浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (865)
- 格式:doc
- 大小:334.00 KB
- 文档页数:8
浙教版数学八年级上册第二章《特殊三角形》复习一、知识结构本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL 定理等知识,这些知识点之间的结构如下图所示:等腰Rt两直角三角形全等的判定直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形等腰三角形特殊三角形二、重点回顾1.等腰三角形的性质:等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说一条线段充当三种身份;等腰三角形是________图形,它的对称轴有_________条。
2.等腰三角形的判定:有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。
注意:有两腰相等的三角形是等腰三角形,这句话对吗? 3.等边三角形的性质:等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。
4.等边三角形的判定:有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。
5.直角三角形的性质:直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。
30°角所对的直角边等于斜边的________ 6.直角三角形的判定:有一个角是______的三角形是直角三角形;有两个角_______的三角形是直角三角形;两边的平方和等于_______的三角形是直角三角形。
一条边上的中线等于该边长度的一半,那么该三角形是直角三角形,但不能直接拿来判断某三角形是直角三角形,但有助于解题。
第2章特殊三角形一、选择题(每小题5分,共35分)1.下列图形中是轴对称图形的是()图12.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°3.已知a,b,c是△ABC的三边长,且满足(a-b)2+|c2-a2-b2|=0,则下列对△ABC的形状的判断最准确的为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形4.如图2所示,△ABC的面积为8 cm2,AP垂直∠ABC的平分线BP于点P,则△PBC的面积为()图2A.2 cm2B.3 cm2C.4 cm2D.5 cm25.如图3,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连结CD,则∠ACD的度数是()图3A.50°B.40°C.30°D.20°6.如图4,已知点P在∠AOB的边OA上,OP=10,点M,N在边OB上,PM=PN.若MN=2,OM=5,则PM的长为()图4A.6B.8C.√65D.97.如图5,在锐角三角形ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是()A.1B.1.5C.√2D.√3二、填空题(每小题5分,共30分)8.定理“直角三角形的两个锐角互余”的逆定理是______________________.图59.如图6,已知AB是Rt△ABC和Rt△ABD的斜边,O是AB的中点,其中OC=2 cm,则OD=________cm.图610.如图7,在△ABC中,BO,CO分别平分∠ABC,∠ACB,OM∥AB,ON∥AC,BC=10 cm,则△OMN的周长为________cm.图711.如图8,在长方形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,使点C落在点C'处,BC'交AD于点E,则线段DE的长为________.图812.将45°的∠AOB按如图9所示的方式摆放在一把刻度尺上,顶点O与刻度尺下沿的端点重合,OA与刻度尺下沿重合,OB与刻度尺上沿的交点B在刻度尺上的读数为2 cm.若按相同的方式将30°的∠AOC放置在该刻度尺上,OC与刻度尺上沿的交点为C,则点C在刻度尺上的读数为________cm.图913.如图10,一个直径为8 cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1 cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,则筷子的长度为________cm.图10三、解答题(共35分)14.(10分)如图11,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足为D,E.若BD=4 cm,CE=3 cm,求DE的长.图1115.(12分)如图12,已知AC⊥BC,AD⊥BD,E为AB的中点.(1)如图①,求证:△ECD是等腰三角形;(2)如图②,CD与AB交于点F,若AD=BD,EF=3,DE=4,求CD的长.图1216.(13分)定义:把斜边重合,且直角顶点不重合的两个直角三角形叫做“共边直角三角形”. (1)概念理解:如图13①所示,在△ABC中,∠C=90°,作出△ABC的“共边直角三角形”(画一个即可);(2)问题探究:如图②所示,在△ABC中,∠ACB=90°,AC=6,BC=8,△ABD与△ABC是“共边直角三角形”,连结CD,当CD⊥AB时,求CD的长;(3)拓展延伸:如图③所示,△ABC和△ABD是“共边直角三角形”,BD=CD.求证:AD平分∠CAB.图13答案1.D2.C[解析] 当40°角是等腰三角形的顶角时,则顶角就是40°;当40°角是等腰三角形的底角时,则顶角是180°-40°×2=100°.3.C[解析] ∵(a-b)2+|c2-a2-b2|=0,∴a-b=0,c2-a2-b2=0,解得a=b,a2+b2=c2,∴△ABC为等腰直角三角形.故选C.4.C[解析] 如图,延长AP交BC于点E.∵AP垂直∠ABC的平分线BP于点P,∴∠APB=∠EPB=90°,∠ABP=∠EBP.又∵BP=BP,∴△ABP≌△EBP,∴S△ABP=S△EBP,AP=PE,∴S△APC=S△PCE,∴S△PBC=S△EBP+S△PCE=1S△ABC=4 cm2.25.D[解析] ∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°.∵BC=BD,∴∠BCD=∠BDC=1×(180°-40°)=70°,2∴∠ACD=90°-70°=20°.因此本题选D.6.C7.C[解析] 过点B作BH⊥AC,垂足为H,交AD于点M',过点M'作M'N'⊥AB,垂足为N',则BM'+M'N'为所求的最小值.∵AD是∠BAC的平分线,∴M'H=M'N'.∵BH⊥AC,∠BAC=45°,∴∠ABH=45°,∴AH=BH.又∵AB=2,∴BH=√2,∴BM+MN 的最小值是BM'+M'N'=BM'+M'H=BH=√2.故选C .8.有两个角互余的三角形是直角三角形9.2 [解析] ∵AB 是Rt △ABC 和Rt △ABD 的斜边,O 是AB 的中点,∴OC=12AB=OD. ∵OC=2 cm, ∴OD=2 cm .故答案为2.10.10 [解析] ∵BO 平分∠ABC ,∴∠ABO=∠MBO.∵OM ∥AB ,∴∠ABO=∠MOB , ∴∠MBO=∠MOB ,∴OM=BM ,同理ON=CN.∵BC=10 cm,∴△OMN 的周长=OM+MN+ON=BM+MN+CN=BC=10 cm .故答案为10.11.154 [解析] 设DE=x ,则AE=6-x.∵四边形ABCD 为长方形, ∴AD ∥BC , ∴∠EDB=∠DBC.由折叠的性质,得∠EBD=∠DBC ,∴∠EDB=∠EBD , ∴BE=DE=x.在Rt △ABE 中,由勾股定理, 得BE 2=AB 2+AE 2,即x 2=9+(6-x )2,解得x=154,∴DE=154. 12.√1213.8.5 [解析] 设杯子的高度是x cm,那么筷子的长度是(x+1)cm . 由题意,得x 2+42=(x+1)2,整理,得16=2x+1, 解得x=7.5,∴x+1=8.5.∴筷子的长度为8.5 cm .故答案为8.5.14.解:∵∠BAC=90°,∠ADB=∠AEC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°, ∴∠CAE=∠ABD.又∵AB=CA ,∴△ABD ≌△CAE , ∴AD=CE ,BD=AE ,∴DE=AD+AE=CE+BD=7 cm .15.解:(1)证明:∵AC ⊥BC ,AD ⊥BD ,∴∠ACB=90°,∠ADB=90°.又∵E 为AB 的中点,∴CE=12AB ,DE=12AB , ∴CE=DE ,即△ECD 是等腰三角形. (2)∵AD=BD ,E 为AB 的中点,∴DE ⊥AB. ∵DE=4,EF=3,∴在Rt △DEF 中,由勾股定理,得DF=5.过点E 作EH ⊥CD 于点H.∵∠FED=90°,EH ⊥DF , ∴S △DEF =12EF ·ED=12DF ·EH , ∴EH=EF ·ED DF =125,∴DH=√DE 2-EH 2=165. ∵△ECD 是等腰三角形,∴CD=2DH=325.16.解:(1)略.(2)如图①所示,设AB ,CD 交于点E ,取AB 的中点O ,连结CO ,DO. 在Rt △ABC 中,∵AC=6,BC=8, ∴AB=10.∵△ABC 和△ABD 是共边直角三角形, ∴OC=OD=12AB. ∵CD ⊥AB , ∴CD=2CE.∵S △ABC =12AC ·BC=12AB ·CE , ∴CE=4.8,∴CD=4.8×2=9.6.(3)证明:设AD ,BC 交于点E ,如图②,分别延长BD 和AC 交于点F .∵△ABC 和△ABD 是共边直角三角形, ∴AC ⊥BC ,AD ⊥BF . ∵BD=CD , ∴∠CBD=∠BCD.∵∠CBD+∠F=∠BCD+∠DCF=90°, ∴∠DCF=∠F , ∴CD=FD , ∴BD=FD ,即AD 为线段BF 的垂直平分线,∴AF=AB ,∴AD 平分∠CAB (等腰三角形三线合一).。
浙教版八年级上册数学第二章《特殊三角形》测试卷含答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--浙教版八年级上册数学第二章《特殊三角形》测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图形中是轴对称图形的是()A. B. C. D.2.已知等腰三角形的一边长为3,另一边长为6,则这个等腰三角形的周长为()A. 12B. 12或15 C. 15 D. 93.在中,,,则BC边上的高为()A. 12B. 10C. 9D. 84.若等腰三角形一个外角等于100 ,则它的顶角度数为()A. 20°B. 80°C. 20°或80° D. 50°或80°5.如图△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D 交AC于点E,那么下列结论中正确的是()①△BDF和△CEF都是等腰三角形②DE=BD+CE③△ADE的周长等于AB和AC的和④BF=CFA. ①②③④B. ①②③C. ①②D. ①6.如图,将绕点A按逆时针方向旋转100°,得到,若点在线段BC 的延长线上,则的大小为()A. 70°B. 80°C. 84°D. 86°(第5题)(第6题)(第7题)(第9题)7.如图,正方形A,B,C的边长分别为直角三角形的三边长,若正方形A,B的边长分别为3和5,则正方形C的面积为( )A. 4B. 15C. 16D. 188.以下列长度的线段不能围成直角三角形的是()A. 5,12, 13B.C. ,3,4 D. 2,3,49.如图由于台风的影响,一棵树在离地面处折断,折断后树干上部分与地面成30度的夹角,折断前长度是()A. B. C.D. .10.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE 的长是()A. 7B. 5C. 3D. 2(第10题)(第11题)11.“三等分角”大约是在公元前五世纪由古希腊人提出来的。
