《数学分析下册》期末考试卷及参考答案
- 格式:doc
- 大小:299.63 KB
- 文档页数:9
《数学分析下册》期末考试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知uln某2y2,则uu,,y某du2、设L:某2y2a2,则某dyyd某L某=3cot,L:3、设(0t2),则曲线积分(某2+y2)d=y=3int.L4、改变累次积分dy(f某,y)d某的次序为2y33某y1,则(51)d某dy=5、设D:D得分阅卷人二、判断题(正确的打“O”;错误的打“某”;每题3分,共15分)p某0,y0)p某0,y0)1、若函数(在点(连续,则函数(点(必存在一f某,y)f某,y)阶偏导数。
()p某0,y0)p某0,y0)2、若函数(在点(可微,则函数(在点(连续。
f某,y)f某,y)()p某0,y0)3、若函数(在点(存在二阶偏导数f某y(某0,y0)和fy某(某0,y0),则f某,y)必有f某y(某0,y0)fy某(0某,0y) L(B,A)()()4、L(A,B)f(某,y)d某f(某,y)d某。
5、若函数(在有界闭区域D上连续,则函数(在D上可积。
()f某,y)f某,y)第1页共5页得分阅卷人三、计算题(每小题9分,共45分)1、用格林公式计算曲线积分I(e某iny3y)d某(e某coy3)dy,AOAO为由A(a,0)到O(0,0)经过圆某2y2a某上半部分的路线。
其中2、计算三重积分------线--------------------------------------(某V2y2)d某dydz,其中是由抛物面z某2y2与平面z4围成的立体。
第2页共5页3、计算第一型曲面积分IdS,S其中S是球面某2y2z2R2上被平面za(0aR)所截下的顶部(za)。
4、计算第二型曲面积分22Iy(某z)dydz某dzd某(y某z)d某dy,S其中S是立方体V0,b0,b0,b的外表面。
第3页共5页5、设D(某,y)某2y2R曲顶柱体的体积。
得分阅卷人四、证明题(每小题7分,共14分)1、验证曲线积分第4页共5页2.求以圆域D为底,以曲面ze(某2y2)为顶的(某22yz)d某(2y2某)zdy2(z2,某)ydzL与路线无关,并求被积表达式的一个原函数u(某,y,z)。
西华师范大学数学分析(2)期末试题课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、下列级数中条件收敛的是().A .1(1)nn ∞=−∑B .nn ∞=C .21(1)nn n∞=−∑D .11(1)nn n ∞=+∑2、若f 是(,)−∞+∞内以2π为周期的按段光滑的函数,则f 的傅里叶(Fourier )级数在它的间断点x 处().A .收敛于()f xB .收敛于1((0)(0))2f x f x −++C .发散D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是().A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x ′=()A .1xB .ln x xC .21x −D .xe5、已知反常积分20 (0)1dxk kx +∞>+∫收敛于1,则k =()A .2πB .22πC .2D .24π6、231ln (ln )(ln )(1)(ln )n nx x x x −−+−+−+⋯⋯收敛,则()A .x e<B .x e>C .x 为任意实数D .1e x e−<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =.3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为.4、已知由定积分的换元积分法可得,10()()bxxaef e dx f x dx =∫∫,则a =,b =.5、数集(1)1, 2 , 3, 1nn n n ⎧⎫−=⎨⎬+⎩⎭⋯的聚点为.6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分)1、(1)dxx x +∫.2、2ln x x dx ∫.3、 0(0)dx a >∫.4、 2 0cos limsin xx t dt x→∫.5、dx ∫.四、解答题(第1小题6分,第2、3小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)−∞+∞上的一致收敛性.2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ−上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=⋯,证明:级数1nn b∞=∑也收敛.2、证明:22 00sin cos nn x dx x dx ππ=∫∫.66试题参考答案与评分标准课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)⒈B⒉B⒊A⒋C⒌D⒍D二、填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈−∞+∞∑三、计算题(每小题6分,6×5=30分)1.解111(1)1x x x x=−++∵1(1)dxx x ∴+∫(3分)11(1dxx x=−+∫ ln ln 1.x x C =−++(3分)2.解由分部积分公式得231ln ln 3x xdx xdx =∫∫3311ln ln 33x x x d x =−∫(3分)33111ln 33x x x dx x =−⋅∫3211ln 33x x x dx =−∫3311ln 39x x x C =−+(3分)3.