 3=9,∴BC =BF +FE +CE =3+4+9=16, ∴S 梯形ABCD =12(AD +BC )·DE=12×(4+16)×3 3 ≈52.0.答:拦水坝的横断面ABCD 的面积约为52.0.9.解:过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,由题意,得EM ⊥AC , ∴四边形DMCF 为矩形, ∴DF =MC .在Rt △DFB 中,sin80°=DF BD ,则DF =BD ·sin80°=1700×sin80°(m), ∴AM =AC -MC =AC -DF =(1790-1700×sin80°)m. 在Rt △AME 中,sin29°=AM AE, 则AE =AMsin29°=1790-1700×sin80°sin29°≈238.9(m).答:斜坡AE 的长度约为238.9 m.。
一、知识概述1、仰角、俯角仰角、俯角:视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图所示.说明:仰角、俯角一定是水平线与视线的夹角,即从观察点引出的水平线与视线所夹的锐角.2、坡角和坡度坡角:坡面与水平面的夹角叫做坡角,用字母α表示.坡度(坡比):坡面的铅直高度h和水平宽度l的比叫做坡度,用字母i表示.则.如图所示说明:(1)坡角的正切等于坡度,坡角越大,坡度也越大,坡面越陡.(2)在解决实际问题时,遇到坡度、坡角的问题,常构造如图所示的直角三角形.3、象限角象限角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫象限角,如图中的目标方向线OA、OB、OC、OD的方向角分别表示北偏东30°,南偏东45°,北偏西60°,南偏西80°,如:东南方向,指的是南偏东45°角的方向上.如图所示.二、重点难点疑点突破1、怎样运用解直角三角形的方法解决实际问题在解决实际问题时,解直角三角形有着广泛的应用.我们要学会将千变万化的实际问题转化为数学问题来解决,具体地说,要求我们善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,这样就可运用解直角三角形的方法了.一般有以下三个步骤:(1)审题,通过图形(题目没画出图形的,可自己画出示意图),弄清已知和未知;(2)找出有关的直角三角形,或通过作辅助线产生有关的直角三角形,把问题转化为解直角三角形的问题;(3)根据直角三角形元素(边、角)之间关系解有关的直角三角形.其中,找出有关的直角三角形是关键,具体方法是:(1)将实际问题转化为直角三角形中的数学问题;(2)作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.2、在学习中应注意两个转化(1)把实际问题转化成数学问题这个转化分两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图,并赋予字母;二是将已知条件转化成示意图中的边或角.(2)把数学问题转化成解直角三角形问题.如果示意图形不是直角三角形,可添加适当的辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为解直角三角形问题,把可解的直角三角形纳入基本类型,确定合适的边角关系,细心推理,按要求精确度作近似计算,最后写出答案并注明单位.三、典型例题讲解1、测量河宽例1、如图,河边有一条笔直的公路l,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B点到公路的距离,请你设计一个测量方案.要求:(1)列出你测量所使用的测量工具;(2)画出测量的示意图,写出测量的步骤;(3)用字母表示测得的数据,求出B点到公路的距离.分析:这是一个实际问题,要求B到CD的距离,可转化为直角三角形,然后在两个直角三角形中,可分别用含有AB的式子表示AC和AD,而AC+AD=m,可运用解方程的方法求出AB即可.