浙教版初中数学试卷2019-2020年八年级数学上册《特殊三角形》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)在△ABC中,分析下列条件:①有一个角等于60°的等腰三角形;②有两个角等于60°的三角形;③有3条对称钠的三角形;④有两边相的三角形. 其中能说明△ABC是等边三角形的有()A.①B.①②C.①②③D.①②③④2.(2分)若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于()A. 3 B.12 C. 7 D. 43.(2分)三角形的三边长a、b、c满足等式22()2+−=,则此三角形是()a b c abA.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点0,过点O作EF∥BC,交AB于点E,交AC于点F,△ABC的周长是24cm ,BC=10cm,则△AEF的周长是()A.10 cm B.12cm C.14 cm D.34 cm5.(2分)下列各组条件中,能判定△ABC为等腰三角形的是()A.∠A=60°,∠B=40°B.∠A=70°,∠B=50°C.∠A=90°,∠B=45°D.∠A=120°,∠B=15°6.(2分)如图,在△ABC中,∠BAC=90°,AD⊥BC,则图中与∠B相等的角是()A.∠BAD B.∠C C.∠CAD D.没有这样的角7.(2分)把等边三角形ABC一边AB延长一倍到D,则∠ADC是()A.等腰三角形B.直角三角形C.等边三角形D.不能确定8.(2分)连结等边三角形各边的中点所得到的三角形是()A.等边三角形B.直角三角形C.非等边三角形D.无法确定9.(2分) 等腰三角形的一个外角为140°,则顶角的度数为()A.40°B. 40°或 70°C.70°D. 40°或 100°10.(2分)等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D.顶角的平分线、底边上的高及底边上的中线三线互相重合11.(2分)等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D.顶角的平分线、底边上的高及底边上的中线三线互相重合评卷人得分二、填空题12.(2分)如图,在△ABC中,AB=AC,AD、CE 分别平分∠BAC 与∠ACB,AD 与 CE 相交于点 F .若∠B =62° , 则∠AFC = .13.(2分)如图,∠BCA = ∠E = 90°,BC= E,要利用“HL”来说明 Rt△ABC≌Rt△ADE,则还需要补充条件 .14.(2分)等腰三角形一边长为2 cm,另一边长为5cm,它的周长是 cm.15.(2分)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条路,他们仅仅少走了步路(假设2步为l m),却踩伤了花草.16.(2分)如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C= .17.(2分)如图所示,在△ABC中,∠ACB=90°,BC=5,D是AB的中点,△BCD的周长是l8,则AB的长是.18.(2分)如图,在△ABC中,∠BAC=90°,∠C=30°, AD⊥BC于D,BC=12,则BD= .19.(2分)如果一个三角形一边上的中线恰好与该边上的高重合,那么这个三角形 (填“一定”或“不一定”)是等腰三角形.20.(2分) 如图,在△ABC 中,AB=AD=DC,∠BAD=26°,则∠C= .评卷人得分三、解答题21.(7分)如图,在6×6的正方形网络中,有A、B、C三点.分别连接 AB、BC、AC,试判断△ABC的形状.22.(7分)如图,∠ABC的平分线BF 与△ABC 中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?并说明理由.(2)BD,CE,DE之间存在着什么关系?请证明.23.(7分)如果将直角三角形的三条边长同时扩大一倍,得到三角形还是直角三角形吗?扩大n倍呢(n为正整数)?24.(7分)如图,从山下到山上的一个小亭子修了138级台阶,每级台阶的高大约是24 cm,宽大约是32 cm,从山下到小亭子大约要走多远(精确至0.1 m)?25.(7分)一艘潜艇在水下800 m处用声纳测得水面上一艘静止的轮船与它的直线距离为l000m,潜艇的速度为20m/s,若它向这艘轮船方向驶去(深度保持不变),则经多少时间它会位于轮船正下方?26.(7分)如图,Rt△ABC中,∠ACB=90°,D是AB的中点,过点D作DE⊥BC于E 点,F是BD的中点,连结EF.说明:CD=2EF.27.(7分)将两块三角尺的直角顶点重合成如图的形状,若∠AOD=127°,则∠BOC度数是多少?28.(7分)如图,∠A=∠B,CE∥DA,CE交AB于E,△CEB是等腰三角形吗?说明理由.29.(7分)如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C 处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?30.(7分)如图,在△ABC 中,∠ABC= 50°,∠ACB=70°,延长 CB 至D使 BD=BA,延长 BC 至E使 CE=CA. 连结 AD、AE,求△ADE 各内角的度数.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C2.B3.B4.C5.C6.C7.B8.A9.D10.D11.D二、填空题12.121°13.AB=AD14.1215.416.25°17.1318.319.一定20.38.5°三、解答题21.设小正方形的边长为1.∵,222125AB=+=,2222420BC=+=,2223425AC=+=,∴222AB BC AC+=,∴△ABC是直角三角形22.(1)2个等腰三角形:△BDF和△CEF,理由略(2)BD=DE+CE,理由略23.均是直角三角形24.55.2 m25.30s26.说明EF=12BD=12CD27.53°28.是等腰三角形,说明∠CEB=∠B 29.陈华同学的说法正确,理由略30.∠D=25°,∠E=35°,∠DAF=120°。
2020 年秋浙教版八年级数学上册第 2 章特殊三角形单元提高测试卷一、选择题(共 10 题;共 30 分)1.永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教 育.下列安全图标不是轴对称的是()A. C. D.2.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是( )A. 55°,55°B. 70°,40°或 70°,55°C. 70°,40°D. 55°,55°或 70°,40° 3.如图, ΔABC 中, 垂直平分 ,垂足为 D ,交 于 E ,若 ∠B = 32° , ,则AC = CEDE AB BC ∠C 的度数是( )A. °B. ° 55C. °D. ° 52 60 65 4.以下命题:(1)如果 a <0, b >0 ,那么 a + b <0;(2)相等的角是对顶角;(3)同角的补角 相等;(4)如果两条直线被第三条直线所截,那么同位角相等.其中真命题的个数是( ) A. 0B. 1C. 2D. 35.在△ABC 中,∠A 、∠B 、∠C 的对边分别为 a 、b 、c ,下列条件中不能说明△ABC 是直角三角形的 是( )A. a =3 , b =4 , c =5 22 2 B. a =9,b =12,c =15 C. ∠A :∠B :∠C =5:2:3D. ∠C ﹣∠B =∠A6.如图,在 Rt△ABC 中,∠ACB =90°,AC =6,BC =8,AE 平分∠BAC ,ED⊥AB ,则 ED 的长 ( )A. 3B. 4C. 5D. 67.如图,三角形纸片 ABC ,点 D 是 BC 边上一点,连接 AD ,把△ABD 沿着 AD 翻折,得到△AED , DE 与 AC 交于点 G ,连接 BE 交 AD 于点 F.若 DG =GE ,AF =3,BF =2,△ADG 的面积为 2,则点 F 到 BC 的距离为( )A. B. C. D. , √552√554√554√338.如图,将长方形 折叠,使点 C 和点 A 重合,折痕为 与 交于点 O 若 ,AE = 5ABC D EF EF AC ,则 的长为()BF = 3 A O A. B. C. D. 4√53 √5√5 2√529.如图,在 中, ∠ACB = 90° ,点 H 、E 、F 分别是边 的值为( )CH、 、 的中点,若 CARt △ ABC AB BC ,则EF + CH = 8 A. 3 B. 4 C. 5 D. 610.如图,在 Rt△ABC 中,∠ACB=90°,CD 为中线,延长 CB 至点 E ,使 BE=BC ,连结 DE ,F 为 DE 中点,连结 BF.若 AC=8,BC=6,则 BF 的长为( )A. 2B. 2.5C. 3D. 4二、填空题(共 8 题;共 24 分)△11.在等腰ABC 中,AB=AC,∠B=50°,则∠A的大小为________.12.如图,在△ABC中,AB=AC,∠BAC的平分线 AD 交 BC 于点 D,E 为 AB 的中点,若 BC=12,AD=8,则 DE 的长为________.13.在中,∠C=90°,若,则的长是________.Rt△ABC AB−AC=2,BC=8AB△△14.如图,ABC 中,AB=AC=4,以 AC 为斜边作 Rt ADC,使∠ADC=90°,∠CAD=∠CAB =30°,E、F 分别是 BC、AC 的中点,则 ED=________.OB15.如图,以原点 O 为圆心,为半径画弧与数轴交于点A,则点 A 在数轴上表示的数为________.16.如图所示,△ABC为等边三角形,AQ=PQ,PR⊥AB于点 R,PS⊥AC于点 S,PR=PS,有下列四个结论:①点 P 在∠BAC的平分线上;②AS=AR;③QP∥AB;④△BRP≌△CSP.其中,正确的有________(填序号即可).17.如图,在 Rt△ABC 中,∠C=90°,AC=10,BC=5,线段 PQ=AB , P , Q 两点分别在 AC 和过点 A 且垂直于 AC 的射线 AO 上运动,当 AP=________时,△ABC 和△PQA 全等.18.如图, ΔABC 中,点在边 上, , ∠ ∠ , 垂直于 的延长线 E 于点BEAC EB = EA 的长为________.BCA = 2 CBE CD D , ,AC = 11,则边BD = 8 三、解答题(共 6 题;共 46 分)19.如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD 是直角吗?说明理由.20.如图,在笔直的铁路上 两点相距 , 为两村庄, , ,CB = 14kmA, B 20km C, D DA = 8km 于 , 于 . 现要在 上建一个中转站 ,使得 , 两村到 站的距离DA ⊥ AB A CB ⊥ AB B AB E C D E 相等,求 的长.AE 21.如图,在△ABC 中,∠ABC>60°,∠BAC<60°,以 AB 为边作等边△ABD(点 C 、D 在边 AB 的 同侧),连接 CD ,(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC 的度数; (Ⅱ)当∠BAC=2∠BDC 时,请判断△ABC 的形状并说明理由; (Ⅲ)当∠BCD 等于多少度时,∠BAC=2∠BDC 恒成立。
