数列_不等式_向量综合测试题
- 格式:doc
- 大小:287.50 KB
- 文档页数:4
一、选择题1.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .62.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3923.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞ B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,4.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n - 5.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 6.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .27.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏8.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .219.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1210.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭11.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .712.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 14.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.15.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则10S =______. 16.已知等差数列{}n a 中,48a =,84a =,则其通项公式n a =__________17.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.18.若数列{}n a 满足12a =,141n n a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.19.已知数列{}n a 与{}n b 满足11222n n a a a ++++=-,1(1)(1)nn n n a b a a +=--,数列{}n b 的前n 项的和为n S ,若n S M ≤恒成立,则M 的最小值为_________.20.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.三、解答题21.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .22.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A . 23.设数列{}n a 的前n 项和为n S ,已知23S =,()*11n n a S n +=+∈N .(1)求数列{}n a 的通项公式; (2)设()()111n n n n a b a a +=++,记数列{}n b 的前n 项和为n T ,求证:12n T <.24.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}nb 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.已知数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn n b a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n --=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=, ()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥- ⎪⎝⎭的n 的最大值为5.故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.2.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.3.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=, 12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.4.D解析:D 【分析】 根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.5.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S =∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩ ∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n kk n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.6.A【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.7.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.8.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.9.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.10.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936,……可得数列{}n a 为首项为94,公比为13的等比数列, 所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥,所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭, 故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题11.