解:(1)测角器、尺子;(2)测量示意图如下图所示;测量步骤:①在公路上取两点C,D,使∠BCD,∠BDC为锐角;②用测角器测出∠BCD=α,∠BDC=β;③用尺子测得CD的长,记为m米;④计算求值.(3)解:设B到CD的距离为x米,作BA⊥CD于点A,在△CAB中,x=CAtanα,点评:运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).2、仰角、俯角问题例2、为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB.在地面上事先划定以B为圆心、半径与AB等长的圆形危险区.现在某工人站在离B点3米远的D处测得树的顶端A点的仰角为60°,树的底部B的俯角为30°(如图).问距离B点8米远的保护物是否在危险区内?分析:解决测量问题要明确仰角、俯角、视角、坡度、坡角等名词术语.要考查距离B点8米远的保护物是否在危险区内,关键的一点是要测算树AB的高度.解:过点C作CE⊥AB,垂足为E.在Rt△CBE中,在Rt△CAE中,故AB=AE+BE=≈4×1.73=6.92(米)<8(米).因此可判断该保护物不在危险区内.3、坡角、坡度(坡比)例3、如图,一水坝横断面为等腰梯形ABCD,斜坡AB的坡度为,坡面AB的水平宽度为上底宽AD为4m,求坡角B,坝高AE和坝底宽BC各是多少?分析:首先将实际问题转化为数学问题,如图所示,实际上已知求∠B、AE、BC.此题实质转化为解直角三角形的问题.点评:(1)解应用题时,解题过程中可以不写各数量的单位,但最后作答时务必写清单位名称.(2)应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形,梯形也是通过作底边的高线来构造直角三角形.(3)本题主要应用坡度是坡角的正切函数而求出坡角,运用坡度的概念求出梯形高,运用等腰梯形性质求出底边.4、象限角例4、如图,一轮船自西向东航行,在A处测得某岛C,在北偏东60°的方向上,船前进8海里后到达B,再测C岛,在北偏东30°的方向上,问船再前进多少海里与C岛最近?最近距离是多少?分析:将实际问题转化为数学问题,并构造出与实际问题有关的直角三角形,如图所示.船沿AB方向继续前进至D处与C岛最近,此问题实质就是已知∠CAB=90°-60°=30°,∠ABC=90°+30°=120°,AB=8海里,求BD和CD的解直角三角形问题.解:根据题设可知△ABC中,∠CAB=30°,∠ABC=120°,∴∠ACB=180°-30°-120°=30°,AB=BC=8,作CD⊥AB于D.∴最近距离即为C到AB所在直线的垂线段CD的长度.在Rt△CBD中,BC=8,∠CBD=60°,点评:根据题意准确画出示意图是解这类题的前提和保障.5、开放探究题例5、(荆州市)某海滨浴场的沿岸可以看作直线,如图,1号救生员在岸边A点看到海中的B点有人求救,便立即向前跑300米到离B点最近的D点,再跳入海中游到B点救助;若每位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.(1)请问1号救生员的做法是否合理?(2)若2号救生员从A跑到C,再跳入海中游到B点救助,且∠BCD=65°,请问谁先到达点B?(所有数据精确到0.1,sin65°≈0.9,cos65°≈0.4,)分析:(1)比较1号救生员从点A直接游到点B所用时间与从点A跑到点D再游到点B的时间即可作出判断.(2)分别计算出1号救生员、2号救生员所用时间,再作判断.点评:掌握探究题的探究方法非常重要,本题中救生员赶到点B的时间是我们探究的核心问题,如何准确求出救生员赶到点B所用时间是解决本题的关键.。