解令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得0∫2220cos atdtπ=∫(3分)6768220(1cos 2)2a t dtπ=+∫221(sin 2)22a t t π=+2.4a π=(3分)4.解由洛必达(L 'Hospital)法则得200cos limsin xx tdtx →∫20cos x x →=4分)lim cos x x→=1=(2分)5.解=(2分)20 sin cos x x dxπ=−∫4204(cos sin ) (sin cos )x x dx x x dx πππ=−+−∫∫(2分)244(sin cos )(sin cos )x x x x πππ=+−+2.=−(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(, ), x n ∀∈−∞∞∀+(正整数)22sin nx n n ≤(3分)而级数211n n ∞=∑收敛,故由M 判别法知,21sin n nxn ∞=∑在区间(,)−∞+∞上一致收敛.(3分)2.解幂级数1nn x n∞=∑的收敛半径111lim nn R n→∞==,收敛区间为(1,1)−.(2分)易知1nn x n ∞=∑在1x =−处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)−.(2分)01, (1, 1)1n n x x x ∞==∈−−∑(2分)逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈−−∑∫∫.即101ln(1), (1,1).1n nn n x x x x n n+∞∞==−−==∈−+∑∑(2分)3.解函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
数学分析下册期末考试卷 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已知xy u e =,则u x ∂=∂ ,u y ∂=∂ ,du = 。
2、设:L 224x y +=,则L xdy ydx -=⎰Ñ 。
3、设 :L 229x y +=,则曲线积分ds ⎰22L (x +y )= 。
4、改变累次积分b a dy f dx ⎰⎰b y (x ,y )的次序为 。
5、设2D y ax +≤2:x ,则 D dxdy ⎰⎰= 。
二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y)在区域D 上连续,则函数f (x ,y )在D 上的二重积分必存在。
( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。
( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。
( )4、第二型曲线积分与所沿的曲线L (A ,B )的方向有关。
( )5、若函数f (x ,y )在点00(,)x y 连续,则函数f (x ,y ) 在点00(,)x y 必存在一阶偏导数 。
( )三、计算题 ( 每小题9分,共45分)1、用格林公式计算曲线积分22()LI x y dx xy dy =-+⎰Ñ , 其中 L 是圆周222x y a +=2、计算三重积分222()V xy z dxdydz ++⎰⎰⎰,其中2222:V x y z a ++≤。
3、计算第一型曲面积分SI zdS =⎰⎰ ,其中S 是上半球面2222x y z R ++=(0z ≥)。
4、计算第二型曲面积分SI xdydz ydzdx zdxdy =++⎰⎰Ò,其中S 是长方体[][][]0,10,20,3V =⨯⨯的外表面。
数学分析第三版答案下册数学分析第三版答案下册【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分):1、126;2、2;3、1?x?x2xn?o(xn);4、arcsinx?c(或?arccosx?c);5、2.二、选择题(每小题3分,共15分)1、c;2、a;3、a;4、d;5、b三、求极限(每小题5分,共10分)1??1、lim1?2? 2、limxlnx ?n??x?0n?n1??lim?1?2?n??n??1nn2?1n1lnx(3分) ?lim?li??x?0x?0112xx(3分)(?x)?0 (2分)?lime?1(2分) ?lim?n??x?03n23 。
四、利用数列极限的??n定义证明:lim2(10分)n??n?3证明:当n?3时,有(1分)3n299(3分) ?3??22n?3n?3n993n2因此,对任给的??0,只要??,即n?便有2 ?3?? (3分)n?n?33n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。
n?393n23(1分)即得证lim2n??n?3五、证明不等式:arctanb?arctana?b?a,其中a?b。
(10分)证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分)f(b)?f(a)?f?(?)(b?a)?1(b?a),21??(ab) (3分)所以有 f(b)?f(a)?(b?a) (2分)bn?arctaan?b?a (2分)即 arcta六、求函数的一阶导数:y?xsinx。
(10分)解:两边取对数,有: lny?sinxlnx (4分)两边求一次导数,有:y??xsinx(cosxlnx?y?sinx(4分) ?cosxlnx?yxsinx)(2分) x七、求不定积分:?x2e?xdx。
