[四川大学]《线性代数2443》19秋在线作业1
- 格式:doc
- 大小:32.50 KB
- 文档页数:9
第 页 共6页1四川大学期末考试试卷(A )科 目:《大学数学》(线性代数)一、填空题(每小题3分,共15分)1. 232323a a ab bb c c c = __abc()_____.2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性_______.3. 设A =378012002⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦, A *是A 的伴随矩阵, 则 |15-A*| = _________.4. 当t 满足______的条件时, 22212311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.第 页 共6页2 二、选择题(每小题3分,共15分)1. 设矩阵,23⨯A ,32⨯B 33⨯C , 则下列式子中, ( )的运算可行.(A) AC; (B) C AB -; (C) CB ; (D) BC CA -.2. 设D=123012247-, ij A 表示D 中元素ij a 的代数余子式, 则3132333A A A ++=( ).(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ⨯矩阵, 秩(A)=2,123,,X X X 是非齐次线性方程组AX =β的三个线性无关解向量, 则( )为AX =0的通解.(A) 11223;k X k X X +- (B) 123();X k X X +-(C)1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ).(A) 11--=BC A X ; (B) 11--=C BA X ; (C) 11--=A BC X ; (D) 11--=BA C X .5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值.(A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件三、计算下列各题(每小题10分,共30分)1. 计算行列式 11120132.12231420------第 页 共6页32. 解矩阵方程,X B AX +=其中21125111,3001214A B -⎡⎤⎡⎤⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦.X=[-1 5]5/4 2 .-1/2 .-1 3.求向量组]1,3,2,1[1-=α, ]1,10,11,5[2--=α,]9,1,8,3[3-=α, ]19,9,2,0[4-=α的秩与它的一个极大线性无关组.四、解答下列各题(每小题12分,共24分)1.讨论当b取何值时, 非齐次线性方程组123412341234237335135543x x x xx x x xx x x x b+++=⎧⎪+++=⎨⎪++-=⎩有解; 当有解时, 求方程组的通解.第页共6页4第 页 共6页5232232133),,(x x x x x f +=323121244x x x x x x -++ 化为标准形.第 页 共6页6 五、证明题(每小题8分, 共16分)1. 设12321311A λ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 如果存在三阶矩阵 0,B ≠ 满足AB =0, 试求λ的值,并证明. rank B *=0, 其中B *是B 的伴随矩阵.2. 设A 是一个三阶矩阵,向量组123,,()I ααα中的三个向量分别是A 属于特征值0,1,3的特征向量, 向量组)(,,421II ααα线性相关, 证明: 向量组)(,,4321III αααα-线性无关.。
1 .设A 可逆,则下列说法错误的是(A.AB.BC.CD.D【参考答案】:C2 .如图:设A 为皿乂口矩阵,则非齐次线性方程组人力有惟一解的充分必要条件是()aA.B,Ax=O 只有零解C.向量b 可由A 的列向量组转性表出D.A 的列向量蛆线性无关,而增广矩阵笈的列向量组线性相关A.AB.BC.CD.D【参考答案】:D3.如图:二阶行列式”「「,卢0的充分必要条件是()。
2, k —1A.k 声一1B.k 卢3C.女W 」且kW3D.目羊」或W3A.AB.BC.CD.D【参考答案】:D4.在下列矩阵中,可逆的是(A,存在B 使AB=E C.A 相似于对角阵B,冏金0D.A 的口个列向量线性无关■『0Q 『□1Q ; A . 010 B. 220 3。
10011"fl0% C 01ID.J 21,JoJA.AB.BC.CD.D【参考答案】:D5 .如图:设矩阵.4=I2l 的秩为2,则"=(K[23人十1:A.2B.1C.0D.-1【参考答案】:B6 .如图:齐次线性方程组AX =。
有韭霎解的充分必要条件是[A.幺的列向量组线性无关B *的行向量组线性无关 C A的列向量组线性相关D,4的行向量组线性相关A.AB.BC.CD.D【参考答案】:D二次型/(工口勺网卜野.心/之♦1。
小心的矩阵是(H66]B.0310:。
o Y门60'D..6310010-4;A.AB.BC.CD.D【参考答案】:C8.如图:已知足、住是非齐次线性方程组4r=5的两个不同的解,皿、的是其导出组3。
的一个基神解系,瓦、瓦为任意常数,则方程组3E的通解可表成(A.AB.BC.CD.D【参考答案】:D9.如图:谩两个向量组片,5,…,'和屋%,…,叽均线性相关,则(入 A.有不全为0的数为h X 工,…,使11□1斗入?口什…+—和 Xi P 什入284'*>0B.有不全为0的数%打入力…।k 使人i (”r+Bi)+L (口升+…+%$(a S +P 5?=0 C 有不全为0的数人,人力…,%使M (\_佐。
矩阵特征值、特征向量一.选择题 1.C 2.D 3.C 4.D 二.求下列矩阵的特征值、特征向量1.解:2110101020220(2)1104132323λλλλλλλλλλλλλλ+-----=--=-------2201011(2)110(2)110(2)1102201111λλλλλλλλ--+=-=-=-----2(2)(1)λλ=-+所以,特征值为:2(1λλ==-二重),2λ=时,411411000000411000----⎛⎫⎛⎫⎪ ⎪→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭得对应的特征向量为: ()1104Tx = ()2140Tx =2λ=对应的特征向量全体可表示为:1122x k x k x =+1λ=-时,111111030010414000----⎛⎫⎛⎫ ⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭对应特征向量可表示为: ()101Tx k =2.