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=, 即116255204a b +=,当且仅当16b aa b =,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.12.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n n a a +=+,则()112221n n n a a a ++=+=+,即1121n n a a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =. 故选:C. 【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项.二、填空题13.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711a b b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.14.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2,∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15.【分析】先利用求出再利用时可知是首项为1公差为1的等差数列即可求出【详解】当时解得当时整理可得是首项为1公差为1的等差数列是正项数列故答案为:【点睛】本题考查等差数列的判断考查和的关系属于中档题【分析】先利用11a S =求出1S ,再利用2n ≥时1n n n a S S -=-可知{}2n S 是首项为1,公差为1的等差数列,即可求出10S . 【详解】 当1n =时,1111112S a a a ,解得11a =,11S = 当2n ≥时,11112nn n n nS S S S S ,整理可得2211n n S S --=,2n S 是首项为1,公差为1的等差数列, 2111n S n n ,{}n a 是正项数列,n S ∴=1010S .【点睛】本题考查等差数列的判断,考查n a 和n S 的关系,属于中档题.16.【解析】∵等差数列{an}中a4=8a8=4∴解得a1=11d=−1∴通项公式an=11+(n−1)×(−1)=12−n 解析:12n -【解析】∵等差数列{a n }中,a 4=8,a 8=4, ∴41813874a a d a a d =+=⎧⎨=+=⎩,解得a 1=11,d =−1,∴通项公式a n =11+(n −1)×(−1)=12−n .17.32【分析】利用数列的递推公式推导出由此能求出数列的前6项和【详解】∵数列中∴解得∴数列的前6项和为:故答案为:32【点睛】本题主要考查数列的前6项和的求法考查递推公式递推思想等基础知识考查运算求解解析:32 【分析】利用数列的递推公式推导出11a =,由此能求出数列{}n a 的前6项和. 【详解】∵数列{}n a 中,22a =,21n n n a a a ++=+,834a =, ∴32112a a a a =+=+,43211224a a a a a =+=++=+,543162a a a a =+=+,6541103a a a a =+=+, 7651165a a a a =+=+,876126834a a a a =+=+=,解得11a =,∴数列{}n a 的前6项和为:()()()()61111112246210324832S a a a a a a =+++++++++=+=,故答案为:32. 【点睛】本题主要考查数列的前6项和的求法,考查递推公式、递推思想等基础知识,考查运算求解能力,属于中档题.18.【分析】根据递推关系式可证得数列为等比数列根据等比数列通项公式求得代入不等式结合可求得结果【详解】数列是以为首项为公比的等比数列由得:即且满足题意的最小正整数故答案为:【点睛】本题考查根据数列递推关 解析:11【分析】根据递推关系式可证得数列}1,代入不等式,结合n *∈N 可求得结果. 【详解】()21411n n a a +=+=,1=,)121=,∴数列}111=为首项,2为公比的等比数列, )1112n -+=⨯,)1121n -=⨯-,由22020n a ≥2020≥,即)1220211837n -≥=⨯≈,92512=,1021024=且n *∈N ,∴满足题意的最小正整数11n =.故答案为:11. 【点睛】本题考查根据数列递推关系式求解数列通项公式并解不等式的问题,关键是能够通过构造的方式,通过递推关系式得到等比数列的形式,进而利用等比数列通项公式来进行求解.19.【分析】由已知式写出为的式子相减求得检验是否相符求得用裂项相消法求得和由表达式得的范围从而得最小值【详解】∵所以时两式相减得又所以有从而显然所以的最小值为1故答案为:1【点睛】方法点睛:本题主要考查 解析:1【分析】由已知式写出n 为1n -的式子,相减求得n a ,检验1a 是否相符,求得n b ,用裂项相消法求得和n S ,由n S 表达式得M 的范围,从而得最小值. 【详解】 ∵11222n n a a a ++++=-,所以2n ≥时,12122n n a a a -+++=-,两式相减得1222n n nn a +=-=,又21222a =-=,所以*n N ∈,有2nn a =,从而11211(21)(21)2121n n n n n n b ++==-----,122231111111212121212121n n n n S b b b +⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--,显然1n S <,所以1M ≥,M 的最小值为1.故答案为:1. 【点睛】方法点睛:本题主要考查求数列的通项公式,考查裂项相消法求和,数列求和的常用方法有:(1)公式法,(2)错位相减法,(3)裂项相消法,(4)分组(并项)求和法,(5)倒序相加法.20.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++,2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.三、解答题21.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅, 12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.22.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d , 若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n n n A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算. 23.