浙教版数学八年级上册-第二章-特殊三角形-巩固练习一、单选题1.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A. 3.5B. 4C. 4.5D. 52.如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则CE的长是()A. B. C. D.3.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A. 6cmB. 8cmC. 10cmD. 12cm4.如图所示,点D是△ABC的边长AC上一点(不含端点),AD=BD,则下列结论正确的是()A. ∠A=∠ABCB. AC=BCC. ∠A>∠ABCD. AC>BC5.由下列条件可以作出等腰三角形的是()A. 已知等腰三角形的两腰B. 已知一腰和一腰上的高C. 已知底角的度数和顶角的度数D. 已知底边长和底边上的中线的长6.园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A. 24米2B. 36米2C. 48米2D. 72米27.下列几组数能作为直角三角形的三边长的是()A. 2,2,B. ,2,C. 9,12,18D. 12,15,208.如图,PB⊥AB于B,PC⊥AC于C,且PB=PC,则△APB≌△APC的理由是()A. SASB. ASAC. HLD. AAS二、填空题9.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是________km;若A地在C地的正东方向,则B地在C地的________方向.10.在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等________.11.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB= ,则CD=________.12.如图,在4×4方格中,点A、B在格点上,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出________个.13.已知等腰三角形一腰上的中线将它的周长分为6和9两部分,则它的底边长是________.14.如图,在凸四边形ABCD中,AB=BC=BD,∠ABC=80°,则∠ADC等于 ________15.如图,点D是∠ABC内一点,点B在射线BA上,且∠DBE=∠BDE=15°,DE∥BC,过点D 作DF⊥BC,垂足为点F,若BE=10,则DF=________.三、解答题16.如图,已知AD=4,CD=3,BC=12,AB=13,∠ADC=90°,求四边形ABCD的面积.17.如图,△ABC的边AB=8,BC=5,AC=7.求BC边上的高.四、综合题18.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1________,并直接写出点A1、B1、C1的坐标________;(2)△ABC的面积是________(3)点P(a+1,b-1)与点C关于x轴对称,则a=________,b=________.19.已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.20.如图,AD⊥BC于点D,∠B=∠DAC,点E在BC上,△EAC是以EC为底的等腰三角形,AB=4,AE=3.(1)判断△ABC的形状;(2)求△ABC的面积.答案一、单选题1.【答案】C【解析】【解答】解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.如图,设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62,解得:h=4.5.故答案为:C.【分析】根据题意画出图形,由由勾股定理求出水的尺度.2.【答案】D【解析】【分析】设CE=x,则AE=8-x,∵△BDE是△ADE翻折而成,∴BE=AE=8-x,在Rt△BCE中,BE2=BC2+CE2,即(8﹣x)2=62+x2,解得x=.故选D.3.【答案】C【解析】【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故选C.【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.4.【答案】D【解析】【解答】∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以A选项和C 选项不符合题意;∴AC>BC,所以D选项符合题意;B选项不符合题意.故答案为:D.【分析】利用等边对等角可得∠A=∠ABD,由图形可知∠ABC>∠ABD,从而可得∠ABC>∠A,据此可判断A、C;在三角形中,大角对大边,由∠ABC>∠ABD=∠A,据此判断B、D;5.【答案】D【解析】【解答】A、已知等腰三角形的两腰,顶角不确定,不能作出等腰三角形,A不符合题意;B、已知一腰和一腰上的高,角度不确定,不能作出等腰三角形,B不符合题意;C、已知底角的度数和顶角的度数,只知道三个角,不能作出等腰三角形,C不符合题意;D、已知底边长和底边上的中线的长可作出等腰三角形,D符合题意.故答案为:D【分析】根据等腰三角形的顶角可以是直角,钝角,锐角,故知道等腰三角形的两腰,顶角不确定,不能作出等腰三角形;已知一腰和一腰上的高,角度不确定,不能作出等腰三角形;反过来知道角的度数,边长不知道也固定不了三角形的形状,故已知底角的度数和顶角的度数,只知道三个角,不能作出等腰三角形;从而得出答案。
浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题1(附答案详解)1.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.24πB.22πC.1 D.22.已知一元二次方程x2﹣6x+9=1的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.10 B.10或8 C.9 D.83.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°4.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.5,12,13 B.8,15,17 C.3,4,7 D.6,8,10 5.下边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.②⑤B.②④C.③⑤D.①⑤6.下列几组数中,为勾股数的是()A.13,14,15B.3,4,6C.5,12,13D.0.9,1.2,1.57.O是等边△ABC内的一点,OB=1,OA=2,∠AOB=150°,则OC的长为()A3B5C7D.38.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A.0个B.1个C.2个D.3个9.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A 在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是( ).A.6B.26C.22+2D.2510.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A.2B.3C.5D.211.在镜中看到的一串数字是“80008”,则这串数字是______________12.在∠A(0°<∠A<90°)的内部画线段,并使线段的两端点分别落在角的两边AB、AC 上,如图所示,从点A1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A1A2为第1条线段.设AA1=A1A2=A2A3=1,则∠A =_____;若记线段A2n-1A2n的长度为a n(n为正整数),如A1A2=a1,A3A4=a2,则此时a2=_______,a n=________(用含n的式子表示).13.轴对称图形对应点连线被________,对应角对应线段都________.14.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm..15.在△ABC中,AB=2,AC=3,cos∠ACB=22,则∠ABC的大小为________度.16.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为____________ .17.如图,在凸四边形ABCD 中,AB=BC=BD ,∠ABC=80°,则∠ADC 等于_______18.已知点P (x ,x+y )与点Q (5,x ﹣7)关于x 轴对称,则点P 的坐标为_____. 19.如图①,在边长为4cm 的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ //BD ,PQ 与边AD(或边CD)交于点Q ,PQ 的长度()y cm 与点P 的运动时间x(秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长度是______cm .20.如图,长方体ABCD —A 1B l C l D 1中,AD =3,AA l =4,AB =5,则从A 点沿表面到C l 的最短距离为______.21.如图,ABC 中,AB AC =,D ,E ,F 分别为AB ,BC ,CA 上的点,且BD CE =,DEF B ∠=∠.(1)求证:BDE ≌CEF ;(2)若40A ∠=,求EDF ∠的度数.22.台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东30°方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.(1)该城市是否会受到这次台风的影响?为什么?(2)若受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?23.