专题02解直角三角形(六大类型)1.(2023•青岛三模)如图,在正方形网格中,每个小正方形的边长均是1,△ABC的顶点均在小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【答案】B【解答】解:过点D作CD⊥AB,垂足为D,在Rt△ADC中,根据勾股定理得,AC=5,∴sin∠BAC=,故选:B.2.(2023•樊城区模拟)如图,在正方形组成的网格中,∠BAC的余弦值等于()A.B.C.1D.【答案】B【解答】解:如图,在Rt△ACD中,AD=CD=3,∴AC===3,∴cos∠BAC===,故选:B.3.(2023•碑林区校级模拟)如图,在Rt△ACB中,∠C=90°,D是AC的中点,BC=4,tan,则AD的长为()A.1B.2C.4D.8【答案】C【解答】解:在Rt△ACB中,∠C=90°,∵tan∠CAB==,∴AC=2BC=2×4=8,∵D是AC的中点,∴AD=AC=×8=4,故选:C.4.(2023•增城区二模)如图,在Rt△ABC中,AB=10,,则AC的长是()A.6B.7C.8D.9【答案】A【解答】解:在Rt△ABC中,∠C=90°,∵cosA==,∴AC=AB=×10=6,故选:A.5.(2023•集宁区校级模拟)在△ABC中,∠C=90°,AB=25,,则AC的长为()A.9B.15C.18D.12【答案】B【解答】解:∵∠C=90°,∴sinB=,∵AB=25,,∴=,∴AC=AB=×25=15,故选:B.6.(2022秋•薛城区期末)如图,在△ABC中,AD⊥BC交BC于点D,AD=BD,若AB=,tanC=,则BC=()A.8B.C.7D.【答案】C【解答】解:∵AD⊥BC BC于点D,AD=BD,∴△ABD是等腰直角三角形,∴AD=BD=AB=4,∵tanC==,∴CD=3,∴BC=BD+CD=7;故选:C.7.(2021秋•惠安县期末)如图中的每个小正方形的边长均相等,则sin∠BAC的值为()A.1B.C.D.【答案】B【解答】解:连接BC,由题意得:BC2=12+22=5,AC2=12+22=5,AB2=12+32=10,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∵AC=BC,∴∠BAC=∠ABC=45°,∴sin∠BAC=sin45°=,故选:B.8.(2022秋•电白区期末)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,BC=,AC=3,则sin∠ACD=()A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠ACB=90°,∴AB===4,∠ACD+∠BCD=90°,∵CD是斜边AB上的高,∴CD⊥AB,∴∠B+∠BCD=90°,∴∠ACD=∠B,∴sin∠ACD=sin∠B==,故选:C.9.(2022•市中区二模)如图,在▱ABCD中,CD=4,∠B=60°,分别以点A,B为圆心、大于的长为半径作弧,两弧交点的连线交BC与点E,BE:EC=2:1,则▱ABCD的面积为()A.12B.C.D.【答案】C【解答】解:过点A作AF⊥BC于点F,在▱ABCD中,∵CD=4,∴AB=CD=4,由作法得EM垂直平分AB,∴AE=BE=4,∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=4,∵BE:EC=2:1,∴EC=2,BC=BE+EC=4+2=6;又∵AF⊥BC,∠B=60°,∴sin∠ABF=,∴AF=AB•sin∠ABF=4×=2,∴S▱ABCD=BC•AF=6×2=12.故选:C.10.(2022•南山区校级二模)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则tan∠ACD的值为()A.B.C.D.【答案】A【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∴∠CDA=90°,∠A+∠B=90°,∴∠A+∠ACD=90°,∴∠B=∠ACD,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,tanB=,∴tanB=,∴tan∠ACD=,故选:A.11.