(1)12n n a ;(2)证明见解析.【分析】(1)利用1n n n a S S -=-消去n S ,得到{}n a 为等比数列,公式法求通项公式; (2)把12n n a 代入()()111n n n n a b a a +=++,用裂项相消法求出n T ,再证明12n T <.【详解】解:(1)∵11n n a S +=+,∴11(2)n n a S n -=+≥ ∴1n n n a a a +-=,即∴12(2)n n a a n +=≥. 又21111a S a =+=+,2123S a a =+=∴11a =,22a =,∴212a a =也满足12(2)n n a a n +=≥. ∴{}n a 是以1为首项,2为公比的等比数列,∴12n na(2)由(1)知()()()()11112111121212121n n nn n n n n n a b a a ---+===-++++++.∴1201121111111212121212121n n n nT b b b -⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭01111121212212n n =-=-<+++. 【点睛】 (1)证明等差(比)数列的方法:定义法和等差(比)中项法;(2)数列求和的方法:公式法、分组求和法、倒序相加法、裂项相消法、错位相减法.24.(1)3nn a =;(2)13112212n n ⎛⎫-- ⎪++⎝⎭. 【分析】(1)由已知13213,,22a a a 成等差数列求出公比q 后可得通项公式; (2)用裂项相消法求和n S .【详解】(1)解:设等比数列{}n a 的公比为q , 由题意得:31212322a a a ⨯=+, 即211132a q a a q =+,即232q q =+,所以3q =或1q =-(舍),所以1333n nn a -=⋅=.(2)由(1)知233233111log log log 3log 3(2)n n n n n b a a n n ++===⋅⋅+,则11122n b n n ⎛⎫- ⎪+⎝⎭=, 所以1111111112324112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎛⎫=+-- ⎪++⎝⎭13112212n n ⎛⎫=-- ⎪++⎝⎭【点睛】本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(1)()*1(1)2nn a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n n n a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,n n a n ⎧=⎨⎩为奇数为偶数). (2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+,即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.26.(1)2nn a n =⋅;(2)()1122n n T n +=-⋅+;(3)12. 【分析】(1)利用累乘法可求得数列{}n a 的通项公式; (2)利用错位相减法可求得数列{}n a 的前n 项和n T ;(3)令2n n n c S S =-,分析数列{}n c 的单调性,由此可求得2n n S S -的最小值. 【详解】(1)数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈⎪⎝⎭,则2140a a =>,323202a a =⨯>,,以此类推,对任意的n *∈N ,0n a >, 由已知条件可得()121n n n a a n++=, 3211212223222121n n n n a a a n a a n a a a n -⨯⨯=⋅⋅⋅⋅=⨯⨯⨯⨯=⋅-; (2)1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--, 因此,()1122n n T n +=-⋅+;(3)21n n n b a n ==,则111123n S n =++++, 令2n n n c S S =-,则()()()()122122221n n n n n n n n n n c c S S S S S S S S +++++-=---=---()()11111102221121222122n n n n n n n =+-=-=>+++++++,则1n n c c +>, 则数列{}n c 为单调递增数列,所以,数列{}n c 的最小值为12112c S S =-=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。
专题集训·作业(九)一、选择题1.平行六面体的各棱长均为4,在其顶点P 所在的三条棱上分别取P A =1,PB =2,PC =3,则棱锥P -ABC 的体积是平行六面体的体积的( )A.164 B.364 C.132 D.332答案 A解析 由已知可将平行六面体模型化为正方体,则有V 正方体=64,V P -ABC =13×12×1×2×3=1,故选A.2.(2014·合肥一中模拟)e ,π分别是自然对数的底数和圆周率,则下列不等式不成立的是( )A .log πe +(log e π)2>2B .log πe +log e π>1C .e e -e>e π-πD .(e +π)3<4(e 3+π3)答案 C解析 设f (x )=e x -x (x >0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,即f (x )在(0,+∞)上是增函数,所以f (π)>f (e),即e π-π>e e -e.3.(2014·鄂西示范性学校联考)命题“∀x ∈R ,x 2-3x +2≥0”的否定是( )A .∃x 0∈R ,x 20-3x 0+2<0B .∃x 0∈R ,x 20-3x 0+2>0C .∃x 0∈R ,x 20-3x 0+2≤0D .∃x 0∈R ,x 20-3x 0+2≥0 答案 A解析 求全称命题的否定时,需要先把全称量词改写为存在量词,再对结论进行否定,所以原命题的否定为“∃x 0∈R ,x 20-3x 0+2<0”.4.