在如图所示的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为________;(2)若连接AC,则以AC为边的正方形的面积为________;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为_____.24.在平面直角坐标系中,,点在第二象限的角平分线上,、的垂直平分线交于点.(1)求证:;(2)设交轴于点,若,求点的坐标;(3)作交轴于点,若,求点的坐标.25.如图,D 是△ABC 的BC 边上的一点,∠B =40°,∠ADC=80°.(1)求证:AD=BD ;(2)若∠BAC=70°,判断△ABC 的形状,并说明理由.26.如图1,已知A (a ,0),B (0,b )分别为两坐标轴上的点,且a 、b 满足2)60a b b -+-=(,OC ∶OA =1∶3.(1)求A 、B 、C 三点的坐标;(2)若D (1,0),过点D 的直线分别交AB 、BC 于E 、F 两点,设E 、F 两点的横坐标分别为E F x x 、.当BD 平分△BEF 的面积时,求E F x x +的值;(3)如图2,若M (2,4),点P 是x 轴上A 点右侧一动点,AH ⊥PM 于点H ,在HM 上取点G ,使HG =HA ,连接CG ,当点P 在点A 右侧运动时,∠CGM 的度数是否改变?若不变,请求其值;若改变,请说明理由.27.如图,隧道的截面由半圆和长方形构成,长方形的长BC 为8m ,宽AB 为1m ,该隧道内设双向行驶的车道(共有2条车道),若现有一辆货运卡车高4m ,宽2.3m .则这辆货运卡车能否通过该隧道?说明理由.28.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A、B 是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是多少米?参考答案1.C【解析】【分析】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC ⊥AB ,OC=OA=OB=1,∠OCB=45°,再证明Rt △AOP ≌△COQ 得到AP=CQ ,接着利用△APE 和△BFQ 都为等腰直角三角形得到PE=2AP=2CQ ,QF=2BQ ,所以PE+QF=2BC=1,然后证明MH 为梯形PEFQ 的中位线得到MH=12,即可判定点M 到AB 的距离为12,从而得到点M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点M 所经过的路线长.【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=2,∠A=∠B=45°, ∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°, ∵∠POQ=90°,∠COA=90°, ∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴,BQ ,∴PE+QF=2(CQ+BQ)=2BC=22=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=12(PE+QF)=12,即点M到AB的距离为12,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=12AB=1,故选C.【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键. 2.A【解析】【分析】先求得方程的两根,再把方程两根分别为底可求得三角形的三边长,即可求得答案.【详解】解方程x2−6x+9=1可得x=2或x=4,当△ABC的底为2时,则三角形的三边长为2、4、4,满足三角形三边关系,其周长为10,当△ABC的底为4时,则三角形的三边长为4、2、2,不满足三角形三边关系,舍去,∴△ABC的周长为10.故答案选:A.【点睛】本题考查了三角形的三边关系与等腰三角形的性质以及解一元二次方程,解题的关键是熟练的掌握三角形的三边关系与等腰三角形的性质以及根据因式分解法解一元二次方程.3.C【解析】【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【详解】当50°是等腰三角形的顶角时,则底角为(180°﹣50°)×=65°;当50°是底角时也可以.故选C.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.C【解析】【分析】根据勾股定理逆定理逐个分析即可.如果a2+b2=c2,那么以a,b,c为边的三角形是直角三角形. 【详解】因为52+122=132;82+152=172;32+42≠72;62+82=102所以,以5,12,13;8,15,17;6,8,10为长度的三条线段能组成直角三角形,以3,4,7为长度的三条线段不能组成直角三角形.故选C【点睛】本题考核知识点:勾股定理逆定理. 解题关键点:熟记勾股定理逆定理.5.A【解析】试题分析:右边的图案中由两种基本图形拼接而成,分别是②⑤,左上方和右下方的基本图形是②,左下方和右上方的基本图形是⑤考点:图形拼接点评:本题考查图形拼接,考查学生的观察图形的能力6.C【解析】【分析】可以构成一个直角三角形三边的一组正整数,称之为勾股数,根据这个概念进行判断即可. 【详解】A:13,14,15不是整数,故其不为勾股数;B:222346+≠,故其不为勾股数;C:22251213+=,故其为勾股数;D:0.9,1.2,1.5不是整数,故其不为勾股数.故选:C.【点睛】考查勾股数的定义,熟练掌握定义是解题的关键.7.B【解析】如图,将△AOB绕B点顺时针旋转60°到△BO′C的位置,由旋转的性质,得BO=BO′,∴△BO′O为等边三角形,由旋转的性质可知∠BO′C=∠AOB=150°,∴∠CO′O=150°-60°=90°,又∵OO′=OB=1,CO′=AO=2,∴在Rt△COO′中,由勾股定理,得OC=2222+=+=.O O O C''125故选B.8.B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确;③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,所以逆命题成立的只有一个,故选B.【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.9.C【解析】【分析】点A,C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点O在到AC的中点的距离不变.本题可通过设出AC的中点坐标,根据B、D、O在一条直线上时,点B到原点O的最大可得出答案.【详解】作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=12AC=2, ∵BD=22222=2+,OD=12AC=2, ∴点B 到原点O 的最大距离为2+22, 故选D . 【点睛】此题主要考查了两点间的距离,以及勾股定理的应用,本题的难度较大,理解D 到O 的距离不变是解决本题的关键. 10.C 【解析】∵展开后由勾股定理得:AB 2=12+(1+1)2=5, ∴AB=5, 故选C .【点睛】本题考查了平面展开-最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键. 11.80008【解析】根据镜面对称可得这串数字是80008,故答案为:80008. 12.22.5︒ 12+ (112n -+【解析】∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3, ∴△A 1A 2A 3为等腰直角三角形, ∴∠A 2A 1A 3=45°, 又AA 1=A 1A 2, ∴∠A =∠AA 2A 1,又∠A 2A 1A 3为△AA 2A 1的外角, ∴∠A =∠AA 2A 1=12∠A 2A 1A 3=22.5°;∵AA1=A1A2=A2A3=1,∴A1A2=a1=1;在Rt△A1A2A3中,根据勾股定理得:A1A3,∴AA3=A3A4=a2=AA1+A1A3;同理AA5=A5A6=a3=AA3+A3A5()=()2;以此类推,a n=()n-1.故答案为:22.5°;;()n-1.点睛:此题考查了等腰直角三角形的性质,勾股定理,以及三角形的外角性质,属于规律型题,锻炼了学生归纳总结的能力,是中考中常考的题型.13.对称轴垂直平分相等【解析】【分析】根据轴对称图形对应点和对应角的性质可解得此题.【详解】根据轴对称图形的性质:轴对称图形对应点连线被对称轴垂直平分,对应角对应线段都相等.【点睛】此题考查了学生轴对称图形知识,掌握轴对称图形的性质是解决此题的关键.14.5或4【解析】【分析】此题分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(13-5)÷2=4(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是13-5×2=3(cm),能够组成三角形.故答案为:4或5.【点睛】此题考查了等腰三角形的两腰相等的性质与三角形的三边关系,解题时要注意分类讨论思想的运用. 15.30或150 【解析】如图,作AD ⊥BC 于点D ,在Rt △ACD 中,∵AC=3、cos ∠ACB=223,∴CD=ACcos ∠ACB=3×223=22,则AD=()2222322AC CD -=-=1,①若点B 在AD 左侧,∵AB=2、AD=1,∴∠ABC=30°;②若点B 在AD 右侧,则∠AB′D=30°,∴∠AB′C=150°,故答案为30或150.16.96m 2 【解析】试题解析:如图,连接AC .在△ACD 中,∵AD=12m ,CD=9m ,∠ADC=90°, ∴AC=15m ,又∵AC 2+BC 2=152+202=252=AB 2, ∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积-△ACD 的面积=12×15×20-12×9×12=96(平方米). 故答案为:96m 2. 17.140° 【解析】 【分析】根据等腰三角形的性质和三角形内角和定理可得1902ADB ABD ∠=︒-∠,1902CDB CBD ∠=︒-∠,由于∠ADC=∠ADB+∠CDB ,∠ABC=80°,依此即可求解.【详解】 ∵AB =BC =BD ,∴11909022ADB ABD CDB CBD ,,∠=︒-∠∠=︒-∠ ∴11909022ADC ADB CDB ABD CBD ∠=∠+∠=-∠+-∠11180()1808018040140.22ABD CBD =-∠+∠=-⨯=-=故答案为140. 【点睛】考查等腰三角形的性质以及三角形的内角和,得到190,2ADB ABD ∠=︒-∠ 190,2CDB CBD ∠=︒-∠是解题的关键.18.(5,2)【解析】试题解析:由点P (x ,x+y )与点Q (5,x ﹣7)关于x 轴对称,得 x=5,x+y=7﹣x . 解得x=5,y=﹣3, 点P 的坐标为(5,2).点睛:对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.19.【解析】 【分析】根据运动速度乘以时间,可得P 的位置,根据线段的和差,可得CP 的长,最好根据勾股定理,可得PQ 的长度. 