解:()()11112200111111111111111111111111110010001111111221111121111111211λλλλλλλλλλλλλλλλλ----------=-----------=-=---------()()()()()2231122022112211211211110100221122112112312(2)λλλλλλλλλλλλλλλλλ--=--=-----=--=-+--=-+特征值为:2(),2λλ==-三重2λ=时,11111111111100001111000011110000------⎛⎫⎛⎫⎪ ⎪-⎪ ⎪→ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭()11001Tx = ()21010Tx =()3110Tx =对应的特征向量可表示为:112233x k x k x k x =++2λ=-时, 311111131113131113110404113111310044111331110448--------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪----- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪----- ⎪ ⎪ ⎪--------⎝⎭⎝⎭⎝⎭111301010011000--⎛⎫⎪- ⎪→ ⎪-⎪⎝⎭对应的特征向量为: ()1111Tx k =-3.解:()220212(1)(2)4(2)402(2)(1)4λλλλλλλλλλλ--=-----=+--所以,特征值为:2,1,4λλλ=-==2λ=-时,420232232232420044022022011---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭232011000-⎛⎫ ⎪→- ⎪ ⎪⎝⎭对应特征向量为:()122Tx k =1λ=时,120120120202042021021021000---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对应特征向量为:()212T x k =-4λ=时,220220232012024000⎛⎫⎛⎫⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭对应特征向量为:()221T x k =- 三.解:()()()()312014113421101λλλλλλλ+-+-=+-+-++-()()2145λλλ=-++ 特征值为:1,2,2i i λλλ==-+=--1λ=时,412100100024024024100412412-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭100012000⎛⎫⎪→- ⎪ ⎪⎝⎭对应特征向量为:()021Tx k =2i λ=-+时,1121031030140140141031120122ii i i i i i i i +--+-+⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-+-→-+-→-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-++-+⎝⎭⎝⎭⎝⎭1030122000i i -+⎛⎫ ⎪→+ ⎪ ⎪⎝⎭对应特征向量为:()3221Tx k ii =---2i λ=--时,1121031030141120122103014014i i i i i i i i i ------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---→--→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--------⎝⎭⎝⎭⎝⎭1030122000i i --⎛⎫ ⎪→- ⎪ ⎪⎝⎭对应特征向量为:()3221Tx k ii =+-+四.解:2λ=为A 的一个特征值,故3A 的一个特征值为8,312A 的一个特征值为4,1312A -⎛⎫ ⎪⎝⎭的一个特征值为14,所以1312I A -⎛⎫+ ⎪⎝⎭的一个特征值为15144+= 五.证明:若λ为A 的任一特征值,00x ≠为对应特征向量,则:()220000A x A Ax Ax x λλ===,而2A E =,所以200A x x =从而有:200x x λ=,所以有:21λ=,所以,1λ=±矩阵相似一.选择题 1.D 2.A 3.D二.下列矩阵哪些能对角化,若能,则求出可逆矩阵P ,使1P AP -为对角矩阵1.3111102121112112E A λλλλλλλλ-----=--=------ ()()110101211221112102λλλλλλ-=---=--------()()212λλ=-- 特征值为:2(),1λλ==二重2λ=时,111111111221001001110001000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭特征子空间的维数为1,故A 不能对角化.2.()1101011011111111011011011E A λλλλλλλλλλλ------=--=--=---------()()()()()112102111211011λλλλλλλλλ--=--=-=-+-----特征值为:1,1,2λλλ==-=1λ=时,010111111010010000---⎛⎫⎛⎫⎪ ⎪--→ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭ 对应特征向量为:()101T x k =- 1λ=-时,210111111111012012012012000--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---→--→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭对应特征向量为:()121Tx k =-2λ=时,110110121011011000--⎛⎫⎛⎫⎪ ⎪--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭对应特征向量为:()111T x k =所以,111021111P -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,1100010002P AP -⎛⎫⎪=- ⎪ ⎪⎝⎭3.()()2112111020224313413E A λλλλλλλλλλλ+--+-+--=-=-=--+--- ()()()()()()211112121211302λλλλλλλλ--=-+=-+=-+--所以,特征值为:2(,1λλ==-二重)2λ=时,411411000000411000----⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 对应特征向量:()()12104140TTx x ⎧=⎪⎨=⎪⎩1λ=-时,111111030010414000----⎛⎫⎛⎫⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 对应特征向量为:()3101T x = 故,111040401P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1200020001P AP -⎛⎫ ⎪= ⎪ ⎪-⎝⎭4.