(2014·襄阳五校联考)已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),离心率为2,F 1,F 2分别是它的左、右焦点,A 是它的右顶点,过F 1作一条斜率为k (k ≠0)的直线与双曲线交于两个点M ,N ,则∠MAN =( )A .30°B .45°C .60°D .90°答案 D解析 由离心率为2,可得c =2a ,b 2=3a 2,则双曲线方程为3x 2-y 2=3a 2.设M (x 1,y 1),N (x 2,y 2),因直线MN 的斜率不为零,则可设其方程为x =my -2a ,与双曲线方程联立得(3m 2-1)y 2-12amy +9a 2=0,从而有3m 2-1≠0,y 1+y 2=12am 3m 2-1,且y 1y 2=9a 23m 2-1.则AM →·AN→=(x 1-a )(x 2-a )+y 1y 2=(my 1-3a )(my 2-3a )+y 1y 2=(m 2+1)y 1y 2-3am (y 1+y 2)+9a 2=9a 2(m 2+1)3m -1-36a 2m23m -1+9a 2=0,故选D. 5.某几何体的三视图如图所示,其中正视图和侧视图均是腰长为1的等腰直角三角形,则该几何体的外接球体积为( )A.32π B.3π C .23π D .33π答案 A解析 由正视图和侧视图均是腰长为1的等腰直角三角形,可得该几体体是一个四棱锥(如图所示),底面BCDE 是边长为1的正方形,侧棱AE ⊥底面BCDE ,所以根据球与四棱锥的对称性知,外接球的直径是AC .根据勾股定理知AC=1+1+1=3,所以外接球半径为32,于是该几何体的外接球体积V =43π×(32)3=32π.故选A.6.已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <2或x >2答案 B解析 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4.当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 7.已知在正三棱锥S -ABC 中,E 是侧棱SC 的中点,且SA ⊥BE ,则SB 与底面ABC 所成角的余弦值为( )A.12B.23C.23D.63答案 D解析 如图所示,在正三棱锥S -ABC 中,作SO ⊥平面ABC ,连接AO ,则O 是△ABC 的中心,所以SO ⊥BC ,AO ⊥BC .由此可得BC ⊥平面SAO ,所以SA ⊥BC .又SA ⊥BE ,所以SA ⊥平面SBC ,故正三棱锥S -ABC 的各侧面全等且均是等腰直角三角形.连接OB ,则∠SBO 为SB 与底面ABC 所成的角.设SA =a ,则AB =2a ,BO =63a ,所以cos ∠SBO =63.8.定义在R 上的可导函数f (x ),当x ∈(1,+∞)时,f (x )+f ′(x )<xf ′(x )恒成立,若a =f (2),b =12f (3),c =(2+1)f (2),则a ,b ,c 的大小关系为( )A .c <a <bB .b <c <aC .a <c <bD .c <b <a答案 A解析 设g (x )=f (x )x -1,则g ′(x )=f ′(x )(x -1)-f (x )(x -1)2.由于f (x )+f ′(x )<xf ′(x ),即f ′(x )(x -1)-f (x )>0,因此g (x )=f (x )x -1在(1,+∞)上为增函数,故c <a <b .9.过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与直线AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A .1条B .2条C .3条D .4条答案 D解析 本题考查了空间直线与直线所成角问题,考查空间想象能力.显然正方体的对角线AC 1与棱AB ,AD ,AA 1所成的角都相等,将该正方体以A 为坐标原点,AB ,AD ,AA 1分别为坐标轴建立空间直角坐标系,则可以得到8个象限,其中在平面ABCD 上方的四个象限内的每一个象限内均有一条与AC 1相似的对角线与此三条棱成等角,即这样的直线l 有4条,故应选D.10.(2014·芜湖三校一模)已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a ,b ∈R ,满足f (ab )=af (b )+bf (a ),f (2)=2.若b n =f (2n )2n (n ∈N *),则数列{b n }的通项公式为( )A .nB .n -1C .2nD .2n -1答案 A解析 ∵f (ab )=af (b )+bf (a ),f (2)=2,∴f (2n +1)=2f (2n )+2n f (2)=2f (2n )+2n +1.∵b n =f (2n )2n (n ∈N *),又f (2n +1)2n +1=f (2n)2n +1,即b n +1-b n =1,∴{b n }成等差数列,且b 1=f (2)2=1,∴b n =b 1+(n -1)×1=1+n -1=n ,n ∈N *.11.(2014·孝感市质检)若函数f (x )=x -1+1e x (a ∈R ,e 为自然对数的底数)的图像与直线l :y =kx -1没有公共点,则实数k 的最大值为( )A .0B .1C .-1 D.1e答案 B解析 令g (x )=f (x )-(kx -1)=(1-k )x +1e x ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0.g (1k -1)=-1+1e 1k -1<0.又函数g (x )的图像是连续的,由零点存在性定理,可知g (x )=0在R 上至少有一个解,与方程g (x )=0在R 上没有实数解矛盾,故k ≤1.又k =1时,g (x )=1e x >0,易知方程g (x )=0在R 上没有实数解.所以实数k 的最大值为1.12.(2014·武汉部分学校调研)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,若点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],则直线P A 1斜率的取值范围是( )A .[12,34] B .[38,34] C .[12,1] D .[34,1]答案 B解析 椭圆的左顶点为A 1(-2,0),右顶点为A 2(2,0),设点P (x 0,y 0),则x 204+y 203=1,得y 20x 20-4=-34.而kP A 2=y 0x 0-2,kP A 1=y 0x 0+2,所以kP A 2·kP A 1=y 20x 20-4=-34.又kP A 2∈[-2,-1],所以kP A 1∈[38,34].二、填空题13.已知函数f (x )=3x +sin x +1,若f (t )=2,则f (-t )=________. 