【详解】由题可得:点P 运动2.5秒时,P 点运动了5cm , 此时,点P 在BC 上,853cmCP∴=-=,Rt PCQ中,由勾股定理,得223332cmPQ=+=,故答案为:32.【点睛】本题考查了动点函数图象,依据点P的位置,利用勾股定理进行计算是解题关键.20.74【解析】【分析】A点沿表面到C l共有三种情况,一是经平面AB1,A1C1,二是经平面AB1,BC1,三是经平面AC,BC1,画出三种情况下的图形,并利用勾股定理进行求解,最后比较三个结果,最小的即为答案.【详解】从A点沿表面到C l的情况可以分为以下三种:与A1B1相交,如下图示:此时174AC②与BB1相交,如下图示:此时180AC=③与BC相交,如下图示:此时190AC=综上,从A点沿表面到C l7474【点睛】考查多面体表面上的最短路径问题,利用数形结合思想,根据两点之间,线段最短,用勾股定理求解即可.21.(1)证明见解析;(2)55°.【解析】【分析】(1)根据三角形外角的性质可得到∠CEF=∠BDE,可证△BDE≌△CEF;(2)由(1)可得DE=FE,即△DEF是等腰三角形,由等腰三角形的性质可求出∠B=70°,即∠DEF=∠B=70°,从而求出∠EDF的度数.【详解】(1)∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.∵AB =AC ,∴∠C =∠B .又∵CE =BD ,∴△BDE ≌△CEF . (2)∵△BDE ≌△CEF ,∴DE =FE . ∴△DEF 是等腰三角形,∴∠EDF =∠EFD . ∵AB =AC ,∠A =40°,∴∠B =70°.∵∠DEF =∠B ,∴∠DEF =70°,∴∠EDF =∠EFD =12×(180°﹣70°)=55°. 【点睛】本题考查了等腰三角形的性质和判定、三角形的外角与内角的关系及全等三角形的判定及性质;证得三角形全等是正确解答本题的关键.22.(1)该城市会受到这次台风的影响(2)415小时(3)6.5级 【解析】试题分析:(1)求是否会受到台风的影响,其实就是求A 到BC 的距离是否大于台风影响范围的半径,如果大于,则不受影响,反之则受影响.如果过A 作AD BC ⊥于D ,AD 就是所求的线段 Rt △ABD 中,有ABD ∠的度数,有AB 的长,AD 就不难求出了.(2)受台风影响时,台风中心移动的距离,应该是A 为圆心,台风影响范围的半径为半径,所得圆截得的BC 上的线段的长即EF 得长,可通过在Rt AED △和Rt AFD 中,根据勾股定理求得.有了路程,有了速度,时间就可以求出了.(3)风力最大时,台风中心应该位于D 点,然后根据题目给出的条件判断出时几级风. 试题解析:(1)该城市会受到这次台风的影响。
保密★启用前2022-2023学年浙教版八年级数学上册第2章《特殊三角形》易错题精选学校:___________姓名:___________班级:___________考号:___________ 注意事项∶1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 所有答案都必须写到答题卷上。
选择题必须使用2B 铅笔填涂;非选择题必须使用黑色字迹的签字笔或钢笔书写,字体要工整,笔迹要清楚。
3.本试卷分试题卷和答题卷两部分,满分100分。
考试时间共90分钟。
一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2022·浙江衢州·八年级期末)如图图案中,成轴对称图形的是( ) A . B . C . D . 2.(本题3分)(2020·浙江·模拟预测)等腰三角形的两边长为3和8则这个等腰三角形的周长是( )A .14B .19C .14或19D .203.(本题3分)(2021·浙江·八年级期末)如图,在ABC 中,,30AB AC A =∠=︒,直线//,m n 顶点C 在直线n 上,直线m 交AB 于点,D 交AC 于点E ,若1150,∠=︒则2∠的度数是( )A .45B .40C .35D .304.(本题3分)(2020·浙江·绍兴市锡麟中学八年级阶段练习)有下列命题:①对顶角相等;②同位角相等,两直线平行;③若a =b ,则|a|=|b|;④全等三角形的对应角相等.它们的逆命题一定成立的有( )A .①②③④B .①④C .②④D .②5.(本题3分)(2022·浙江杭州·八年级期末)在Rt ABC 中,90ACB ∠=︒,分别以A 点,B 点为圆心以大于12AB 为半径画弧,两弧交于E ,F ,连接EF 交AB 于点D ,连接CD ,以C 为圆心,CD 长为半径作弧,交AC 于G 点,则:CG AB =( )A .B .1:2C .D .6.(本题3分)(2021·浙江杭州·八年级期中)在锐角ABC 中,15AB =,13AC =,高12AD =,则BC 的长度为( )A .16B .15C .14D .137.(本题3分)(2021·浙江湖州·八年级阶段练习)如图,AO ,BO 分别平分CAB ∠,CBA ∠,且点O 到AB 的距离2OD =,ABC 的周长为28,则ABC 的面积为( )A .7B .14C .21D .288.(本题3分)(2022·浙江绍兴·八年级期末)如图,斜靠在墙上的一根竹竿,AB =10m ,BC =6m ,若A 端沿垂直于地面的方向AC 下移2m ,则B 端将沿CB 方向移动的距离是( )米.A .1.6B .1.8C .2D .2.29.(本题3分)(2022·浙江宁波·八年级期末)如图,△ABC 中,90ACB ∠=,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知道( )A .以BC 为边的正方形面积B .以AC 为边的正方形面积 C .以AB 为边的正方形面积D .△ABC 的面积10.(本题3分)(2022·浙江绍兴·八年级期末)在Rt △ABC 中,AC =3,BC =4,∠ACB=90°,点P ,Q 分别是边AB 和BC 上的动点,始终保持AP =BQ ,连接AQ ,CP ,则AQ CP+的最小值为( )A .BC .D .6二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江宁波·八年级期中)等腰三角形的顶角是40°,则底角的度数为________°.12.(本题3分)(2019·浙江杭州·八年级期末)如图,已知O 是等边△ABC 内一点,D 是线段BO 延长线上一点,且 OD OA =,AOB ∠=120°,那么BDC ∠=_____.13.(本题3分)(2022·浙江·台州市书生中学八年级期中)已知直角三角形的两边长分别为3和4,则斜边上的中线长为______.14.(本题3分)(2021·浙江·乐清市英华学校八年级期中)课本第78页阅读材料《从勾股定理到图形面积关系的拓展》中有如下问题:如图①分别以直角三角形的三条边为边,向形外分别作正三角形,则图中的S 1,S 2,S 3满足的数量关系是S 1+S 2=S 3.现将△ABF 向上翻折,如图②,已知S 甲=9,S 乙=8,S 丙=7,则△ABC 的面积是______ .15.(本题3分)(2021·浙江·杭州英特外国语学校八年级期中)如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =8cm ,则△BED 的周长是______.16.(本题3分)(2022·浙江·浦江县实验中学八年级期中)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A 、B 、C 在同一直线上,且∠ACD =90°,图2是小床支撑脚CD 折叠的示意图,在折叠过程中,△ACD 变形为四边形ABC'D',最后折叠形成一条线段BD ''.某家装厂设计的折叠床是AB =4cm ,BC =8cm , (1)此时CD 为_________ cm ;(2)折叠时,当AB ⊥BC′时,四边形ABC′D′的面积为_______cm 2 .17.(本题3分)(2022·浙江宁波·八年级期末)如图,△ABC 中,13AB AC ==,24BC =,点D 在BC 上()BD CD >,△AED 与△ACD 关于直线AD 轴对称,点C 的对称点是点E ,AE 交BC 于点F ,连结BE ,CE . 当DE BC ⊥时,∠ADE 的度数为________,CE 的长为________.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江·八年级期中)如图,在△ABC 中,AB =BC ,∠ABC =90°,点E 在BC 上,点F 在AB 的延长线上,且AE =CF .(1)求证:△ABE ≌△CBF .(2)若∠ACF =70°,求∠EAC 的度数.19.(本题8分)(2022·浙江嘉兴·八年级期末)如图,在7×7的正方形网格中,A ,B 两点都在格点上,连结AB ,请完成下列作图:(1)在图1中找一个格点C,使得△ABC是等腰三角形(作一个即可);(2)在图2中找一个格点D,使得△ABD是以AB为直角边的直角三角形(作一个即可).20.(本题8分)(2022·浙江绍兴·八年级期末)如图,在△ABC中,AB=AC,点D在AC 边上(不与A,C重合),连接BD,BD=AB.(1)设∠C=α,∠ABD=β.①当α=50°时,求β.②直接写出β与α之间的等量关系及α的取值范围.(2)若AB=5,BC=6,求AD的长.21.(本题8分)(2022·浙江宁波·八年级期末)如图,M,N分别为锐角AOB∠边OA,OB上的点,把AOB∠所在平面内的点C处.∠沿MN折叠,点O落在AOB(1)如图1,点C 在AOB ∠的内部,若20CMA ∠=︒,50CNB ∠=︒,求AOB ∠的度数.(2)如图2,若45AOB ∠=︒,ON =折叠后点C 在直线OB 上方,CM 与OB 交于点E ,且MN ME =,求折痕MN 的长.(3)如图3,若折叠后,直线MC OB ⊥,垂足为点E ,且5OM =,3ME =,求此时ON 的长.22.(本题9分)(2022·浙江杭州·八年级期末)如图,C 是线段BD 上的一点,以,BC CD 为斜边在线段BD 同侧作等腰直角三角形ABC 和CDE △,过D 作DF DE ⊥于点D ,且DF AB =,连接AF 交BD 于点G ,连接,AE EF .(1)求证:AGB FGD △≌△;(2)请判断AEF 的形状,并说明理由;(3)请写出CAG ∠与DEF ∠的数量关系,并说明理由.23.(本题10分)(2022·浙江宁波·八年级期末)如果平面内一点到三角形的三个顶点的距离中,最长距离的平方等于另两个距离的平方和,则称这个点为该三角形的勾股点,如图1,平面内有一点P 到△ABC 的三个顶点的距离分别为P A 、PB 、PC ,若,PC PA PC PB >>,且222PC PA PB =+,则点P 就是△ABC 的勾股点.⨯的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点(小(1)如图2,在32正方形的顶点)上,格点P是△ABC的勾股点吗?请说明理由;(2)如图3,△ABC为等边三角形,过点A作AB的垂线,点E在该垂线上,以CE为边在其右侧作等边△CDE,连结AD.①求证:点A是△CDE的勾股点;②若AC=1AE=,直接写出等边△CDE的边长.。