()111110011001111111111111111111111111111E A λλλλλλλλλλλλλλ-----------===------------- ()()10001111111112112121121λλλλλλλλ+--+-=-=--------()()()221101101001211211221212123λλλλλλλλλλλ---=--=--=-+-------()()()()()22321111131331λλλλλλλλ+--=-=-+=-+-所以,特征值为:1(),3λλ==-三重1λ=时,11111111111100001111000011110000----⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→ ⎪ ⎪-- ⎪ ⎪--⎝⎭⎝⎭对应特征向量为:()()()123100*********T T T x x x ⎧=-⎪⎪=⎨⎪=⎪⎩ 3λ=-时,31111113131131111131113111131311------⎛⎫⎛⎫ ⎪ ⎪------⎪ ⎪→ ⎪ ⎪------ ⎪ ⎪------⎝⎭⎝⎭11131113044801120044001104040000------⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪--⎝⎭⎝⎭对应特征向量为:()41111Tx =--111100110101101P ⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭ 1100010000100003P A P -⎛⎫ ⎪⎪= ⎪ ⎪-⎝⎭ 三.解:令()123122221212P x x x -⎛⎫ ⎪==-- ⎪ ⎪⎝⎭,则,()()12312310023020003AP Ax Ax Ax x x x P ⎛⎫⎪=== ⎪ ⎪⎝⎭所以,1120331005202003300322233A P P -⎛⎫-- ⎪⎛⎫ ⎪ ⎪ ⎪==- ⎪⎪ ⎪ ⎪⎝⎭ ⎪--⎪⎝⎭四.解:3221221(1)1423123E A k k k λλλλλλλλλ--+--=+-=-++---++-+ ()()1221221111012123001k k λλλλλλ--=+-+-=+---++()()211λλ=+-特征值为:1(),1λλ=-=二重,A 可对角化,则:1λ=-时有:()1rank E A λ-=,由42242200422000k k k k ----⎛⎫⎛⎫⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭知,必有0k = 对应特征值为:()()12102,120T Tx x ==-1λ=时,222111020010424000---⎛⎫⎛⎫⎪ ⎪→ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,对应特征向量为:()3101T x = 111020201P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,1100010001P AP --⎛⎫⎪=- ⎪ ⎪⎝⎭五.证明:B 与A 相似,则存在满秩矩阵P ,使得1B P AP -=,又A 有n 个互异特征值,故存在可逆矩阵M ,使得:11,(,)n M AM diag C λλ-=⋅⋅⋅∴111()A MCM P P MCM ---==,11111()B P AP P MCM P P MCM P -----=== 令11,Q P R P MCM --==,则Q 满秩,,A QR B RQ ==实对称矩阵的对角化一.解:首先将向量组正交化,取 ()111100Tβα==()()2122111(,)1111010110010(,)222TT T αββαβββ⎛⎫=-=-=- ⎪⎝⎭313233121122(,)(,)1111(,)(,)333Tαβαββαββββββ⎛⎫=--=- ⎪⎝⎭单位化:1200,022TTηη⎛⎫⎫== ⎪⎪⎪⎪⎝⎭⎝⎭3Tη⎛= ⎝⎭二.解:设()1234Tx x x x x =为单位向量,则有:123412341234020x x x x x x x x x x x x +-+=⎧⎪--+=⎨⎪+++=⎩ 其通解为:()4013T x k =-所以,所求单位向量为:0T⎝⎭三.求正交矩阵Q ,使1Q AQ -为对角矩阵1.解:()()2324221842E A λλλλλλ----=--=+---, 所以特征值为:1(),8λλ=-=二重1λ=-时,424212212000424000---⎛⎫⎛⎫ ⎪ ⎪---→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭,特征向量()()12101120TTx x ⎧=-⎪⎨=-⎪⎩8λ=时,52414114128252401894254250189----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--→--→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭141021000-⎛⎫ ⎪→- ⎪⎪⎝⎭特征向量:()3212Tx =将12,x x 正交化,令11x β=,2122111(,)112(,)22Tx x βββββ⎛⎫=-=- ⎪⎝⎭将123,,x ββ单位化得:2310323Q ⎛⎫ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,1(1,1,8)Q AQ diag -=-- 2.()111110011001111111111111111111111111111E A λλλλλλλλλλλλλλ-----------===------------- ()()10001111111112112121121λλλλλλλλ+--+-=-=--------()()()221101101001211211221212123λλλλλλλλλλλ---=--=--=-+-------()()()23211133λλλλλ+-=-=-+-,特征值为:1(),3λλ==-三重1λ=时,111111111111000011110000111100----⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→ ⎪ ⎪-- ⎪ ⎪--⎝⎭⎝⎭,对应特征向量为:()()()123100110101100T T T x x x ⎧=-⎪⎪=⎨⎪=⎪⎩ 将123,,x x x 正交化,令11x β=,2122111(,)1101(,)22Tx x βββββ⎛⎫=-= ⎪⎝⎭,313233121122(,)(,)1111(,)(,)333Tx x x βββββββββ⎛⎫=--=- ⎪⎝⎭3λ=-时,311111131113131113110404113111310044111331110448---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-------- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪-------- ⎪ ⎪ ⎪---------⎝⎭⎝⎭⎝⎭1113010100110000---⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭, 对应特征向量为:()41111Tx =--将1234,,,x βββ单位化得:12100210212Q ⎛⎫ ⎪ ⎪⎪- ⎪⎪= ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭四.证明:若,A B 有相同的特征值1,,n λλ⋅⋅⋅,则存在正交矩阵,Q T 使得:1111(,,)(,,)n n Q AQ diag T BT diag λλλλ--⎧=⋅⋅⋅⎪⎨=⋅⋅⋅⎪⎩,从而有1111(,,)n B Tdiag T TQ AQT λλ---=⋅⋅⋅=令1P QT-=,则()()()11111TTTT T P P TQ QT T T TT E -----====所以P 为正交矩阵,即存在正交矩阵P ,使得1B P AP -= 反之,若存在正交矩阵P 使得1B P AP -=,则有:11()E A P E A P E P AP E B λλλλ---=-=-=-故,,A B 有相同的特征多项式,所以,A B 有相同的特征值.五.解:因为3R 的维数为3,321λλ==对应的特征子空间2Φ应该为11λ=-所对应的特征子空间1Φ的正交补空间.所以2Φ的基应与1Φ的基1X 正交. 取()()23100,011T TX X ==-,则232,X X ∈Φ,将123,,X X X单位化得:010022022P ⎛⎫⎪⎪ ⎪=⎪ - ⎝⎭,所以100(1,1,1)001010TA Pdiag P ⎛⎫ ⎪=-=- ⎪ ⎪-⎝⎭。
