分类变量资料描述
- 格式:ppt
- 大小:1.21 MB
- 文档页数:42
统计方法学部分对于连续变量和分类变量的描述全文共四篇示例,供读者参考第一篇示例:统计方法学是一门重要的学科,可应用于各个领域,包括医学、经济、社会科学等。
在统计学中,变量是一个基本概念,分为连续变量和分类变量。
这两种类型的变量在统计分析中有着不同的特点和分析方法。
连续变量是指可以取任意值的变量,通常用于度量某种属性或特征。
比如身高、体重、温度等都是连续变量。
在统计学中,对于连续变量的分析通常采用如均值、标准差、中位数等描述性统计量来描述数据的分布特征。
对于连续变量的变量间关系,通常采用相关分析、回归分析等方法进行研究。
在实际应用中,连续变量和分类变量经常同时存在,统计分析方法的选择需要考虑到变量的属性和研究目的。
对于同时包含连续变量和分类变量的数据,通常可以采用方差分析、多元回归等方法进行综合分析。
除了描述性统计和假设检验之外,统计方法学还有着更多的高级方法可以应用于连续变量和分类变量的分析。
比如聚类分析、主成分分析等多元统计方法可以帮助我们从复杂的数据中提取出有用的信息,发现变量之间的潜在关系。
统计方法学部分对于连续变量和分类变量的描述是统计学的基础,通过对数据的深入分析和挖掘,我们可以更好地理解变量之间的关系,为决策和预测提供更有力的支持。
希望本文能够帮助读者更好地理解统计方法学在连续变量和分类变量分析中的应用和意义。
第二篇示例:统计方法学是一门研究数据收集、分析和解释的学科,其中包含了多种方法用于处理连续变量和分类变量。
在统计方法学中,连续变量和分类变量是两种常见的数据类型,它们在统计分析中具有各自的特点和处理方法。
连续变量是指可以在一定区间内取任意值的变量,通常是测量得出的结果,例如身高、体重、收入等。
连续变量具有无限个可能值,可以是小数或整数,其取值范围是连续的,没有间断。
在统计分析中,对连续变量的处理通常包括描述统计和推断统计两个方面。
对于连续变量的描述统计,常见的方法包括均值、中位数、众数、标准差、极差等。
分类变量的分析一.分类变量分类变量有有序变量、无序变量和二分类,其中有序和无序都是多分类举例说明,有序变量:高血压1期、II期、III期属于有序变量同时也属于等级资料,无序变量:汉族、回族、哈组;工人、农民、教师这样得属于无序变量,男性、女性;死亡、存活属于二分类变量。
在分析方法中差别性检验中,二分类变量和无序变量都能用卡方检验,只不过一个是四格表卡方一个是RXC列联卡方,而有序变量也就是等级资料就得用秩和检验。
在多元回归时,有序变量和二分类变量都是赋值1、2、3或0、1求得一个OR或RR值,而无序资料就必须要设置哑变量(虚拟变量),例如职业工人、农民、教师。
你计算得时候赋值为工人=1、农民=2、教师=3,如果你当成连续得变量去计算那么得到一个OR或RR值,解释为每增加一个等级发生某病得危险性增加多少倍。
那么在无序变量就意味着工人增加一个等级,这是不可能的。
因为这样得变量各等级之间不存在1、2、3得数学关系。
在有序变量中,我们可以多元回归来检验假设,运用的原理时最小二乘法。
在无序变量中,我们必须引用哑变量(虚拟变量)来实现logistic回归。
在运用logistics回归分析之前我们必须先要理解虚拟变量。
二.下面的重点就是关于虚拟变量的讲解。
1.虚拟变量的含义虚拟变量是用以反映质的属性的一个人工变量,取值为0 或1,通常记为D(Dummy Variable),又可称之为属性变量、双值变量、类型变量、定性变量、或二元型变量。
(注意:虚拟变量D只能取0或1两个值,即属性之间不能运算!对基础类型或否定类型设D=0对比较类型或肯定类型设D=1)如1 男性D =0 女性但是,虚拟变量主要是用来代表质的因素,但有些情况下也可以用来代表数量因素。
例如:在建立储蓄函数时,“年龄”是一个重要的解释变量。
虽然“年龄”是一个数量因素,但为了方便也可以用虚拟变量表示。
例如:可以把居民分为两个年龄组:第一组:20~35岁的居民,第二组:35~60岁的居民,用“1”表示第一年龄组;“0”表示第二年龄组,就可以估计年龄对储蓄的影响。
描述分类变量资料的主要统计指标在描述统计中,经常要描述两个变量之间的关系,这就是指标。
描述分类变量资料的主要统计指标有:平均数(AV)、中位数(median)、众数(major)、方差(F)、标准差(SD)、相关系数(r)、误差(SEM)、信赖区间(CI)、 F统计值等。
一、全距n。
平均数在统计学上指全部观察单位的算术平均数,即众数、中位数和方差的算术平均数。
它反映了各个变量在总体中所占的比例。
用公式表示为n=AV。
例如:成人牙齿脱落率调查,共调查成人2046人,其中有根以上完全不能保留者占4.5%,按标准脱落百分数计算,每根牙齿应脱落2%。
则该项调查结果的全距是2.5%。
全距愈小说明变量在总体中所占的比例愈大,代表性愈强。
二、方差 1。
方差又称离散系数或变异系数。
由于各个观察单位所得的资料是来自不同的变量,因而这些资料都是不可比的。
但在抽样调查时,要使各个单位取得同样的结论,在对总体进行分析时,就必须把各单位的观察结果加以平均化,从而消除了由于来源不同引起的资料不可比问题,并使各单位的离散状况趋于一致。
这就需要用变异系数将各单位的资料加以平均,使其成为总体的平均资料。
因此,方差就是各个单位的变异程度的一种度量。
方差的符号是σ,单位是标准差(SD)。
2。
标准差的计算公式为:SD=∑[(X-Y)÷2]×100%。
式中SD表示标准差。
标准差的大小是随研究的目的而异的,通常用于某些问题的检验或推断。
如:某县的全年工业总产值的多少与全年粮食总产量的多少成正比;销售额的增长速度快慢与企业利润成正比。
对于全距,方差,标准差,原因,方差是概率统计的专有名词。
在实际工作中,我们通常简单地用:均数×方差=总体标准差(均值×方差=总体方差),来概括变量之间的关系。
当然,我们在阅读统计资料时,有时也会碰到一些专门用语,如果只看题目或只看这些专门用语,也很难理解题意,但只要知道它们的含义就行了。