答案 0解析 由于g (x )=3x +sin x 为奇函数,且f (t )=3t +sin t +1=2,所以3t +sin t =1,则f (-t )=g (-t )+1=-1+1=0.14.(2014·皖西四校联考)若正数x ,y 满足2x +3y -3=0,则x +2yxy 的最小值为________.答案 7+433解析 由2x +3y -3=0,得1=2x +3y 3.于是x +2y xy =1y +2x =(1y +2x )·2x +3y 3=13(7+2x y +6y x )≥13×(7+43)=7+433,当且仅当⎩⎨⎧2x y =6y x,2x +3y -3=0,即x =6-33,y =23-3时,等号成立.故最小值为7+433.15.已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.答案 (-2,1)解析 方法一 由题意可知,当x ≥0时,g (x )=-g (-x )=-[-ln(1+x )]=ln(1+x ),所以f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.当x ≤-2时,由f (2-x 2)>f (x ),得(2-x 2)3>x 3,因为f (x )=x 3在R 上为增函数,所以有2-x 2>x ,解得-2<x <1,即-2<x ≤- 2.当-2<x ≤0时,由f (2-x 2)>f (x ),得ln(1+2-x 2)>x 3,即-2<x ≤0.当0<x <2时,由f (2-x 2)>f (x ),得ln(1+2-x 2)>ln(1+x ),所以有2-x 2>x ,解得-2<x <1,即0<x <1.当x ≥2时,由f (2-x 2)>f (x ),得(2-x 2)3>ln(1+x ),无解.综上得-2<x <1.方法二 同上得f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.易知f (x )在R 上是增函数,由f (2-x 2)>f (x ),得2-x 2>x ,即x 2+x -2<0,∴-2<x <1.16.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率e 的取值范围是________.答案 (1,3]解析 ∵P 为双曲线左支上一点,∴|PF 2|-|PF 1|=2a .∴|PF 2|=|PF 1|+2a .∴|PF 2|2|PF 1|=(|PF 1|+2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当且仅当4a 2|PF 1|=|PF 1|,即|PF 1|=2a 时取等号,故|PF 2|=4a .当点P 在x 轴上时,|PF 1|+|PF 2|=|F 1F 2|,即2a +4a =2c ,此时e =3;当点P 不在x 轴上时,在△PF 1F 2中,|PF 1|+|PF 2|>|F 1F 2|,即2a +4a >2c ,此时e <3,∴e ≤3.又e >1,于是1<e ≤3.。
数列与不等式复习题(一)1.数列 ,8,5,2,1-的一个通项公式为 ( ) A .43-=n a n B .43+-=n a n C .()43)1(--=n a nn D .()43)1(1--=-n a n n2、在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( )A .49B .50C .51D .523、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为( ) A .15. B .17. C .19. D .21 4.不等式01312>+-x x 的解集是 ( )A .}2131|{>-<x x x 或B .}2131|{<<-x xC .}21|{>x xD .}31|{->x x5.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A.5B.4C. 3D. 2 6.数列 ,1614,813,412,211前n 项的和为( ) A .2212nn n ++B .12212+++-nn nC .2212nn n ++-D . 22121nn n -+-+7.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是( )A .a ≤0B .a <-4C .-<<40aD .-<≤40a8.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )(A)122n +- (B) 3n (C) 2n (D)31n -9.已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a .10.若方程x x a a 22220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是__________________.11.设n S 为等差数列{}n a 的前n 项和,若5,10105-==S S ,则公差为 (用数字作答). 12.已知实数a ,b ,c 成等差数列,和为15,且a +1,b +1,c +4成等比数列,求a ,b ,c .13.已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )的表达式.14. 数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求 (I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a ++++ 的值.数列与不等式复习题(一)答案9.12n - 10.11,0,122⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭11.-1 12.解:由题意,得215 (1)2(2)(1)(4)(1)(3)a b c a c b a c b ⎧++=⎪+=⎨⎪++=+⎩………………由(1)(2)两式,解得5b =将10c a =-代入(3),整理得213220a a -+=,解得 2a =或11a =故2a =,5,8b c ==或11,5,1a b c ===- 经验算,上述两组数符合题意。