2020年浙教新版八年级上册数学《第2章特殊三角形》单元测试卷一.选择题(共10小题)1.下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等2.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°3.具备下列条件的三角形为等腰三角形的是()A.有两个角分别为20°,120°B.有两个角分别为40°,80°C.有两个角分别为30°,60°D.有两个角分别为50°,80°4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.下面算式中,每个汉字代表0,l,2,…,9中的一个数字,不同的汉字代表不同的数字.算式中的乘数应是()A.2B.3C.4D.≥56.如图所示,∠MON=45°,点P为∠MON内一点,点P关于OM、ON对称的对称点分别为点P1、P2,连接OP、OP1、OP2、PP1、PP2、P1P2,P1P2分别与OM、ON交于点A、B,连接AP,BP,则∠APB的度数为()A.45°B.90°C.135°D.150°7.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD =α,则∠ACB的度数为()A.45°B.α﹣45°C.αD.90°﹣α8.以下是几种垃圾分类的图标,其中是轴对称图形的是()A.B.C.D.9.下列图形中轴对称图形是()A.B.C.D.10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°二.填空题(共8小题)11.如果两个直角三角形的分别对应相等,那么这两个直角三角形全等.12.已知,等腰△ABC中,AB=AC,∠BAC=120°,P为直线BC上一点,BP=AB,则∠APB的度数为.13.用反证法证明“两条直线相交,只能有一个交点”,应假设.14.用反证法证明“三角形中必有一个内角不小于60°”,应当先假设这个三角形中.15.如图,四边形ABCD中,AB=BC,点C关于BD的对称点E恰好落在AD上,若∠BDC =α,则∠ABC的度数为(用含a的代数式表示).16.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是.17.写出一个成轴对称图形的大写英文字母:.18.下列说法中,正确的有(把所有正确的答案都写上)①圆、线段、角、梯形、平行四边形都是轴对称图形;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形;④等腰三角形顶角的外角平分线与底边平行;⑤等腰三角形的一个内角为80°,则另外两个内角必然都是50°.三.解答题(共8小题)19.如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:Rt△BCE≌Rt△DCF.20.综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.21.如图,已知AB∥CD,CD⊥EF,垂足为N,AB与EF交于点M,求证:AB⊥EF.(用反证法证明)22.用反证法证明:如果x>,那么x2+2x﹣1≠0.23.等边三角形有条对称轴.24.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?25.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点,并求出BF的长;(2)△AEF与四边形ABCD重叠部分的面积为.26.如图,一个牧童在距小河边1千米的点A处牧马,而牧童家在河边同侧且距河边7千米的点B处,已知点A与点B的直线距离是10千米.他想先把马牵到河边去饮水,然后再回家,求他要完成这件事情所走的最短路程是多少千米.(精确到0.1千米,参考数据:≈1.41,≈1.73)2020年浙教新版八年级上册数学《第2章特殊三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等【分析】根据全等三角形的判定方法对A、B、C、D选项逐个分析是否可求证两三角形全等,然后即可得出正确选项.【解答】解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确.如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS也可判断两三角形全等,故选项B正确.如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL也可判断两三角形全等,故选项C正确.故选:D.【点评】此题主要考查学生对直角三角形全等得判定的理解和掌握,解得此题的关键是根据A、B、C选项给出的已知条件都可判断出三角形全等,所以答案就很明显了.2.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°【分析】由于不明确40°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.【解答】解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.【点评】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.3.具备下列条件的三角形为等腰三角形的是()A.有两个角分别为20°,120°B.有两个角分别为40°,80°C.有两个角分别为30°,60°D.有两个角分别为50°,80°【分析】分别求出第三个内角的度数,即可得出结论.【解答】解:A、有两个角分别为20°,120°的三角形,第三个内角为180°﹣120°﹣20°=40°,∴有两个角分别为20°,120°的三角形不是等腰三角形,选项A不符合题意;B、有两个角分别为40°,80°的三角形,第三个内角为180°﹣40°﹣80°=60°,∴有两个角分别为40°,80°的三角形不是等腰三角形,选项B不符合题意;C、有两个角分别为30°,60°的三角形,第三个内角为180°﹣30°﹣60°=90°,∴有两个角分别为30°,60°的三角形不是等腰三角形,选项C不符合题意;D、有两个角分别为50°,80°的三角形,第三个内角为180°﹣50°﹣80°=50°,有两个角相等,是等腰三角形;∴有两个角分别为50°,80°的三角形是等腰三角形,选项D符合题意;故选:D.【点评】本题考查了等腰三角形的判定以及三角形内角和定理;熟练掌握三角形内角和定理和等腰三角形的判定是解题的关键.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选:B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.下面算式中,每个汉字代表0,l,2,…,9中的一个数字,不同的汉字代表不同的数字.算式中的乘数应是()A.2B.3C.4D.≥5【分析】对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.【解答】解:假设:“好”≥5,则“客”=1,故“好“=7或9.若“好”=7,则“居“=3,引出矛盾;假设:“好“=9,则“居’’=9,引出矛盾.故“好’’≤4.显然“好“≠1;假设:“好”=2,则“客”≤4,只有“客“=4,从而“居”=7,引出矛盾;假设:“好”=3,则“客“≤2,但若“客”=1,则“居”=7,引出矛盾;假设:“客“=2,则“居“=4,引出矛盾.故只有“好”=4.故选:C.【点评】本题考查了用反证法证明命题的正确性,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.6.如图所示,∠MON=45°,点P为∠MON内一点,点P关于OM、ON对称的对称点分别为点P1、P2,连接OP、OP1、OP2、PP1、PP2、P1P2,P1P2分别与OM、ON交于点A、B,连接AP,BP,则∠APB的度数为()A.45°B.90°C.135°D.150°【分析】依据轴对称的性质,即可得到∠APO=∠AP1O,∠AOP=∠AOP1,∠BPO=∠BP2O,∠BOP=∠BOP2,进而得出∠OP1P2+∠OP2P1=90°,再根据∠APB=∠APO+∠BPO=∠AP1O+∠BP2O,即可得出结论.【解答】解:由轴对称可得,OP=OP1、AP=AP1,而AO=AO,∴△AOP≌△AOP1(SSS),∴∠APO=∠AP1O,∠AOP=∠AOP1,同理可得,∠BPO=∠BP2O,∠BOP=∠BOP2,∴∠P1OP2=2∠AOB=90°,∴∠OP1P2+∠OP2P1=90°,∴∠APB=∠APO+∠BPO=∠AP1O+∠BP2O=90°,故选:B.【点评】本题主要考查了轴对称的性质,轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.7.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD =α,则∠ACB的度数为()A.45°B.α﹣45°C.αD.90°﹣α【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD=,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°﹣.【解答】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=,又∵∠AEB'=∠AOB'=90°,∴四边形AOB'E中,∠EB'O=180°﹣,∴∠ACB'=∠EB'O﹣∠COB'=180°﹣﹣90°=90°﹣,∴∠ACB=∠ACB'=90°﹣,故选:D.【点评】本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB'E,解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.8.以下是几种垃圾分类的图标,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.下列图形中轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.【点评】本题考查了轴对称﹣最短路线问题,正确正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=100°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.二.填空题(共8小题)11.如果两个直角三角形的两条直角边分别对应相等,那么这两个直角三角形全等.【分析】直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL,添加条件AC=DE,BC=EF,根据SAS推出两三角形全等即可.【解答】解:如图所示∵在Rt△ACB和Rt△DEF中,∴Rt△ACB≌Rt△DEF(SAS).故答案为:两条直角边.【点评】本题考查了直角三角形全等的判定,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL,此题是一道开放性的题目,答案不唯一.12.已知,等腰△ABC中,AB=AC,∠BAC=120°,P为直线BC上一点,BP=AB,则∠APB的度数为75°或15°.【分析】首先根据题意画出图形,然后利用等腰三角形的性质求解即可求得答案,注意分为点P在边BC上或在CB的延长线上.