(2022•青秀区校级三模)如图,在△ABC中,∠C=90°,cosA=,AC=,则AB长为()A.4B.8C.D.12【答案】B【解答】解:在△ABC中,∠C=90°,cosA=,AC=,∴AB===8,故选:B.12.(2022秋•西岗区校级期末)如图,在平面直角坐标系中,点A的坐标为(3,4),那么tanα的值是()A.B.C.D.【答案】B【解答】解:如图:过点A作AB⊥x轴,垂足为B,∵点A的坐标为(3,4),∴OB=3,AB=4,在Rt△AOB中,tanα==,故选:B.13.(2022秋•张店区期中)如图,在△ABC中,∠BAC=60°,∠B=45°,BC=6,AD平分∠BAC交BC于点D,则线段AD的长为()A.6B.12C.6D.6【答案】B【解答】解:过点C作CE⊥AB,垂足为E,在Rt△BCE中,∠B=45°,BC=6,∴CE=BC•sin45°=6×=6,在Rt△ACE中,∠BAC=60°,∴AC===12,∵AD平分∠BAC,∴∠DAB=∠CAB=30°,∴∠ADC=∠DAB+∠B=75°,∵∠ACD=180°﹣∠CAB﹣∠B=75°,∴∠ACD=∠ADC,∴AC=AD=12,故选:B.14.(2022•泗水县二模)如图,在Rt△BAD中,延长斜边BD到点C,使,连接AC,若,则tan∠CAD的值()A.B.C.D.【答案】B【解答】解:过点C作CE垂直AD的延长线于E,在Rt△BAD中,,∴,设AB=3a,AD=4a,则BD==5a,∵CE⊥AE,BA⊥AD,∴△BAD∽△CED,∴,∵DC=BD,∴DE=AD=2a,CE=AB=a,∴在Rt△AEC中,tan∠CAD==.故选:B.15.(2021秋•安居区期末)如图,在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.B.C.D.【答案】D【解答】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°﹣∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×=1,CD=ACsin60°=2×=,∵AB=4,∴BD=AB+AD=4+1=5,在Rt△BDC中,BC===2,∴sinB===,故选:D.16.(2023•海陵区一模)如图,在4×3的网格图中,点A、B、C、D都在小正方形的顶点上,AB、CD相交于点P,则tan∠APC的值是3.【答案】3.【解答】解:连接AC.∵CB∥AD,∴△CBP∽△DAP.∴==.∴=,即=3.∵AC=CD==,AD=2,∴AC2+CD2=AD2.∴∠ACD=90°.在Rt△ACP中,tan∠APC===3.故答案为:3.17.(2023•鼓楼区校级二模)我们给出定义:如果两个锐角的和为45°,那么称这两个角互为半余角.如图,在△ABC中,∠A,∠B互为半余角,且,则tanA=.【答案】.【解答】解:过点B作BD⊥AC,交AC的延长线于点D,∵,∴设BC=2a,AC=3a,∵∠A,∠B互为半余角,∴∠A+∠B=45°,∴∠DCB=∠A+∠B=45°,在Rt△CDB中,BD=BCsin45°=2a•=2a,CD=BCcos45°=2a•=2a,∵AC=3a,∴AD=AC+CD=3a+2a=5a,在Rt△ABD中,tanA===,故答案为:.18.(2023•锡山区模拟)如图,在4×4的网格中,每个小正方形的边长为1,点A,B,C均在格点上,D是AB与网格线的交点,则的值是.【答案】.【解答】解:如图:由题意得:AC2=12+22=5,BC2=22+42=20,AB2=32+42=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴AC=,AB=5,∵BE=EF,DE∥AF,∴BD=AD,∴CD=BD=AB,∴∠CBD=∠BCD,∵∠CDA=∠BCD+∠CBD,∴∠CDA=2∠CBD,∴=sin∠CBD==,故答案为:.19.