数列、向量、斜三角形、均值不等式(易错题警示)1.设{a n }是等差数列,{b n }为等比数列,其公比q ≠1, 且b i >0(i=1、2、3 …n) 若a 1=b 1,a 11=b 11则 ( )A a 6=b 6B a 6>b 6C a 6<b 6D a 6>b 6或 a 6<b 62.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第七项等于( )A. 22B. 21C. 19D. 183.已知S k 表示{a n }的前K 项和,S n —S n+1=a n (n ∈N +),则{a n }一定是( )A 、等差数列B 、等比数列C 、常数列D 、以上都不正确4.已知数列—1,a 1,a 2,—4成等差数列,—1,b 1,b 2,b 3,—4成等比数列,则212b a a -的值为( ) A 、21 B 、—21 C 、21或—21 D 、41 5.数列{}n a 的前n 项和为s n =n 2+2n-1,则a 1+a 3+a 5+……+a 25=( )A 350B 351C 337D 3386.在等差数列||,0,0}{10111110a a a a a n >><且中,则在S n 中最大的负数为( )A .S 17B .S 18C .S 19D .S 207.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列个数为( ) A .3 B .4 C .6 D .88.数列}{n a 满足121,12210,2{1<≤-<≤=+n n n n n a a a a a ,若761=a ,则2004a 的值为( ) A.76 B. 75 C. 73 D.71 9.已知数列}{n a 的前n 项和为)15(21-=n n S n ,+∈N n ,现从前m 项:1a ,2a ,…,m a 中抽出一项(不是1a ,也不是m a ),余下各项的算术平均数为37,则抽出的是( )A .第6项B .第8项C .第12项D .第15项10.}{n a 是实数构成的等比数列,S n 是其前n 项和,则数列}{n S 中 ( )A 、任一项均不为0B 、必有一项为0C 、至多有有限项为0D 、或无一项为0,或无穷多项为011.数列1,1+2,1+2+4,…,1+2+4+…+2n 各项和为( C )A 、2n+1-2-nB 、2n -n -1C 、2n+2-n -3D 、2n+2-n -212..在∆ABC 中,c b a ,,为C B A ∠∠∠,,的对边,且1)cos(cos 2cos =-++C A B B ,则( )。
高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。
函数、不等式、三角、数列综合测试试卷班级_____________ 学号____________ 姓名_____________ 成绩____________一.填空题(每小题4分,共48分)1.已知函数()1a x f x x a -=--的反函数()1f x -的对称中心是()1,3-,则实数a =____________ 2.对于实数a 和b ,定义:22,,a ab a b a b b ab a b⎧-≤⎪*=⎨->⎪⎩.设()()()211f x x x =-*-,且关于x 的方程()()f x m m R =∈恰有三个互不相等的实根123,,x x x ,则123x x x =__________(用含m 的表达式)3.如果()*3223123......,.. (111)n n n n S S S S n n N T S S S =++++∈=⨯⨯⨯---()*2,n n N ≥∈, 则2013T =____________ 4.已知函数()()()()210110x x f x f x x -≤⎧⎪=⎨-+>⎪⎩,把函数()()1g x f x x =-+的零点按从小到大的顺序排列成一个数列,该数列的前n 项和为n S ,则2lim n n S n →∞=____________ 5.若集合12,,......,n A A A 满足12......n A A A A ⋃⋃⋃=则称12,,......,n A A A 为集合A 的 一种拆分.已知:①当{}12133,,A A a a a ⋃=时,A 有33种拆分;②当{}1231234,,,A A A a a a a ⋃⋃=时,A 有47种拆分;……由以上结论,推出一般结论:当{}12121......,,......,n n A A A a a a +⋃⋃⋃=时,A 有__________种拆分6.数列{}n a 的通项222cos sin 33n n n a n ππ⎛⎫=- ⎪⎝⎭,其前n 项和为n S ,则30S =____________ 7.定义在R 上的函数()f x 满足()()()2(,)f x y f x f y xy x y R +=++∈和()12f =, 则()3f -=____________8.已知函数()sin cos 21544x x f x x ππ-+⎫=≤≤⎪⎭,则()f x 的最小值为____________ 9.在ABC ∆中,,,A B C ∠∠∠所对的边长分别为,,a b c ,其外接圆的半径为1,则()222222111sin sin sin a b c A B C ⎛⎫++++ ⎪⎝⎭的最小值为____________ 10.已知()2xf x =可以表示成一个奇函数()g x 和一个偶函数()h x 之和,若关于x 的不等式()()20ag x h x +≥对于[]1,2x ∈恒成立,则实数a 的最小值是____________11.设数列{}n a 的前n 项和n S 满足()1,1,2,...1n n n S a n n n -+==+,则通项n a =____________ 12. 下图展示了一个由区间)1,0(到实数集R 的映射过程:区间中的实数m 对应数轴上的点M ,如图①;将线段围成一个圆,使两端点A 、B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为,如图③.图③中直线与x 轴交于点,则m 的象就是n ,记作.下列说法:①102f ⎛⎫= ⎪⎝⎭;②;③是奇函数; ④在定义域上单调递增;⑤的图象关于点 对称.其中正确命题的序号是.(写出所有正确命题的序号)二.选择题(每小题5分,共20分)1.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,已知()cos cos 1,2A C B a c -+==,则C =() A.6π或56πB.6πC.3π或23π D.3π ()0,1AB ()0,1AM (),0N n ()f m n =114f ⎛⎫= ⎪⎝⎭()f x ()f x ()f x 1,02⎛⎫ ⎪⎝⎭2.已知()()12...201212...2012f x x x x x x x x R =+++++++-+-++-∈,且()()2321f a a f a -+=-,则a 的值的个数为()A.2B.3C.3D.无数3.