《线性代数》习题集(含答案)第一章【1】填空题 (1) 二阶行列式2a ab bb=___________。
(2) 二阶行列式cos sin sin cos αααα-=___________。
(3) 二阶行列式2a bi b aa bi+-=___________。
(4) 三阶行列式xy zzx y yzx =___________。
(5) 三阶行列式a bc c a b c a bbc a+++=___________。
答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。
【2】选择题(1)若行列式12513225x-=0,则x=()。
A -3;B -2;C 2;D 3。
(2)若行列式1111011x x x=,则x=()。
A -1, B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。
A -70;B -63;C 70;D 82。
(4)行列式00000000a ba b b a ba=()。
A 44a b -;B ()222a b-;C 44b a -;D 44a b 。
(5)n 阶行列式0100002000100n n -=()。
A 0;B n !;C (-1)·n !;D ()11!n n +-•。
答案:1.D ;2.C ;3.A ;4.B ;5.D 。
【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。
【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。
答案:(1)τ(134782695)=10,此排列为偶排列。
线性代数期末试题四川大学20032002−.________))((,,.2._____________,,,.1)15(.222的条件是则为同阶方阵设是为等幂矩阵的条件则为同阶等幂矩阵设的矩阵称为等幂矩阵满足条件分填空题一B AB A B A B A B A B A A A −=−++=._______,,0||,,,.3==≠X B AXC AC n C B A 则如果且阶矩阵均为设._______),6,2,4(),2,1,3(),3,1,2(.4321则该向量组线性向量组=−==ααα._____0)(,2)(,5)(,5,.5个向量有的基础解系含则齐次线性方程组秩秩阶矩阵都是设===X AB B A B A .|,,,|4,|,,,|,|,,,|4,,,,,.1)15(.211232321132121321等于()阶行列式则列式阶行且都是四维列向量若分选择题二ββαααβαααβαααββααα+==n m nm D m n C n m B n m A −−+−+).(,)(),()(,).(则三条直线设,,,.2321332123211⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=c c c b b b a a a ααα().)3,2,1,0(),3,2,1(022交于一点的充要条件是其=≠+==++i b a i c y b x a ii i i i 线性无关线性相关秩秩线性无关线性相关2132121321321321,,,,).(),(),,().(,,,)(;,,).(ααααααααααααααααD C B A =件既不充分也非必要的条充分而非必要条件必要二非充分条件充分必要条件角化的可相似对个不同特征值是有阶矩阵).(;).()(;).(().3D C B A A n A n.)().(;)(;).()32),,(.42221321半正定的不定的;半负定的负定的(是二次型D C B A x x x x x f −−=的基础解系。
第一章行列式1.利用对角线法则计算下列三阶行列式:(1)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(2)=222111c b a c b a222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)2 4 1 3;(2)1 3 … )12(-n 2 4 … )2(n ;(3)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为3. (2)逆序数为2)1(-n n .(3)逆序数为)1(-n n . 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式: 解(1)2605232112131412-24c c -2605032122130412-24r r -0412032122130412-14r r -000032122130412-=0(2)ef cf bf de cd bd ae acab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4 (3)d cb a10110011001---21ar r +dcb a ab 10110011010---+=12)1)(1(+--dc a ab 101101--+23dc c +010111-+-+cd c ada ab=23)1)(1(+--cdad ab +-+111=1++++ad cd ab abcd5、证明:(1)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边 bz ay by ax x by ax bx az z bxaz bz ay y b +++++++++++++002y by ax z x bx az y z bzay x a 分别再分bzay y xby ax x z bx az z y b +++ zyx y x z x zy b y xz x z y z y xa 33+分别再分右边=-+=233)1(yxz x z y zy x b y xzx z yz y x a (2) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d d d c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a(3) 4444444222222201a d a c ab a ad ac ab aa d a c ab a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a d a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a ca b)()()()()(00122222a b b a d d a b b a c c a b b bd bc ab +-++-++--+=⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d bc a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(4) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-xx a xD D n n n n右边=+=-n n a xD 1所以,对于n 阶行列式命题成立. 