(2022秋•河北期末)如图,在△ABC中,∠ACB=90°,cosA=,BC=12,D是AB的中点,过点B作线段CD的垂线,垂足为点E.(1)线段CD的长为;(2)cos∠DBE的值为.【答案】(1);(2).【解答】解:(1)在Rt△ABC中,cosA==,∴设AC=3x则AB=5x,∴BC===4x,∵BC=12,∴4x=12,∴x=3,∴AB=5x=15,AC=3x=9,∵D是AB的中点,∴CD=BD=AB=,故答案为:;(2)∵∠ACB=90°,D是AB的中点,∴△CBD的面积=△ABC的面积,∵BE⊥CE,∴CD•BE=×AC•BC,∴BE=×9×12∴BE=,在Rt△BDE中,cos∠DBE===,故答案为:.20.(2022秋•徐州期末)如图,在△ABC中,已知AD是BC边上的高,DC=1,BD=2,tanB=cos∠DAC,则AB的值为.【答案】见试题解答内容【解答】解:∵在△ABC中,已知AD是BC边上的高,DC=1,BD=2,tanB=cos∠DAC,∴∠ADB=∠ADC=90°,∴,AC=,∴,解得,AD=,∴AB=,故答案为:.21.(2022•江阴市校级一模)如图,△ABC中,∠B=90°,BC=3,AB=5,∠A=α,易知tanα=,聪明的小强想求tan2α的值,于是他在AB上取点D,使得CD=AD,则tan2α的值为.【答案】见试题解答内容【解答】解:∵CD=AD,∴∠A=∠ACD,∵∠CDB是△ACD∴∠CDB=∠A+∠ACD=2α,在Rt△CDB中,设BD为x,则AD=CD=5﹣x,∵BC2+BD2=CD2,∴32+x2=(5﹣x)2,∴x=1.6,∴BD=1.6,∴tan∠CDB===,∴tan2α=,故答案为:.22.(2022•鼓楼区校级一模)如图为两个边长为1的正方形组成的2×1格点图,点A,B,C,D 都在格点上,AB,CD交于点P,则tan∠BPD=3.【答案】3.【解答】解:如图,连接BE交CD于点O,∵四边形BCED是边长为1的正方形,∴BE⊥CD,OB=OC=OD=OE=×1=,∵BC∥AD,∴△BCP∽△ADP,∴==,∴CP=CD=,∴OP=OC﹣CP=﹣=,在Rt△BOP中,tan∠BPD===3,故答案为:3.23.(2022秋•昌平区期末)如图,在△ABC中,AB=3,sinB=,∠C=45°,则AC的长为2.【答案】2.【解答】解:过点A作AD⊥BC,垂足为D,在Rt△ABD中,AB=3,sinB=,∵AD=AB•sinB=3×=2,在Rt△ADC中,∠C=45°,∴AC===2,故答案为:2.24.(2022秋•杨浦区期中)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AF⊥CD,AF分别与CD、CB相交于点E、F,如果tanB=,那么的值是.【答案】.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=DB=AB,∴∠B=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵AF⊥CD,∴∠CEA=90°,∴∠ACD+∠CAE=90°,∴∠CAE=∠DCB,∴∠CAE=∠DCB=∠B,∴tanB=tan∠DCB=tan∠CAE=,在Rt△ACE中,tan∠CAE==,设CE=2x,则AE=3x,在Rt△CEF中,EF=CE•tan∠DCB=2x•=,∴==,故答案为:.25.(2022秋•惠山区期中)如图,△ABC中,∠ACB=90°,CD⊥AB,已知tanB=,S△ACD=2,=10.则S△ABC【答案】10.【解答】解:∵CD⊥AB,tanB=,∴=,∵△ABC中,∠ACB=90°,CD⊥AB,∴△ACD∽△CBD,:S△CBD=1:4,∴S△ACD=2,∵S△ACD=8,∴S△CBD=S△ACD+S△CBD=2+8=10.∴S△ABC故答案为:10.26.(2022秋•东平县校级月考)如图,在Rt△ABC中,∠C=90°,D为BC上一点,AB=5,BD=1,tanB=.则sinα=.【答案】.