已知α为锐角,则“1sin 3α>且1cos 3α>”是“sin 2α>”的(). (A)充要条件(B) 必要非充分条件 (C)充分非必要条件(D) 既不充分又不必要条件 4.已知数列{}n a 满足123,7a a ==,且2n a +总等于1n n a a +的个位数字,则2013a 的值为(). (A) 1 (B) 3 (C) 7 (D) 9三.解答题(各题分值依次为10分,12分,14分,16分)1.在ABC ∆中,设内角,,A B C 所对边长分别为,,a b c ,已知()()tan 1tan 12A B ++=.(1)求C ;(2)22cos 2sin 1sin ,2B C A a +=+=,求边长b 和ABC ∆的面积.2.解关于实数x 的不等式: (1)225815x x x x --->-+;(2)()2log 121a x a ->-,其中0,1a a >≠3.定义()[)2211,,,,,,A x b f x x A A a b a b a b a x ⎛⎫⎛⎫=-+-∈=< ⎪ ⎪⎝⎭⎝⎭为正实数. (1)求()A f x 的最小值;(2)确定()A f x 的单调区间,并对单调增区间加以证明;(3)若())()())2222*121,1,1,2,K k x I k k x I k k k N +⎡⎡∈=+∈=++∈⎣⎣. 求证:()()()11241k k I I f x f x k k ++>+.4.设数列{}n a 满足211,1,2,3,...n n n a a na n +=-+=(1)当12a =时,求234,,a a a ,并由此猜想出n a 的一个通项公式;(2)当13a ≥时,证明对所有的1n ≥,有①2n a n ≥+;②121111...1112n a a a +++≤+++。
2014届高三文数基础训练(六)——三角函数、平面向量、数列、不等式(2)(时间:60分钟 满分:100)一、选择题(共10题)1.已知()()3,4,223,a b a b a b ==++=那么a 与b 夹角为 ( )A 、60︒B 、90︒C 、120︒D 、150︒ 2.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( ) A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-3.下列选项中,使不等式x<1x<2x 成立的x 的取值范围是 ( ) A .(,-1)B .(-1,0)C .(0,1)D .(1,+)4.下列函数中,最小正周期是π,且图象关于直线3x π=对称的是( )A .sin(2)3y x π=-B .sin(2)6y x π=-C .sin(2)6y x π=+D .sin()26x y π=+5.已知向量(4,6),(3,5),OA OB == 且,//,OC OA AC OB ⊥则向量OC 等于(A )⎪⎭⎫ ⎝⎛-72,73(B )⎪⎭⎫⎝⎛-214,72(C )⎪⎭⎫ ⎝⎛-72,73(D )⎪⎭⎫ ⎝⎛-214,726.函数()2cos()6f x x π=+的一个减区间为 ( )A.2[,]33ππ-B.4[,]33ππC.5[,]66ππ-D.7[,]66ππ7.关于x 的不等式22280x ax a --<(0a >)的解集为12(,)x x ,且:2115x x -=,则a =( )A .52B .72C .154D .1528.设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC的形状为 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .不确定 9.下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为 ( )A .12,p pB .34,p pC .23,p pD .14,p p10.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析 式是 ( ).A.cos 2y x =B.22cos y x =C.)42sin(1π++=x y D.22sin y x =二、填空题(共4题)11.在△ABC 中,AB =1,B C =2,B =60°,则AC =。
数列不等式综合练习题一、等差数列与不等式1. 已知等差数列{an}中,a1=1,a3=3,求满足不等式a_n > 0的最小正整数n。
2. 设等差数列{bn}的前n项和为Sn,若S4=8,S8=24,求满足不等式b_n < 5的最小正整数n。
3. 已知等差数列{cn}的公差为2,首项为1,求满足不等式c_n > 7的所有正整数n的个数。
二、等比数列与不等式1. 已知等比数列{dn}中,d1=2,d3=8,求满足不等式d_n < 64的所有正整数n。
2. 设等比数列{en}的前n项和为Tn,若T3=13,T6=121,求满足不等式e_n > 1的所有正整数n。
3. 已知等比数列{fn}的公比为1/2,首项为16,求满足不等式f_n < 1的所有正整数n的个数。
三、数列与不等式综合1. 已知数列{gn}的通项公式为gn = n^2 n + 1,求满足不等式gn > 10的所有正整数n。
2. 设数列{hn}的通项公式为hn = 3^n 2^n,求满足不等式hn < 100的所有正整数n。
3. 已知数列{kn}的通项公式为kn = 2n + 1,求满足不等式kn > 30的所有正整数n的个数。
四、数列不等式证明1. 证明:对于等差数列{an},若a1 > 0,公差d > 0,则数列中存在正整数n,使得an > 0。
2. 证明:对于等比数列{bn},若b1 > 1,公比q > 1,则数列中存在正整数n,使得bn > 1。
3. 证明:对于数列{cn},若cn = n^2 + n + 1,则数列中存在正整数n,使得cn > 100。
四、数列不等式证明(续)4. 证明:对于数列{dn},若dn = 2^n n^2,则存在正整数N,使得对于所有n > N,不等式dn > 0恒成立。
5. 证明:对于数列{en},若en = n! / 2^n,则存在正整数M,使得对于所有n > M,不等式en < 1恒成立。
数列与不等式的题型分类。
解题策略题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式绫结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立⇔f(x)min≥M;f(x)≤M恒成立⇔f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得。