【解答】解:如图1,∵在等腰△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BP=AB,∴∠APB==75°;如图2,在等腰△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵BP=AB,∴∠APB=∠ABC=15°.综上所述:∠APB的度数为75°或15°.故答案为:75°或15°.【点评】此题考查了等腰三角形的性质.注意结合题意画出图形,利用图形求解是关键.13.用反证法证明“两条直线相交,只能有一个交点”,应假设两条直线相交,有两个或两个以上交点.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行解答.【解答】解:用反证法证明“两条直线相交,只能有一个交点”,应假设两条直线相交,有两个或两个以上交点,故答案为:两条直线相交,有两个或两个以上交点.【点评】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.14.用反证法证明“三角形中必有一个内角不小于60°”,应当先假设这个三角形中三角形中每一个内角都小于60°.【分析】反证法的第一步是假设命题的结论不成立,据此可以得到答案.【解答】解:用反证法证明“三角形中必有一个内角不小于60°”时,应先假设三角形中每一个内角都小于60°.故答案为:三角形中每一个内角都小于60°.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15.如图,四边形ABCD中,AB=BC,点C关于BD的对称点E恰好落在AD上,若∠BDC =α,则∠ABC的度数为180°﹣2α(用含a的代数式表示).【分析】依据轴对称的性质,即可得出△BCD≌△BED,∠A=∠AEB,再根据四边形ABCD 中,∠ABC+∠ADC=180°,∠ADC=2∠BDC=2α,即可得到∠ABC=180°﹣2α.【解答】解:如图所示,连接BE,∵点C关于BD的对称点E恰好落在AD上,∴BC=BE=AB,DE=DC,∴△BCD≌△BED,∠A=∠AEB,∴∠BCD=∠BED,又∵∠BED+∠AEB=180°,∴∠A+∠BCD=180°,∴四边形ABCD中,∠ABC+∠ADC=180°,又∵∠ADC=2∠BDC=2α,∴∠ABC=180°﹣2α,故答案为:180°﹣2α.【点评】本题主要考查了轴对称的性质以及四边形内角和的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.16.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是.【分析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断△P1OP2是等腰直角三角形,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,进而得出∠EPF=90°,最后依据勾股定理列方程,即可得到EF的长度.【解答】解:∵P,P1关于直线OA对称,P、P2关于直线OB对称,∴OP=OP1=OP2=,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=90°,∴△P1OP2是等腰直角三角形,∴P1P2==2,设EF=x,∵P1E==PE,∴PF=P2F=﹣x,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,∴∠EPF=90°,∴PE2+PF2=EF2,即()2+(﹣x)2=x2,解得x=.故答案为:.【点评】本题考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题,依据勾股定理列方程求解.17.写出一个成轴对称图形的大写英文字母:A、B、D、E中的任一个均可.【分析】根据轴对称图形的概念,分析得出可以看成轴对称图形的字母.【解答】解:大写字母是轴对称的有:A、B、D、E等.故答案可为:A、B、D、E中的任一个均可.【点评】此题考查了轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,难度一般.18.下列说法中,正确的有②③④(把所有正确的答案都写上)①圆、线段、角、梯形、平行四边形都是轴对称图形;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形;④等腰三角形顶角的外角平分线与底边平行;⑤等腰三角形的一个内角为80°,则另外两个内角必然都是50°.【分析】根据轴对称图形的定义判断①②;根据等腰三角形的判定判断③;根据平行线的判定判断④;根据等腰三角形线段的性质判断⑤.【解答】解:①梯形、平行四边形不是轴对称图形,故本项错误;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分,本项正确;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形,本项正确;④等腰三角形顶角的外角平分线与底边平行,本项正确;⑤等腰三角形的一个内角为80°,则另外两个内角为50°,50°或80°,20°,故本项错误,故答案为:②③④.【点评】本题主要考查了轴对称图形的定义、等腰三角形的判定、平行线的判定、等腰三角形线段的性质.熟练掌握定理及性质是解题的关键.三.解答题(共8小题)19.如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:Rt△BCE≌Rt△DCF.【分析】连接BD,根据等腰三角形的性质和判定,求出BC=DC,根据直角三角形全等的判定定理HL推出两三角形全等即可.【解答】证明:连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC=90°,∴∠CBD=∠CDB,∴BC=DC,∵BE⊥EF,DF⊥EF,∴∠E=∠F=90°,在Rt△BCE和Rt△DCF中,∴Rt△BCE≌Rt△DCF(HL).【点评】本题考查了等腰三角形的性质和判定,直角三角形全等的判定的应用,主要培养学生运用定理进行推理的能力,题型较好,难度适中.20.综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.【分析】(1)如图1,将∠BAC=100°,∠DAC=36°代入∠BAD=∠BAC﹣∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=104°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=72°,那么∠CDE=∠ADC﹣∠ADE=32°;(2)如图2,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB﹣∠AED=,再由∠BAD=∠BAC﹣∠DAC得到∠BAD=n﹣100°,从而得出结论∠BAD =2∠CDE;(3)如图3,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD﹣∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【解答】解:(1)∠BAD=∠BAC﹣∠DAC=100°﹣36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵AE=AD,∴∠ADE=∠AED.∵∠DAC=36°,∴∠ADE=∠AED=72°.∴∠CDE=∠ADC﹣∠ADE=104°﹣72°=32°.(2)∠BAD=2∠CDE.理由如下:在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴.∵∠ACB=∠CDE+∠E,∴=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n﹣100°.∴∠BAD=2∠CDE.(3)∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD﹣∠AED=140°﹣=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.21.如图,已知AB∥CD,CD⊥EF,垂足为N,AB与EF交于点M,求证:AB⊥EF.(用反证法证明)【分析】根据反证法的一般步骤,假设AB与EF不垂直,根据平行线的性质证明∠CNE ≠90°,与已知相矛盾,从而肯定原命题的结论正确.【解答】证明:假设AB与EF不垂直,则∠AME≠90°,∵AB∥CD,∴∠AME=∠CNE,∴∠CNE≠90°,这与CD⊥EF相矛盾,∴AB⊥EF.【点评】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.22.用反证法证明:如果x>,那么x2+2x﹣1≠0.【分析】假设x2+2x﹣1=0,根据一元二次方程的解法解出方程,证明方程的两个根小于即可.【解答】解:假设x2+2x﹣1=0,x=,x1=﹣1+,x2=﹣1﹣,∵2,∴,∴﹣1+,∴x1<,易得x2<,这与已知相矛盾,∴假设不成立,∴如果x>,那么x2+2x﹣1≠0.【点评】本题考查的是反证法的应用,反证法的步骤是:假设结论不成立;从假设出发推出矛盾;假设不成立,则结论成立.23.等边三角形有3条对称轴.【分析】轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:等边三角形有3条对称轴.故答案为:3【点评】本题考查了轴对称的性质,正确理解轴对称图形的定义是解决本题的关键,是一个基础题.24.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?【分析】根据轴对称、轴对称图形的概念以及对称轴的概念进行解答即可.【解答】解:图中有阴影的三角形与三角形1、3成轴对称,整个图形是轴对称图形,它共有2条对称轴.【点评】本题考查的是轴对称和轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴是解题的关键.25.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点,并求出BF的长;(2)△AEF与四边形ABCD重叠部分的面积为6.【分析】(1)根据轴对称的性质确定出点B关于AE的对称点F即可;(2)即DC与EF的交点为G,由四边形ADGE的面积=平行四边形ADCE的面积﹣△ECG的面积求解即可.【解答】解:(1)如图1所示:在Rt△BEF中,由勾股定理得:BF===6.(2)如图2所示:重叠部分的面积=S ADEC﹣S△GEC=×(2+2)×4﹣=8﹣2=6.故答案为:6.是解题的【点评】本题主要考查的是轴对称变换,重叠部分的面积转化为S ADEC﹣S△GEC 关键.26.如图,一个牧童在距小河边1千米的点A处牧马,而牧童家在河边同侧且距河边7千米的点B处,已知点A与点B的直线距离是10千米.他想先把马牵到河边去饮水,然后再回家,求他要完成这件事情所走的最短路程是多少千米.(精确到0.1千米,参考数据:≈1.41,≈1.73)【分析】根据对称性,作点A关于小河l的对称点A′,连接A′B,则A′B的长度就是牧童完成这件事情所走的最短路线.【解答】解:过点A作点A关于小河l的对称点A′,连接A′B,与小河l交于点P,点P就是马饮水的地方.则A′B的长度就是牧童完成这件事情所走的最短路线.过点A、A′分别作l的平行线与过点B作的l的垂线分别相交于M、N两点,如图所示:在Rt△ABM中,AB=10,BM=6,∴AM=8,在Rt△BNA′中,A′N=AM=8,BN=BM+MN=6+2=8,∴A′B==8≈11.3.答:他要完成这件事情所走的最短路程是11.3千米.【点评】本题考查了最短路线问题、近似数和有效数字,解决本题的关键是掌握轴对称性质.。