【解答】解:过点D作DE⊥AB,垂足为E,在Rt△ABC中,tanB==,∴设AC=3a,则BC=4a,∴AB===5a,∵AB=5,∴5a=5,∴a=1,∴AC=3,BC=4,∵BD=1,∴CD=BC=BD=3,∴AD===3,在Rt△BDE中,tanB==,∴设DE=3k,则BE=4k,∴BD===5k,∵BD=1,∴5k=1,∴k=,∴DE=,在Rt△ADE中,sinα===,故答案为:.27.(2022秋•杭州月考)如图,在△ABC中,CD⊥AB于D,tanA=2cos∠BCD.(1)求证:BC=2AD.(2)若cosB=,AB=10,求△ABC的面积.【答案】(1)证明过程见解答;(2)△ABC的面积为10.【解答】(1)证明:∵CD⊥AB,∴∠CDA=∠CDB=90°,在Rt△ACD中,tanA=,在Rt△CDB中,cos∠BCD=,∵tanA=2cos∠BCD,∴=,∴BC=2AD;(2)解:在Rt△CDB中,cosB==,∵BC=2AD,∴=,∵AB=10,∴BD=AB=6,∴BC===8,∴CD===2,∴△ABC的面积=AB•CD=×10×2=10,∴△ABC的面积为10.28.(2021秋•东台市期末)如图,在四边形ABCD中,BC∥AD,BE⊥AD于点E,CF⊥AD于点F,AB=2,BC=1,∠A=45°,DF=2.(1)求∠BCD度数;(2)求四边形ABCD的面积.【答案】(1)150°;(2)4+2.【解答】解:(1)∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵sinA=,∴BE=AB•sinA=2×sin45°=2×=2,∵BC∥AD,BE⊥AD,CF⊥AD,∴四边形BCFE是矩形,∴CF=BE=2,∠BCF=90°,∴tan∠DCF===,∴∠DCF=60°,∴∠BCD=90°+60°=150°;(2)∵cosA=,∴AE=AB•cosA=2×cos45°=2×=2,∵EF=BC=1,∴四边形ABCD的面积为:(BC+AD)•BE=×(1+2+1+2)×2=4+2.29.(2023春•上思县月考)已知:如图,AC是△ABD的高,BC=15cm,∠BAC=30°,∠DAC =45°,求AD.【答案】见试题解答内容【解答】解:在Rt△ABC中,BC=15cm,∠BAC=30°,∴AC=cot30°•BC=15cm,设BD=x,则有AB=2x,在Rt△ACD中,∠ACD=90°,∠DAC=45°,∴cos45°=,∴AD===15(cm).30.(2022秋•宣州区期末)如图,在△ABC中,AB=AC,BD是AC边上的中线,AE⊥BC,垂足为点E,交BD于F,cos∠ABC=,AB=13.(1)求AE的长;(2)求tan∠DBC的值.【答案】见试题解答内容【解答】解:(1)∵AE⊥BC,∴∠AEB=90°.∵,AB=13,∴BE=5.∵在Rt△BEA中,BE22=AB2,∴.(2)∵AB=AC,AE⊥BC,∴AE是BC边上的中线.又∵BD是AC边上的中线,∴F是△ABC的重心.∵AE=12,∴.∵Rt△BEF中,BE=5,EF=4,∴tan∠DBC=.31.(2022秋•栖霞市期中)如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cosA=.(1)求CD的长;(2)求tan∠DBC的值.【答案】(1)8;(2).【解答】解:(1)在Rt△ADE中,∠AED=90°,AE=6,cosA=,∴AD==10,∴==8.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴CD=DE=8;(2)由(1)AD=10,DC=8,∴AC=AD+DC=18,在△ADE与△ABC中,∵∠A=∠A,∠AED=∠ACB,∴△ADE∽△ABC,∴,即=,∴BC=24,∴.32.(2022•长春)如图,在Rt△ABC中,∠ABC=90°,AB<BC.点D是AC的中点,过点D 作DE⊥AC交BC于点E.延长ED至点F,使得DF=DE,连结AE、AF、CF.(1)求证:四边形AECF是菱形;(2)若=,则tan∠BCF的值为.【答案】(1)证明见解析;(2).【解答】(1)证明:∵点D是AC的中点,∴AD=CD,∵DF=DE,∴四边形AECF是平行四边形,又∵DE⊥AC,∴平行四边形AECF是菱形;(2)解:∵=,∴CE=4BE,设BE=a,则CE=4a,由(1)可知,四边形AECF是菱形,∴AE=CE=4a,AE∥CF,∴∠BEA=∠BCF,∵∠ABC=90°,∴AB===a,∴tan∠BCF=tan∠BEA===,故答案为:.。