【例1】等比数列{a n}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+a n>错误!+错误!+…+错误!恒成立的正整数n的取值范围.【分析】利用条件中两项间的关系,寻求数列首项a1与公比q之间的关系,再利用等比数列前n项公式和及所得的关系化简不等式,进而通过估算求得正整数n的取值范围。
【解】由题意得:(a1q16)2=a1q23,∴a1q9=1.由等比数列的性质知:数列{错误!}是以错误!为首项,以错误!为公比的等比数列,要使不等式成立,则须错误!>错误!,把a错误!=q-18代入上式并整理,得q-18(q n-1)>q(1-错误!),q n>q19,∵q>1,∴n>19,故所求正整数n的取值范围是n≥20.【点评】本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果。
本题解答体现了转化思想、方程思想及估算思想的应用。
【例2】(08·全国Ⅱ)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.(Ⅰ)设b n=S n-3n,求数列{b n}的通项公式;(Ⅱ)若a n+1≥a n,n∈N*,求a的取值范围.【分析】第(Ⅰ)小题利用S n与a n的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n+1≥a n转化为关于n与a的关系,再利用a≤f(n)恒成立等价于a≤f(n)min求解.【解】(Ⅰ)依题意,S n+1-S n=a n+1=S n+3n,即S n+1=2S n+3n,由此得S n+1-3 n+1=2(S n-3n).因此,所求通项公式为b n=S n-3n=(a-3)2 n-1,n∈N*, ①(Ⅱ)由①知S n=3n+(a-3)2 n-1,n∈N*,于是,当n≥2时,a n=S n-S n-1=3n+(a-3)2 n-1-3n-1-(a-3)2 n-2=2×3n-1+(a-3)2 n-2,a n+1-a n=4×3 n-1+(a-3)2 n-2=2 n-2·[12·(错误!)n-2+a-3],当n≥2时,a n+1≥a n,即2 n-2·[12·(错误!)n-2+a-3]≥0,12·(错误!)n-2+a-3≥0,∴a≥-9,综上,所求的a的取值范围是[-9,+∞].【点评】一般地,如果求条件与前n项和相关的数列的通项公式,则可考虑S n与a n 的关系求解。
数列向量不等式测试卷 一.选择题
1.不等式11<-x 的解为( )
A.0<x<2 B -1<x<1 C x<0或x>2 D x<2
2.已知c b a ,,满足a b c <<且ac<0,则下列选项中不一定成立的是( ) A.a
c a
b < B 0>-c
a b C
c
a
c
b
2
2
>
D
ac
c a -<0
3.在ABC ∆中,若B a b sin 2=,则A=( )
A o o 6030或
B o o 6045或
C 120o
或60o
D 30o
或150
o
4.已知,0)(,2,12
2=⋅-==a b a b a 则b a 与的夹角为( )
A.30o
B.45o
C.60o
D.90o
5.在等差数列{}n a 中,8,3a a 是方程 0532=--x x 的两根,则S 10= A.15 B.30 C.50 D15+2912
6.已知各项均为正数的等比数列{}n a 中,5321
=a a a ,10987=a a a ,则654a a a =
A.24
B.7
C.6
D.25
7.等差数列{}n a 中,,14,1531=+=a a a 其前n 项和100=n s ,则n 的值为 A.8 B.10 C .12 D.14
8.等比数列{}n a 满足:,4,23221=+=+a a a a 则=+65a a ( ) A.64 B.32 C.16 D 18
9.已知ABC ∆中,o
C 90=∠,)1,(k B A = ,
)3,2(=C A ,则k 的值为( ) A.5 B.-5 C.2
3 D.2
3-
10.有两个等差数列
{}n a 和{}n b ,若
)(7
642121+
∈++=
+⋅⋅⋅+++⋅⋅⋅++N n n n b b b a a a n
n ,则
=+++++++13
1176314963b b b b b a a a a ( )
A.
75
152 B.
9
14 C.
5
12 D.
2
3
二.填空题
11.已知关于x 的不等式2232>+-x ax 的解集为{}21><x x x 或,则实数___=a 。
12.已知n S 是等比数列{}n a 的前n 项和,并且满足,2
3,121=
=S a 数列{}n a 的公比
_____=q
13.ABC ∆的内角A,B,C 的对边分别为a,b,c ,若a,b,c 成等比数列,且c=2a,则_____cos =B 14.已知:+∈R y x ,,且y x xy +=34,则的最小值为________
15.设+
+∈-+=
+==N n a a b a a a n n n n n ,1
2,1
2,211,则数列{}n b 的通项公式_____=n b
三.解答题
16.四边形ABCD 中,).3.2(),3,(),1,6(--===D C C B B A
λ
(1)若DA BC //,求λ的值
(2)若DA BC //且BD AC ⊥,求四边形ABCD 的面积。
17.已知{}n a 是公差不为零的等差数列,11=a 且931,,a a a 成等比数列。
(1)求数列{}n a 的通项公式 (2)求数列{}n
a 2的前n 项的和
18在ABC ∆中,角A,B,C 所对的边分别为a,b,c,且c
b A
B A B A =
⋅+⋅sin )sin(sin 2sin .
(1)求角A 的大小
(2)若4=a ,且ABC ∆的面积为34,试判断ABC ∆的形状,并说明理由。
19.已知数列{}n a 的)2(2,311≥⋅=-=-n S S a a n n n 且有 (1)求证⎭
⎬⎫
⎩⎨⎧n S 1是等差数列,并求其公差
(2)求数列{}n a 的通项公式
20已知数列{}n a 的首项为4
11=a ,公比为4
1=
q 的等比数列,设),
(log
324
1+
∈=+N n a b n n 数列{}n c 满足n n n b a c ⋅= (1)求{}n b 的通项公式 (2)求{}n c 的前n 项和n S
21.已知等差数列{}n a 的各项均为正数,其前n 项和为n S ,31=a ,数列{}n b 为等比数列
),(+
∈N n 21=b ,且120,323322==S b S b
(1)求数列{}n b 的前n 项和n T ; (2)对于(1)中的n T ,若不等式
4
522
1
3
222
11+
+≤+
⋅⋅⋅++-ax ax T T b T T b T T b n n n 对任意正整数
n 和任意实数x 恒成立,求实数a 的范围。