第2章特殊三角形一、选择题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100°D.105°9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.14710.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或811.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1814.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1717.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A .B .C .D .二、填空题21.等腰三角形的一个外角是60°,则它的顶角的度数是______.22.如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC=______度.23.如图,a ∥b ,∠ABC=50°,若△ABC 是等腰三角形,则∠α=______°(填一个即可)24.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为______cm .25.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为______cm .26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=______.第2章特殊三角形参考答案一、选择题1.D;2.C;3.A;4.A;5.A;6.B;7.C;8.B;9.B;10.D;11.A;12.B;13.A;14.B;15.A;16.D;17.B;18.C;19.A;20.A;二、填空题21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。
浙教版初中数学试卷
2019-2020年八年级数学上册《特殊三角形》测试卷
学校:__________
题号一二三总分
得分
评卷人得分
一、选择题
1.(2分)如图,点A 的坐标是(2,0),若点B在y轴上,且△ABO是等腰三角形,则点B
的坐标是()
A.(-2,0)B.(0,-2)
C.(0,2)D.(0,-2)或(0,2)
2.(2分)如图,在 Rt△ABC 中,∠B = 90°,ED 垂直平分AC,交AC边于点D,交BC 边于E. ∠C= 35°,则∠BAE为()
A. 10°B.15°C.20°D.25°
3.(2分)如图,△ABC中,∠ACB=120°,在AB上截取AE=AC,BD=BC,则∠DCE等于()
A.20°B.30°C.45°D.60°
4.(2分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于()
A
.
6
5
B.
9
5
C.
12
5
D.
16
5
5.(2分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()
A.14cm B.4cm C.15cm D.3cm
6.(2分)如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是()
A.43B.33C.23D.3
7.(2分)三角形的三边长a、b、c满足等式22
()2
a b c ab
+-=,则此三角形是()
A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形
8.(2分)如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于()
A.50°B.40°C.25°D.20°
9.(2分)如图,跷跷板的支柱OC与地面垂直,点O是AB的中点,AB可以绕着点O上下转动.当A端落地时,∠OAC=20°,那么横板上下可转动的最大角度(即∠A′OA)是()
A.40°B.30°C.20°D.10°
10.(2分)如图,直线
1
l、
2
l、
3
l表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()
A.一处B.两处C.三处D.四处
11.(2分)如图,在等边△ABC中,BD、CE分别是AC、AB上的高,它们相交于点0,则∠BOC等于()
A
M
N
C
B
A.100°B.ll0°C.120°D.130°
12.(2分)下列各组条件中,能判定△ABC为等腰三角形的是()
A.∠A=60°,∠B=40°B.∠A=70°,∠B=50°
C.∠A=90°,∠B=45°D.∠A=120°,∠B=15°
13.(2分)等腰三角形的周长为l8 cm,其中一边长为8 cm,那么它的底边长为()A.2 cm B.8 cm C.2 cm或8 cm D.以上都不对
评卷人得分
二、填空题
14.(2分)如图,在△ABC中,AB=BC=2,∠ABC=900,D是BC的中点,且它关于AC的对称点是D′,则BD′= .
15.(2分)△ABC中,∠A=40°,当∠C= 时,△ABC是等腰三角形.
中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则16.(2分)如图,ABC
CD= .
17.(2分)等腰三角形的一个外角是130°,它的一个底角是 .
18.(2分)如图,B、C是河岸两点,A是对岸一点,测得∠ABC=45°,BC=60m ,∠ACB=45°,则点A到岸边BC的距离是 m.
图1
图2
D
C E
A
B
19.(2分)在△ABC 中,若AC 2+AB 2=BC 2,则∠B+∠C= 度.
20.(2分)如图,在△ABC 中,∠ACB=90°,∠B=25°,CD ⊥AB 于D ,则∠ACD= .
21.(2分)等腰三角形的周长是l0,腰比底边长2,则腰长为 . 评卷人 得分
三、解答题
22.(7分)如图,在△ABC 中,AB = AC ,∠BAC =28°,分别以AB 、,AC 为边作等腰直角三角形ABD 和等腰直角三角形 ACE ,使∠BAD= ∠CAE =90°. (1)求∠DBC 的度数;
(2)分别连按BE 、CD. 试说明CD=BE.
23.(7分)如图,AB=AC ,BD=BC. 若∠A = 38°,求∠DBC 的度数.
24.(7分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .
E
D
C
B
A
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE ⊥.
25.(7分)已知:如图,△ABC 和△
ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB 边上一点.
求证:(1)△ACE ≌△BCD ; (2)2
2
2
DE AE AD =+.
26.(7分)仅用一块没有刻度的直角三角板能画出任意角的平分线吗?
(1)小明想出了这样的方法:如图所示,先将三角板的一个顶点和角的顶点0重合,一条直角边与OA 重合,沿另一条直角边画出直线1l ,再将三角板的同一顶点与0重合,同一条直角边与0B 重合,又沿另一条直角边画出直线2l ,1l 与2l 交于点P ,连结OP ,则0P 为∠AOB 的平分线,你认为小明的方法正确吗?为什么? (2)你还有别的方法吗?请叙述过程并说明理由.
27.(7分)如图,在四边形ABCD 中,AC ⊥DC ,∠ADC 的面积为30cm 2,DC=12 cm ,AB=3 cm ,BC=4 cm,求△ABC 的面积.
28.(7分)根据下列条件,分别判断以a ,b ,c 为边的三角形是不是直角三角形. (1) a=8,b=15,c=17; (2)23a =
,1b =,23
c =
29.(7分)试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.
30.(7分)将两块三角尺的直角顶点重合成如图的形状,若∠AOD=127°,则∠BOC 度数是多少?
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.D 2.C 3.B 4.C
5.A
6.C
7.B
8.D
9.A
10.D
11.C
12.C
13.C
二、填空题
14.答案:5
15.40°或70°
16.3
17.50°或65°
18.30
19.90
20.25°
21.4
三、解答题
22.(1)在△ABC中,AB=AC,∠BAC=28°,∴∠ABC=1
2
×(180°-28°)=76°.
∵△ADB为等腰直角三角形,∴AD=AB,∠DBA=45°,
∴∠DBC=∠DBA+∠ABC=45°+76°=121°.
(2)∵△ABD和△ACE都是等腰直角三角形,AB=AD,AC=AE,∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠BAE.
又∵AB=AC,∴AD=AB=AC=AE,∴△CAD≌△BAE,∴CD=BE.
23.在△ABC中.∵AB=AC,∠A=38,∴∠ABC=∠C=1
2
×(180°-∠A)=71°.
在△DBC中,∵BD=BC,∴∠BDC=∠C=71°.
∴∠D8C=180°-∠BDC-∠C=180°-71°-71°=38°. 24.(1)解:图2中ABE ACD △≌△. 证明如下:
ABC △与AED △均为等腰直角三角形,
AB AC ∴=,AE AD =,90BAC EAD ∠=∠=.
BAC CAE EAD CAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠,ABE ACD ∴△≌△.
(2)证明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=,又45ACB ∠=,
90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥.
25.证明:(1) ∵ DCE ACB ∠=∠ ∴ ACE ACD BCD ACD ∠+∠=∠+∠ 即 ACE BCD ∠=∠ ∵ EC DC AC BC ==, ∴ △BCD ≌△ACE (2)∵ BC AC ACB =︒=∠,90, ∴ ︒=∠=∠45BAC B ∵ △BCD ≌△ACE ∴ ︒=∠=∠45CAE B
∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE ∴ 2
22DE AE AD =+ 26.(1)正确,理由略;(2)略
27.6cm 2
28.(1)是;(2)不是 29.是直角三角形,理由略 30.53°。