第二节解直角三角形第二节解直角三角形知识要点已知三角形的某些元素求其它元素的问题称为解三角形,解一般的三角形至少需要已知三个元素(其中至少要有一条边)在直角三角形中,一个元素(直角)是已知的,只需要知道其他两个元素(其中至少要有一条边),就可以求出该三角形的其他元素(边长和角)及面积,这类问题称为“解直角三角形”.一、直角三角形中的边角关系解直角三角形包括“已知一边一角”和“已知两边”两类情况,都可以利用三角比的边角关系或勾股定理来解.例题精讲例1△中,∠C=°,AC=BC,点D在BC上,∠DAC=°已知AD=6,求BD的长.举一反三1-1旗杆上的绳子从顶端垂到地面还多8米.当把绳子下端沿地面拉直后,绳子与地面成45°角,则与绳子长度最接近的整数值是()A.27;B.28;C.29;D.301-2在△中,∠C=°,点D在BC上,BD=4,AD=BC,cos∠ADC =(2)求sinB的值.点评在直角三角形中,已知某锐角的三角比但相关的两条线段都不知道,则必需引入比例系数k,再按题意根据等量关系列出方程求k.注意不可直接写DC=3,AD=5,因为比例系数k并不一定等于1(在本题中比例系数k=2).1-3△中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=0.8(1)求线段DC的长;(2)求tan∠EDC的值.点评在斜三角形中,要求某锐角内角的三角比,可通过作垂线构造直角三角形,或通过相等角的代换将该角转移到直角三角形中,寻找新的关系.二、等腰三角形中的边角关系根据三线合一定理,作底边上的高线可以把等腰三角形分成两个全等的直角三角形,从而把解等腰三角形的问题化为解直角三角形的问题例2△ABC中,AB=AC,BC=6,(1)求边AB的长;(2)求边AC上的高.求三角形的面积也是解三角形的内容之一,下面看一道利用三角比计算三角形面积的问题.举一反三2-1在△中,AB=AC=10,∠B=°,求△的面积.点评由本题中的方法二可归纳出新的面积公式:,其中为AB、AC的夹角2-2已知△中,AB=AC=10,△的面积为,求顶角A的大小.点评在已知三角形面积的问题中,经常要按照以上两种情况进行分类讨论.2-3在△中,AB=AC=10,BC=12.(1)求∠B的正切值;(2)求∠A的正弦值.三、一般三角形的边角关系例3在△ABC中,∠A=°,∠C=°,AB=12. (1)求边AC的长;(2)求sinC.点评(1)对于一般三角形,通过作一条高可以把它分成两个直角三角形,如果原三角形中含特殊角,那么尽量不要把特殊角分开,在本例中,如果一上来就作AE⊥BC,固然在Rt△ABE中由AB=12,∠B=60°可以求出AE和BE,接着在Rt△ACE中都是非特殊角,计算无法进行下去了.(2)本题的计算结果使我们又获得了一个“扩大的特殊角”的三角比:sin75°=.举一反三3-1已知在△中,∠B、∠C都是锐角,BC=20,,,求AC的长.3-2在△中,D在边BC上,BD=2CD,且AD⊥AB,若,求∠B的度数.点评本题中的两个条件“∠BAD=90°和“tan∠CAD=”不在同一个三角形中,添辅助线的目的就是要把这两个条件集中到同一个直角三角形中.3—3在上海旅游节期间举办了彩车巡回展览活动.上海锦江集团制作的彩车上有一副钢制的三脚架安置在一辆平板车上,如图2—2一15所示,平板车底板离地面为1.6米,三脚架为△ABC,其中BC长20米,∠B和∠C分别为45°和30°.