6、计算下列各行列式(k D 为k 阶行列式):(1)aa D n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解aa a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=)1()1(10 000 00 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a aann n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=a n -a n -2=a n -2(a 2-1). (2)xa a a x a a a x D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ;解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上, 得ax ax a x a a a a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.(3)nna a a D +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------100100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000022433221nn n a a a a a a a a ----+--000000000000001133221++nn n a a a a a a a a -------000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=--- )11)((121∑+==ni in a a a a (4)nnnnn d c d c b a b a D 011112=n n n n n nd d c d c b a b a a 000000011111111----展开按第一行000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式: 222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i nD c b d a D 222)(而 111111112c bd a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)ji a ij-=432140123310122210113210)det( --------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111 --------------n n n n ,,141312c c c c c c +++1524232102221002210002101---------------n n n n n=212)1()1(----n n n7.用克莱姆法则解下列方程组:解11213513241211111----=D 8120735032101111------=145008130032101111---=14214205410032101111-=---=112105132412211151------=D 11210513290501115----=112123313090509151------=23313095112109151------=1202300461000112109151-----=14238100112109151----=142-=112035122412111512-----=D 811507312032701151-------=31390011230023101151-=28428401910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D1,3,2,144332211-========∴DD x D D x D D x D D x 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ, 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.第二章 矩阵及其运算1﹑已知两个线性变换,zz y z z y z z y ,yy y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=⎪⎩⎪⎨⎧++=++-=+=32331221132133212311323542322 求从变量321z ,z ,z 到变量321x ,x ,x 的线性变换。
2019年春季《线性代数》在线作业一、单选题(共35 道试题,共70 分。
)V 1. 若三阶行列式D的第三行的元素依次为3,它们的余子式分别为4,则D=()A. -8B. 8C. -20D. 20正确答案:B 满分:2 分2. 用一初等矩阵左乘一矩阵B,等于对B施行相应的( )变换A. 行变换B. 列变换C. 既不是行变换也不是列变换正确答案:A 满分:2 分3. 设a1a2a3a4a5是四维向量,则()A. a1a2a3a4a5一定线性无关B. a1a2a3a4a5一定线性相关C. a5一定可以由a1a2a3a4线性表示D. a1一定可以由a2a3a4a5线性表出正确答案:B 满分:2 分4. 设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=A. -1B. -2C. 1D. 2正确答案:B 满分:2 分5. 设A,B,C均为n阶非零方阵,下列选项正确的是( ).A. 若AB=AC,则B=CB. (A-C)2 = A2-2AC+C2C. ABC= BCAD. |ABC| = |A| |B| |C|正确答案:D 满分:2 分6. 设A为三阶方阵,|A|=2,则|2A-1| = .A. 1B. 2C. 3D. 4正确答案:D 满分:2 分7. 设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则()A. A=0B. A=EC. r(A)=nD. 0<r(A)<(n)正确答案:A 满分:2 分8. 设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则()A. A=0B. A=EC. r(A)=nD. 0<r(A)<(n)正确答案:A 满分:2 分9. 设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=()A. A^-1CB^-1B. CA^-1B^-1C. B^-1A^-1CD. CB^-1A^-1正确答案:A 满分:2 分10. 