项目反应理论的参数估计
- 格式:ppt
- 大小:451.00 KB
- 文档页数:39
国%i-(指标库、赋史端 必图格 普文岸、笛国库? L —1、建库与维护干系统建库与维护子系统的功能是将已经选定的题目按属性指标、题文、附图、答文、答图 等项目,将有关信息准确方便地送入各子库中,并对库中的有关信息进行增、册h 修改、I 换以及按题号排序和查对等。
由于物理学科的特点,图形和特殊字符在题库中占有较大比重,所以物理题库系统需 要有绘制图形与特殊符号的功能,这项功能应在建库和维护子系统中实现。
另外,由于试题 中有图形,答案中也可能有图形,所以一个题目记录要由属性指标、题目正文(简称题文)、 附图、答文、答图等五部分组成。
考虑存储和管理的方便,试题的这些信息不统一存放在 个库中,而分别存放在指标库、题文库。
附图库、答文库和答图库等五个子库中。
同属一道试题的各项信息通过题目序号联系起来。
此外,按照课程的内容把所有题目分类, 按类存放,这样各子库相应地分成若干分库,每一分库存放某一类的试题。
接用库维护成二后请\瘠标原破K峦层加抗计机区地里统H-分布正L自动布卷模式匹醍组卷快速自动荆卷Mi 目।一个题库将存放大量的题目这些题目在计算机内如何存储将直接影响题库系统的工作效率和效果,因此题库结构的设计是题库系统设计开发的关键一环。
一般地说,一个大型题库应该具有这样的特征:(1)题库中的题目按学科领域分类,每一学科领域的题目又细分为若干个题目组合,这些题目组合可用于特定的教学目标,或测验特定的概念或能力。
(2)题库中的每一题目由两部分组成,即题目属性指标和题目本身。
题目属性指标有多项,反映有关题目的多种信息,这些信息将某一题目与库中的其它题目区别开,同时标记着题目使用的历史和使用情况(如使用次数、被高分学生答对的次数和被低分学生答对的次数等)。
(3)题库具有构成和结出等价形式测验的能力。
等价形式的测验是由不同的题目组合构成的,但每个测验的统计结果具有等效性,即这些不同的题目组合却测验相同的目标或概念,并用相同的统计方法来区分学生学习的好与差。
项目反应理论任何一种理论都不可能是完美无缺的,作为测量初期发展起来的理论更是不可避免地存在着一些缺陷。
项目反应理论(Item Response Theory, IRT)则是在反对和克服传统测量理论的不足之中发展起来的一种现代测量理论。
无论是CTT还是GT,其测验内容的选择、项目参数的获得和常模的制定,都是通过抽取一定的样本(行为样本或被试样本),因此可以说二者都建立在随机抽样理论基础之上。
它们的局限性主要表现在以下几个方面:(1)信度估计的精确性不高测量的重要目标就是降低测量误差,提高测量的精度。
在经典测量理论中,信度被定义为真分数的方差与实得分数(原始分数)的方差之比。
然而,在此定义中,真分数的方差和误差的方差都无法求取。
为了估计信度,CTT又提出了平行测验的概念,并在此基础上推演出了若干个信度估计公式。
但是严格的平行测验是不存在的,等价测验也很难获得的,在此基础上估计的测验信度很难达到比较高的精确程度。
另外,经典测量理论中的信度估计值也是一个笼统值,即假定对不同能力水平的被试来说,测量的误差是相同的。
而事实是,一份测验只有在施测于能力水平与测验难度相当的被试时容易获得比较高的测量精确度。
当测验施测于能力水平高于(或低于)测验难度的被试时就容易产生较大的测量误差。
而且测量误差值会随着被试水平与测验难度距离的增加而变大。
(2)各种测量参数的估计依赖于被试样本经典测量理论构造了一个完整的理论体系,同时设计了一套参数指标来刻划测量各方面的特性。
如信度、效度、项目的难度、区分度等。
但是这些参数的估计对样本的依赖性是很大的。
如项目难度,对于同一题目,若样本的群体水平较低,就有较高的难度估计值。
测验的信度和效度采用相关分析法,同样受到样本的影响。
为避免抽样误差对参数估计的影响,经典测量理论特别强调样本对总体的代表性。
但经典理论所用的是随机抽样,随机抽样总有一定偏差存在。
何况在实际工作中,由于客观条件的限制,还不能做到随机抽样。