(10分)解:2?x2?xxedx?xde = (2分) ??= ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分)= ?x2e?x?2xe?x?2?e?xdx (2分)=?e?x(x2?2x?2)?c (2分)15八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。
数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
浙江大学20 10 -20 11 学年 春夏 学期《 数学分析(Ⅱ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___考试形式:闭卷,允许带___笔____入场考试日期: 2011 年 6 月 24 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪。
请注意:所有题目必须做在答题本上!做在试卷纸上的一律无效!请勿将答题本拆开或撕页!如发生此情况责任自负! 考生姓名: 学号: 所属院系: _一、 计算下列各题: ( 前4题每题5分,最后一题6分,共26分 )1. 2()(03)sin lim .x y xy x→,,求: 2222()(03)()(03)sin sin lim lim 9.x y x y xy xy y x xy →→=⋅=,,,,2.(122)().f x y z gradf =,,设,,23(122)(122)(122)(122)11..2722.27271{122}.27f x x f r x r r r xf f y zgradf ∂∂==-⋅=-=-∂∂∂∂=-=-∂∂=-,,,,,,,,令,则:则:同样,,因此,,,3. 2222320(321)S x y z ++=求曲面:在点,,处的法线方程.222()2320246.321(321){686}.343x y z F x y z x y z F x F y F z x y z n =++-===---===令:,,,则:,,因此,在点,,的法向量,,,故法线为: 4. 2221.(2).4Cx C y L x y ds +=+⎰设曲线:的长度为计算: 222(2)(44)44.=0.C C C Cx y ds x y xy ds ds L xyds +=++==⎰⎰⎰⎰其中:5.02z z z ∑===设为曲面和之间部分的下侧,计算: (1)(2).dS dxdy ∑∑⎰⎰⎰⎰;22224.4.x y x y x y z z z dS dxdy dxdy π∑+≤∑+≤======-=-⎰⎰⎰⎰⎰⎰⎰⎰由于因此,二、 计算题:(每题8分,共56分)1. 22()2()()()2x f x f x x f x ππππ=--≤≤设是周期为的函数,且,求:的 211.n Fourier n +∞=∑级数,并计算的和22222020022112222211(1)()20.2522(1)()()cos (12).2325(1)()2cos .()(*)65(1)(1)(2)(*)0(0)2.61n nn nn n n n n f x b x x a dx a nxdx n nf x nx x R n x f n n ππππππππππππ∞=-+∞∞===-=-=-=-==-=-+∈--==-=-+⇒=⎰⎰∑∑∑由于是周期为的偶函数,则:,,,因此,式中,令,则:12222221111122122222211.21111(1)2.2.2(2)2(2)121.6511(*)2..266n n n n n n n n n n n n n n n x n n σσπσππππππ-+∞+∞+∞+∞∞=====+∞=+∞+∞==-==⇒=-====-=-+⇒=∑∑∑∑∑∑∑∑令:,则:因此,【或】:在式中令,则:2. 211(2)1.44n n n n n x n n +∞+∞==-⋅⋅∑∑计算级数的收敛域及和函数,并计算的值 222112221111211()(2)4(2)(1)lim lim 10 4.()(1)4(2)4(2)12104.44(04).(2)(2)()()4n n n n n n n nn n n n n n n n n n n u x x n x x u x n x x x n n n n x t t S t S t t n +++→∞→∞+∞+∞+∞+∞====∞-=-⋅-=⋅=<<<+⋅--====⋅⋅-'===∑∑∑∑∑,则:当时,发散;当时,发散因此,级数的收敛域为:,令,,则:1222111.(11).1(2)(2)()ln(1).ln 1ln 4ln(4).440 4.14(3)3ln .43n nn n n n t t x x S t t x x n x x n ∞=+∞=+∞==-≤<-⎛⎫--=--=--=-- ⎪⋅⎝⎭<<==⋅∑∑∑其中:故,所以,其中:上式中令,可得,2111112211(2)lim lim 141(1)11.11.(2)(2)[11).110444.(04)n nn n n n n n n n n n nn n n a x t n t t n a n nt t n n t x x x n n ∞∞+→∞→∞==∞∞==∞+∞==-===+-=-=----≤<<<⋅∑∑∑∑∑∑【或】:令,对于级数而言,,因此,的收敛半径为而当时,级数收敛;当时,级数发散故级数的收敛域为,因此,当,即时收敛因此,原级数的收敛域为,..下面与上同3. 222()2.y z z z f x y f x x x y ∂∂=+∂∂∂设,,且具有阶连续偏导,计算:, 12221112221222221112222232(1)2.111(2)222214(2).z y xf f x xz y x yf f f yf f x y x x x x y y xyf f f f x x x ∂=-∂∂⎛⎫⎛⎫=+--+ ⎪ ⎪∂∂⎝⎭⎝⎭=+---4. 