彩车要穿过南北高架路驶往外滩,已知南京路成都路道口的高架路离地面高8米,延安路成都路道口的高架路离地面高10米.这辆彩车在这两处道口是否都能安全通过?(参考数据:≈1.732)点评抛开题目的实际背景,本题的数学含义是:“在△ABC中,已知BC=20,∠B=45°,∠C=30°,求高AD.”解题中以AD=x为中间量,根据BD+DC=BC建立方程求解.四、复合图形中的边角关系在这里,“复合图形”是指由有两个三角形拼合或叠合而成的图形°四边形被它的一条对角线分成两个三角形,因此解四边形的问题可以化归为解三角形的问题.例4已知四边形ABCD中,BC=CD=DB,∠ADB=°,,求S△ABD:S△BCD.举一反三4-1将两块三角板如图放置,其中∠C=∠EDB=°,∠A=45°,∠E=30°,AB=DE=6求重叠部分四边形DBCF的面积.点评用“割补法”求四边影DBCF的面积可以有两种方法:一是由点C作垂线CG上AB于G,把四边形DBCF分成Rt△BCG和梯形DGCF;二是如本题中的解法,看作是两个等腰直角三角形(△ABC和△ADF)的面积之羞.后者只需要求出AD和AC’的长,是同一种图形的面积相减,因此后一种解法比前者顺畅.将两块三角板换一种叠法得到下面的问题.4-2将一副三角板如图放置,其中∠A=∠BCD=°,AB=AC,∠DBC=°,已知BC=6,求它们重叠部分△EBC的面积.4-3已知△ABC是边长为a的等边三角形,△DBC是以BC为斜边的等腰直角三角形,求线段AD的长.点评不给图形的题目,往往藏有玄机.在自己画图的过程中要仔细考虑:这个图有没有不同的画法?要不要进行分类讨论?内容提炼1.解直角三角形时,除了“已知两边求第三边”用勾股定理、“已知一个锐角求另一个锐角”用“两锐角互余”之外,其它各种情况都可以用三角比的定义求解;2.解斜三角形时,我们把它化为直角三角形来解,经常遇到的题目有两类:①已知两边夹角解三角形.如图2—2—22,△ABC中,已知AC=b,AB=c,∠A=a,可作高CD⊥AB,则CD=b·sina,AD=b·cosb,BD=c—bcosa,再在Rt△BCD中用勾股定理求,利用三角比定义tanB=,最后求出∠C=180°一∠A一∠B·②已知两角一边解三角形.如图2—2—23,△ABC中,已知∠A=a,∠B=,AB=c,作高CD,设CD=x,列方程xcota+xcot=c,得x=求出CD后计算习题精炼1.△ABC中,∠C=°,已知以下边或角的大小不能解该三角形的是()A.∠A、a;B.∠B、c;C.∠A、∠B;D.a、c2.△ABC中,∠A=90°,若AB=c,∠B=;B.;C.;D.3.若△ABC的两条边长分别为AB=20cm,AC=30cm,S△ABC=150cm2,则∠A的度数为()A.30°;B.60°;C.30°或150°;D.60°或120°4.Rt△中,∠C=°,若AC=6,,则AB=.5.△中,∠A=°,若∠B=θ,AC=b,则AB=(用θ和b的三角比表示)6.△AB中,若AB=AC=10cm,BC=12cm,则tanB=.7.如图,△ABC中,若AB=AC,∠A=90°,BD是角平分线,则tanDBC=.8.△中,若AB=AC=,BC=6,则∠BAC=度9.在ABC中,=0°,B=AC,将ABC绕着点B旋转使点落在直线B上C','C'=________.中,∠C=°,CD是边AB上的中线,,BC=6.(1)求CD的长;(2)求sin∠BCD.11.如图,在△中,已知∠A、∠B都是锐角,,BC=20,,AB=29,求△ABC的面积.12.如图,梯形ABCD中,AB∥CD,∠B=°,点F在BC上,∠AFD =°,已知AB=8,DC=3,tan∠BAD=2.(1)求AD的长;(2)求tan∠FAD.互动探究如图,Rt△中,AB=AC,∠BAC=°,D、E分别为AB、AC上的点,AE=BD,联结DE、BE.(1)当AD=2DB时,分别计算tan∠ADE和tan∠EBC的值.从这个计算结果你能得出什么结论?(2)以第(1)小题中的探究结论为条件,求的值.2014/11/29第8页共8页74-84。