已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D 的值为()A. -3B. -7C. 3D. 7正确答案:A 满分:2 分11. 若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则()A. A与B相似B. A≠B,但|A-B|=0C. A=BD. A与B不一定相似,但|A|=|B|正确答案:A 满分:2 分12. 设A3*2 B2*3 C3*3,则下列运算有意义A. ACB. BCC. A+BD. AB-BC正确答案:B 满分:2 分13. 设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为().A. 3B. 15C. -10D. 8正确答案:C 满分:2 分14. n阶对称矩阵A为正定矩阵的充分必要条件是( ).A. ∣A∣>0B. 存在n阶矩阵P,使得A=PTPC. 负惯性指数为0D. 各阶顺序主子式均为正数正确答案:D 满分:2 分15. 设A,B均为n阶非零方阵,下列选项正确的是A. (A+B)(A-B) = A^2-B^2B. (AB)^-1 = B^-1A^-1C. 若AB= O, 则A=O或B=OD. |AB| = |A| |B|正确答案:D 满分:2 分16. 设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是A. A=EB. B=OC. A=BD. AB=BA正确答案:D 满分:2 分17. n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的()。
【奥鹏】-[四川大学]《线性代数2443》19秋在线作业1 试卷总分:100 得分:100
第1题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第2题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第3题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:D
第4题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第5题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第6题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:B
第7题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:D
第8题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第9题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第10题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第11题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第12题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第13题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:B
第14题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第15题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第16题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:D
第17题,题面如图所示:A、A
B、B
C、C
D、D
正确答案:A
第18题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第19题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:B
第20题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第21题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:D
第22题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第23题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:B
第24题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第25题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第26题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:D
第27题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:B
第28题,题面如图所示:A、A
B、B
C、C
D、D
正确答案:D
第29题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第30题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第31题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:B
第32题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:B
第33题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:D
第34题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第35题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:D
第36题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:D
第37题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:A
第38题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:B
第39题,题面如图所示:A、A
B、B
C、C
D、D
正确答案:C
第40题,题面如图所示:
A、A
B、B
C、C
D、D
正确答案:C
第41题,题面如图所示:
A、错误
B、正确
正确答案:A
第42题,题面如图所示:
A、错误
B、正确
正确答案:A
第43题,题面如图所示:
A、错误
B、正确
正确答案:A
第44题,题面如图所示:
A、错误
B、正确
正确答案:B
第45题,题面如图所示:
A、错误
B、正确
正确答案:A
第46题,题面如图所示:
A、错误
B、正确
正确答案:A
第47题,题面如图所示:
A、错误
B、正确
正确答案:B
第48题,题面如图所示:
A、错误
B、正确
正确答案:B
第49题,题面如图所示:
A、错误
B、正确
正确答案:B
第50题,题面如图所示:
A、错误
B、正确
正确答案:A。