2222(){()|}.Dx y dxdy D x y x y x y +=+≤+⎰⎰计算,其中,222222002212221cos 111()2()()..1222()sin 213cos sin ).281()112 1.()()1()222u v x r x y D x y r r y r I d r r r rdr x u x y I u v dudv u v y v u v πθθθθθθπ+≤⎧=+⎪∂⎪-+-≤=⎨∂⎪=+⎪⎩=+++=⎧=+⎪∂⎪⎛⎫==+++⎨ ⎪∂⎝⎭⎪=+⎪⎩=++⎰⎰⎰,方法一、区域:令:,则:,,方法二、令:,则:,2222001233cos sin 34440443444442004113).2281(cos sin )41313)]sin 2sin 2.444228u v u u v dudv d r rdr I d r dr d d udu udu πππθθπππθππππθπθθθθππθθπ+≤+--+=-⎛⎫++=+⋅= ⎪⎝⎭==+⋅=+===⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三、5. 222{()|1}.ze dxdydz x y z x y z ΩΩ=++≤⎰⎰⎰计算三重积分:,其中,,()2222221(0)2110000cos 0cos 2011012.241(sin )4sin cos 2422.22z z x y z z z u x x u z z x y z xoy e z I e dV I d rdr dz r dr r x x xe dx ue du I e dzdxdy e ππθπππππππ++≤≥=+≤-===-==⋅---===⎰⎰⎰⎰⎰⎰=⎰⎰⎰⎰⎰由于积分区域关于平面对称,被积函数关于为奇函数,因此,方法一、令:方法二、()120211cos 2cos 2220000011cos 2000(1)2.2sin 4sin 44(1)2.z dz I d d e d d e d e d e d πππρϕρϕπρϕρπθϕρϕρπρρϕϕπρρπρρπ-====-=-=⎰⎰⎰⎰⎰⎰⎰⎰方法三、6. 2222()M x y z a ξηζ++=设点,,是球面第一卦限中的一点,S 是球面在该点处的切平面被3个坐标平面所截三角形的上侧,求:点()M ξηζ,,使曲面积分:⎰⎰++=Szdxdy ydzdx xdydz I 为最小,并求此最小值.22222226322262222222(1)()(cos cos cos )11.2cos 2(2).327S SS Sx y z a M x y z a xdydz ydzdx zdxdy x y z dSx y z a a a dS a dS a a a a a a ξηζξηζαβγξηζξηγξηζξηζξηζξηζξηζ++=++=++=++⎛⎫=++==⨯⨯⨯⨯= ⎪⎝⎭⎛⎫++++=≤=⇒ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰球面在点,,处的切平面方程为:由于,则:333..2.S xdydz ydzdx zdxdy a x y z M ≤++≥===⎰⎰因此,等号在故,点为62222(1).30..2(2)xy yz zx xy yz zx xy yz zx S S S S S S S S S S S Guass I xdydz ydzdx zdxdy xdydz ydzdx zdxdy a a a a dV x y z a L ξηζξηζξηζ+++ΩΩ=++-++⎛⎫=+=++= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰++【或】:添加切平面与坐标平面所围立体的另三个三角形、、,使其与所围闭曲面方向为外侧则:根据公式可得:切平面:,截距分别为:、、构造222222223min ()().20(1)20(2)20(3)0(4)02.(4)x y z agrange f x y z xyz x y z a f yz x f zx y f xy z f x y z a yz zx xy x y z x y z x y z x y z xyz I λλλλλλλ=+++-=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩>===-======函数:,,,令:由于、、,则:将其代入可得,由于驻点唯一,根据实际问题当因此,3.=7. 22(0)cos (0)42C xdy ydx x C A y B x y ππ-=-+⎰计算,其中曲线是从点,沿到点,,再从 (2).BD ππ-点沿直线到点,22222222222222222222022224.44(4)4(0).444410arc 42C C DA L DA LL y x P y x Q P Q x y x y y x y xDA L x y xdy ydx xdy ydx xdy ydx xdy ydx x y x y x y x y dy xdy ydx y πδδδπππδπ++--∂-∂∙====++∂+∂∙+=>----=--++++=---=-+⎰⎰⎰⎰⎰⎰方法一、,,则:连接,作:,足够小,方向为顺时针则:2220224221122332222222221tan 2217.88(0)(2)(2)(2).444(4)x y y dxdyA A A A A A A D L y x P y x Q P Q C L x y x y y x y xP Q πδπδππδπδπππππππ-+≤+=-+⋅=----∂-∂====++∂+∂⎰⎰方法二、从点,沿直线到点,、再从点沿直线到点,、从点沿直线到点,、再从点沿直线到点;记此路径为由于,,则:;且在由曲线、所围区域内、都11223322222222222222022202442244444422arctan arctan arctan arctan 2242248C L AA A A A A A Dxdy ydx xdy ydx x y x y dy dx dy dx y x y x y x y x πππππππππππππππππππππππππππππππππππ--------==+++++--=+++++++--=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有一阶连续连导数,因此,7.4448ππππ+++=三、 证明题:(每题9分,共18分)1. 