IRT中项目参数的估计精度和DIF检验的开题报告题目:IRT中项目参数的估计精度和DIF检验一、研究背景随着心理测量技术不断发展,IRT(Item Response Theory,项目反应理论)已经成为了一种重要的心理测量模型。
IRT模型可以对考试、问卷等测量方式进行建模,并且可以计算出被测者的能力水平和题目的难度水平。
其中,项目参数的估计精度和DIF(Differential Item Functioning,差异项目功能)检验是IRT模型中比较关键的两个问题,对于有效地评估测试的质量和公正性具有重要意义。
二、研究目的本研究旨在探讨IRT模型中的项目参数的估计精度和DIF检验方法,为针对不同人群和不同考试环境下的测试质量和公正性问题提供技术支持和解决方案。
三、研究内容和方法本研究将主要围绕以下内容展开:1. 项目参数的估计精度:介绍IRT模型中常用的项目参数估计方法,包括极大似然估计、贝叶斯估计等,并比较不同方法的估计精度和实际应用效果。
2. DIF检验:介绍DIF检验的基本概念和常用方法,包括Lord'sChi-Square检验、Mantel-Haenszel检验、Logistic Regression检验等,并比较不同方法的检验效果和实际应用效果。
3. 实证研究:以某大学英语考试题目为例,运用IRT模型进行项目参数估计和DIF检验,比较不同方法的结果,并探讨测试质量和公正性问题。
四、预期结果1. 探讨不同方法在项目参数的估计精度和DIF检验中的效果差异和适用情况。
2. 运用实证研究方法,给出针对某大学英语考试的项目参数估计和DIF检验结果,并对测试公正性进行分析。
五、研究意义1. 对于有效地评估测试质量和公正性具有重要意义。
2. 对于提高测试工具的精度和应用效果具有一定的指导意义。
3. 对于推广IRT模型在实际应用场景中具有一定的促进作用。
六、研究计划1. 第一周:文献综述,确定研究内容和方法。
项目反应理论随着心理学的发展, 心理测量无论是在理论上, 还是在方法上都逐步地提高.目前,心理测量有三大理论派别:经典测量理论(Classical Test Theory , 简称CTT) ,项目反应理论(Item Response Theory ,简称IRT) 和概化理论(Generalizability Theory , 简称GT).项目反应理论是一种先进的测量理论,它是针对经典测量理论的不足而提出来的, 其理论基础是潜在特质理论。
项目反应理论的基本思路是确定考生的心理特质值和他们对于项目的反应之间的关系, 这种关系的数学形式就是“项目反应模型”。
下面主要对项目反应的理论假设和数学模型做一下简要概述。
一、项目反应理论的基本假设任何一种数学模型都有一定的前提,任何一种测量都有一定的假设,在项目反应理论中也有三条最基本的假设:潜在特质空间的单维性假设、测验项目间的局部独立性假设、项目特征曲线假设.有的学者还增加了“知道—-答对"假设和非速度限制假设。
在此仅说明前面三条最基本的假设.1、潜在特质空间的单维性假设潜在特质空间是指由心理学中的潜在特质组成的抽象空间。
如果考生在测验项目上的反应是有K种潜在特质所决定的,那么这些潜在特征就定义了一个K维潜在空间,考生的各个潜在特质分数综合起来,就决定了该考生在该潜在空间的位置。
如果影响考生测验分数的所有重要的心理特质都被确定了,那么该潜在空间就称为完全潜在空间。
目前比较成熟的大多数项目反应模型都假设完全潜在空间是单维的,即只有一种潜在特质决定了考生对项目的反应,也就是说组成某个测验的所有项目都是测量的同一个心理变量,例如知识、能力、态度或人格。
当然,这一假设往往不可能得到严格的满足,因为总有其他因素会影响到考生在测验上的反应,这些因素包括认知的、人格的和施测时的客观条件,以及考生的动机水平、焦虑程度、反应速度和考试技巧等。