210cos ()()1n n n nx u x D f x n +∞∞===+∑∑叙述级数在数集上一致收敛的定义,并证明: (02).π在,内连续,且有连续导数22220022022200cos 11cos (1)(02)1111cos (02)(02)1cos ()(02)1cos sin (2)(){}111n n n n n nx nx x n n n n nx n N n nx f x n nx n nx n g x n n n ππππ∞∞==+∞=∞∞==∀∈≤++++∀∈+=+'⎛⎫==- ⎪+++⎝⎭∑∑∑∑∑由于对,,有,而收敛,故级数在,内一致收敛.另外,对,函数在,内连续,因此,在,内也连续.记,由于12200221cos()cos 1220()[2]sin .sin 2sin 22sin sin [2](02)11.cos sin (02)()(0211n k n n x n x kx x n nx n nx Dirichlet n n nx n nx f x n n δδπδπδδδπδπππ=∞∞==+-∀><∀∈-=≤-++'⎛⎫=- ⎪++⎝⎭∑∑∑单调趋向于零,且对,及,,根据判别法,在,上一致收敛,即在,上内闭一致收敛又在,内连续,故,在,)内具有连续的导数. 2. 0()()y f x δδδ>-=证明:存在,及定义在,内的具有连续导数的函数, ()220(0)0sin ()2()cos 1..x dy f x f x f x x dx ==+++=满足,且并计算的值 22222222222()sin()2cos 1()(1)()(2)(00)0(3)2cos()2(4)(00)20(5)2cos()sin 0()()(0)0sin (y y x F x y x y y x F x y R F F y x y R F F x x y x R y f x f x f δδδ∙=+++-==++=>=+->-==+令:,,*则:,在上连续;,;在上连续;,;在上连续.根据隐函数存在性定理,存在,及定义在,内的具有连续导数的函数,满足,且()222222)2()cos 1.sin()2cos 100.cos()(22)2sin 0.sin 2cos()x f x x x y y x x x y x y x yy y x x x x y dy++=∙+++===''+++-=-+'在两边同时对求导,且当时,则:。
.
数学分析下册期末模拟试卷及参考答案
一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已
知u =则
u
x
∂=∂ ,u y ∂=∂ ,du = 。
2、设22L y a +=2:x ,则L
xdy ydx -=⎰ 。
3、设L ⎧⎨
⎩x=3cost ,
:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L
(x +y )= 。
4、改变累次积分3
2
dy f dx ⎰⎰3
y
(
x ,y )的次序为 。
5、设1D x y +≤:
,则1)D
dxdy ⎰⎰= 。
二、判断题(正确的打“O ”;错误的打“×”;每题3分,
共15分)
1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )
点p 00(x ,y )必存在一阶偏导数。
( )
2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )
在点p 00(x ,y )连续。
( )
3、若函数f (x ,y )
在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。
( ) 4、
(,)
(,)
(,)(,)L A B L B A f x y dx f x y dx =
⎰
⎰。
( )
5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。
( )
.
三、计算题 ( 每小题9分,共45分)
1、用格林公式计算曲线积分
(sin 3)(cos 3)x x AO
I e y y dx e y dy =-+-⎰ ,
其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。
、计算三重积分
2
2()V
x
y dxdydz +⎰⎰⎰,
是由抛物面22z x y =+与平面4z =围成的立体。
.
3、计算第一型曲面积分
S
I dS =⎰⎰ ,
其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。
4、计算第二型曲面积分 22
()()S
I y x z dydz x dzdx y
xz dxdy =
-+++⎰⎰,
其中S 是立方体[][][]0,0,0,V b b b =⨯⨯的外表面。
.
5、设{}
222(,)D x y x y R =+≤. 求以圆域D 为底,以曲面2
2()
x y z e -+=为顶的
曲顶柱体的体积。
四、证明题(每小题7分,共14分)
1、验证曲线积分
.
222(2)(2)(2)L
x yz dx y xz dy z xy dz -+-+-⎰,
与路线无关,并求被积表达式的一个原函数(,,)u x y z 。
2、证明:若函数f (x ,y )在有界闭区域D 上连续,则存在(,),D ξη∈ 使得 (,)(,)D
D
f x y d f S
σξη=⋅⎰⎰ ,这里D S 是区域D 的面积。
参考答案
一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、
22x x y +;22y x y +;2222
x y
dx dy x y x y
+++。
2、2
2a π; 3、54π ; 4、3
2
2
(,)X
dx f x y dy ⎰⎰ ;5
、1)。
二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分)
1、×;
2、○;
3、×;
4、× ;
5、○ .
.
三、计算题 ( 每小题9分,共45分)
1、解:补上线段:0,0OA y x a =≤≤ 与弧22:(0)AO x y ax y +=≥构成封闭曲线,由格林公式,有
(sin 3)(cos 3)(sin 3)(cos 3)x x x
x OA
OA AO
I e y y dx e y dy e
y y dx e y dy +=-+--
-+-⎰⎰
----------------------------------------------------------------------------------------------6分 =220:(0)
cos (cos 3)0a
x x D x y ax y e y e y dxdy dx +≤≥⎡⎤---⎣⎦⎰⎰⎰-----------------------------8
分
=2
338
D
dxdy a π=
⎰⎰--------------------------------------------------------------------9分 2、解:作柱面坐标变换:cos ,sin ,x r y r z z θθ===, 则(,,)J r z r θ= 且
2:4,02,02V V r z r θπ'⇒≤≤≤≤≤≤---------------------------------------------4分
2
22222
4
3
()683293
V
V r x y dxdydz
r rdrd dz d r dr dz π
θθπ
'∴+=⋅--------------------=--------------------=
-------------------------⎰⎰⎰⎰⎰⎰⎰⎰⎰分
分
分
3
、解:22S Z R a =∈≤-22:x ,y )D :x +y
.
dS =
.
=
S
D
I dS ∴==⎰⎰--------------------------4分
作极坐标变换:cos x r θθ=,y=rsin , 则 J θ(r ,)=r ,
且0D D r θπ'⇒≤≤≤≤::02
D I θ
'
=
=
20
d π
⎰-----------------------------------7分
2R π=(R-a )----------------------------------------------9分
4、解:用高斯公式,得
I dxdydz
=⎰⎰⎰V (y+0+x )------------------------------------6分
=dx dy dz ⎰⎰⎰b
b
b
(x+y )----------------------------------8分
=4b --------------------------------------------------9分
5、解:曲顶柱体的体积2
2x y D
V e dxdy -
+=⎰⎰()
-----------------4分
作极坐标变换:cos sin x r y r θθ==,,则 J θ(r ,)=r , 且 002D D r R θπ'⇒≤≤≤≤:, ,于是,有 2
r D V e rdrd θ-'=⎰⎰
=
2
20
R
r
d e rdr π
θ-⎰⎰--------------------------------------8分
.
=π2
-R (1-e )-----------------------------------------------9分
四、证明题(每小题7分,共14分)
1、证明:222222P x yz Q y xz R z xy =-=-=-,,
222P Q R Q P R
z x y y x y z z x
∂∂∂∂∂∂==-=-==-∂∂∂∂∂∂,,,
∈3(x ,y ,z )R . ∴曲线积分与路线无关。
-----------------------------------4分 取000x y ==,则
y
z
u P dx Q dy R dz =++⎰⎰⎰x
(x ,y ,z )(x ,0,0)(x ,y ,0)(x ,y ,z )
=220
y
x
z
x dx y dy dz ++⎰⎰⎰2(z -2xz )-------------------7分
=1
3
=333(x +y +z )-2xyz --------------------------9分
1、证明:由 最值定理,函数f (x ,y )
在有界闭区域D 上存在最大值M 和最小值m ,且∀∈(x ,y )D ,有
m f M ≤≤(x ,y ), 上式各端在D 上积分,得
D D D
mS f d MS σ≤≤⎰⎰(x ,y ),
或 f d m M σ≤≤⎰⎰D
D
(
x ,y )S ,
其中D S 为D 的面积。
根据介质性定理,存在D ξη∈(,),使得
.
f d f f σξησξη=
=⋅⎰⎰⎰⎰D
D D
D
(
x ,y )(,),即f (x ,y )d (,)S S。