因此在项目反应理论中,只要所预测量的心理特质是影响考生对项目作出反应的主要因素,那么就认为这组测验数据是满足单维假设的.2、测验项目间的局部独立性假设所谓局部独立性假设是指某个考生对于某个项目的正确概率不会受到他对于该测验中其他项目反应的影响,也就是说只有考生的特质水平和项目的特性会影响到考生对该项目的反应.在实际的教育和心理测量问题中, 如果前一个项目的内容为后一个项目的正确反应提供暗示或其它有效的信息,局部独立性的假设就会遭到破坏,例如所谓的链状试题就会出现这种情况.局部独立性是建立在统计的意义上的,用统计学的语言,局部独立性是指对每一个测验者来说, 对整个试题作出某种反应的概率等于对组成试卷的每个项目的反应的概率的乘积.3、项目特征曲线假设项目反应理论的一个关键就是在被试者对项目作出的反应或作出反应的概率与被测试者的潜在特质之间建立某种函数关系。
心理科学进展 2014, Vol. 22, No. 6, 1036–1046 Advances in Psychological ScienceDOI: 10.3724/SP.J.1042.2014.010361036项目反应理论中潜在心理特质“填补”的参数估计方法及其演变*田 伟1 辛 涛2 康春花3(1北京师范大学教育学部; 2北京师范大学发展心理研究所, 北京 100875)(3浙江师范大学教育学院, 金华 321004)摘 要 在心理与教育测量中, 项目反应理论(Item Response Theory, IRT)模型的参数估计方法是理论研究与实践应用的基本工具。
最近, 由于IRT 模型的不断扩展与EM (expectation-maximization)算法自身的固有问题, 参数估计方法的改进与发展显得尤为重要。
这里介绍了IRT 模型中边际极大似然估计的发展, 提出了它的阶段性特征, 即联合极大似然估计阶段、确定性潜在心理特质“填补”阶段、随机潜在心理特质“填补”阶段, 重点阐述了它的潜在心理特质“填补” (data augmentation)思想。
EM 算法与Metropolis-Hastings Robbins-Monro (MH-RM)算法作为不同的潜在心理特质“填补”方法, 都是边际极大似然估计的思想跨越。
目前, 潜在心理特质“填补”的参数估计方法仍在不断发展与完善。
关键词 项目反应理论; 潜在心理特质; “填补”; 边际极大似然函数估计; EM 算法; MH-RM 算法 分类号B8411 引言一般来说, 在心理与教育测量中, 经过严格的流程编制出心理或教育测验之后, 再通过经典测验理论或项目反应理论对被试的潜在心理特质(例如, 认知、人格、学业能力等)进行量尺化。
其中, 项目反应理论因为具有相对于经典测验理论的一些优势(Brennan, 2006), 在实践中得到了广泛应用。
项目反应理论的模型项目反应理论是心理学领域中的一种模型,用于量化测试者的能力水平。
该模型基于测验者对测试项目的反应,通过一些统计模型来衡量被测试者的能力水平。
项目反应理论的模型是一种非常有效的评估个人能力的工具,尤其是在教育、招聘等领域。
项目反应理论的模型是基于以下基本假设来构建的:1.每个测试项目都有一个固定的潜在难度水平,被称为难度参数。
2.每个被测试者也有一个能力水平,被称为斯洛班参数。
3.测试项目的正确反应由被测试者的能力和测试项目的难度水平共同决定。
基于这些假设,项目反应理论的模型将测试项目和被测试者的参数结合在一起,来推断受试者的能力水平。
该模型的核心是估计被试者的斯洛班参数,也称为能力水平,并将其与测试项目的难度参数进行比较。
为了实现这一目标,项目反应理论的模型采用了以下几个主要方程式:1.二项式分布方程式:用于计算测试项目正确的可能性。
2.逻辑斯蒂回归方程式:用于计算斯洛班参数和测试项目的难度参数之间的关系。
3.变异斯特林公式:用于比较测试项目的难度参数和斯洛班参数。
通过这些公式,项目反应理论的模型可以在测试被试者时精确地预测他们的能力水平。
这种方法可以应用于各种不同测试,从标准化考试到心理测试,以便评估特定领域或技能中被试者的表现。
但是,需要注意的是,项目反应理论的模型仅适用于具有可测量性的特定领域或技能。
如果测试测量的特定领域或技能不常规或难以厘定,那么这种模型是不可行的。
总的来说,项目反应理论的模型可以为教育、招聘等领域提供极具价值的工具,以量化被试者的能力水平。
这个模型的关键是能够将-test项目和被测试者的参数结合在一起,从而逐步推导出能力水平。
如果能够正确地实现这一目标,那么这种模型可以作为应用于许多各种测试和评估中的可靠而有效的工具。