第一章粉末的性能与表征
- 格式:ppt
- 大小:1.62 MB
- 文档页数:24
《粉体科学与工程基础》粉末的性能与表征一、研究背景粉末的性能对粉体的各种现象、材料的性能、以及相关的应用都有着很大的影响。
而粉末的性能包括:几何性能(粒度、比表面、孔径和形状等);化学性能(化学成分、纯度、氧含量等);粉体的力学特性(松装密度、流动性、成形性、压缩性、堆积角和剪切角等);粉末的物理性能和表面特性(真密度、光泽、吸波性、表面活性;电位和磁性等)。
其中气力输送也是对粉末性能的重要应用之一。
气力输送过程中物料性能是确定输送特性的重要因素,因此,粉料气力输送技术的实现要以对粉料的性能研究为基础。
对影响气力输送的粉体基本性能及其相关参数做了较全面分析,其中粒子尺寸、粒径分布、形状是影响粉料是否可适用于气力输送的关键参数,其它特性都与这三种特性相关联。
因此通过对粉体基本性能的研究及其在气力输送中所表现出来的流动特性,建立粉体性能与气力输送特性参数的关系,对气力输送技术的进一步发展,更好地发挥该技术的优越性,具有十分重要的意义。
二、研究现状粒体性能包括粒子的尺寸、粒度分布、密度、形状、硬度、孔隙率、透气性等,其中粒子尺寸、粒径分布、形状是影响粉料是否可适用于浓相气力输送的关键参数。
2.1 粒子尺寸粒径又称为粒度,是用来表示粉体颗粒尺寸大小的几何参数,它是粉体诸性质中最重要和最基本的。
粒径的定义和表示方法由于颗粒的形状、大小和组成的不同而不同,同时又与颗粒的形成过程、测试方法和工业用途有密切联系[3]。
通常将粒径分为单个颗粒的单一粒径和颗粒群体的平均粒径。
如果粒子是球形的可直接使用其直径作粒径,但实际颗粒的形状都是不规则的,所以要引入当量直径,即把颗粒看成一个相当的球,将该球体的直径作为颗粒的粒径,由于相当的物理量不同,就有不同的粒径,一般可分为:等体积球当量径d v、等表面积球当量径d s、等比表面积球当量径d sv、等投影周长圆当量径d L、等投影面积球当量径d a、等沉降速度球当量径,又称为斯托克斯径d St。
粉末冶金总复习题(一)粉末性能和表征1.什么是粒度 ?粒度分布 ?平均粒度 ?粒度: 颗粒在空间范围所占大小的线性尺度. 粒度组成(粒度分布): 不同粒径的颗粒占全部粉末的百分含量. 平均粒度: 粉末颗粒粒径的统计平均值.2.常用粒度基准有哪些 ?粒度分布基准呢 ?粒度基准有:a)几何学粒径b)当量粒径c)比表面粒径d)衍射粒径粒度分布基准:1)个数基准分布2)长度分布基准3)面积分布基准4)质量基准分布3.什么是中位径 ?什么是比表面 ?积分曲线上对应50%的粒径称为中位径克比表面(S w): 1g 质量的粉末所具有的总表面积(m2/g);体积比表面(S v): (m2/cm3);4.什么是松装密度和振实密度 ?松装密度的控制有何重要意义 ?松装密度:自然充填容器时,单位体积的质量振实密度:粉末在振动容器中, 在规定条件下经过振动后测得的粉末密度意义:压制过程中, 采用容量装粉法, 即用充满形腔的粉末体积来控制压坯的密度和单重. 用松装密度和振实密度来描述粉体的这种容积性质.5.如何提高粉末的ρ松和流动性?松装密度高的粉末流动性也好,方法:粒度粗、形状规则、粒度组成用粗+细适当比例、表面状态光滑、无孔或少孔隙教材习题 : 2.1, 2.5 , 2.8, 2.9, 2.10(二)粉末的制取1. 简述△ Z0-T 图对还原制粉的指导作用。
3.欲得细 W粉,应如何控制各种因素?(1)采用两阶段还原法,并控制WO2 的粒度细;(2)减少WO3的含水量和杂质含量;(3)H2 入炉前应充分干燥脱水以减少炉内水蒸气的浓度;(4)增大H2流量(有利于反应向还原方向进行,有利于排除水蒸气使WO3 在低温充分还原,从而可得细W粉);(5)采用顺流通H2 法;(6)减小炉子加热带的温度梯度;(7)减小推舟速度和舟中料层的厚度;(8)WO3中混入添加剂(如重铬酸氨的水溶液);4.用雾化法制取金属粉末有哪些优点?优点:① 易合金化—可制得预合金粉末(因需熔化), 但完全预合金化后, 又易使压缩性下降. 一般采用部分预合金.②在一定程度上, 粒度、形状易控制.③化学成分均匀、偏析小, 且化学成分较还原粉为纯.④生产规模大.5.简述水雾化和气体雾化法的基本原理。
粉体工程一、粉末的性能与表征1.粒径:粉末体中,颗粒的大小用其在空间范围所占据的线性尺寸表示,称为粒径。
2.粒径的表示方法:①几何学粒径②投影粒径③筛分粒径④球当粒径。
3.粉体粒径的分布常表示成频率分布和累积分布:①粒径分布的表格、直方图、曲线可直观地反映粉体粒径的分布特征。
②数字函数表达式有:正态分布;对数正态分布;Rosin—Rammler分布;RRB方程能较好地反映工业上粉磨产品的粒径分布特征。
4.平均粒径:若将粒径不等的颗粒群想象成自由径为D的均一球形颗粒组成,那么其物理特性可表示为f(d)=f(D),D即表示平均粒径。
5.粉末的测量方法:显微镜法;激光衍射法;重力沉降光透法;筛分法。
平均粒径测量方法:比表面法。
6.粉末的性质:堆积性质;摩擦性质;压缩性质与成形性(压制性)。
安息角:又称休止角、堆积角,它是指粉体自然堆积时的自由表面在静止平衡状态下与水平面所成的最大的角度。
(用来衡量与评价粉体的流动性)。
在0.2mm以下,粒径越小而休止角越大,这是由于微细粒子间粘附性增大导致流动性降低的缘故。
粉体颗粒形状愈不规则安息角愈大,颗粒球形愈大粉体流动性愈好其安息角就愈小。
二、粉体表面与界面化学1.粉末颗粒的分散:①在气相中,主要受范德华力、静电力、液桥力,分散方法,机械分散、干燥分散、颗粒表面改性分散、静电分散、复合分散;②在液相中,主要受范德华作用力、双电层静电作用力、空间位阻作用力、熔剂化作用力、疏液作用力,分散调控有,介质调控、分散剂调控、机械调控和超声调控。
2.颗粒表面改性:粉末颗粒表面改性:用物理,化学,机械方法对颗粒表面进行处理,根据应用的需要有目的的改变颗粒表面的物理化学性质,如表面晶体结构和官能团,表面能、界面润湿性,电性,表面吸附性和反应特性等,以满足现代新材料,新工艺和新技术发展的需要。
3.改性方法:①表面化学改性:偶联剂表面改性、表面活性剂改性、高分子分散剂改性、接枝改性;②微胶囊包覆——化学法、物理法、物理化学法;③机械化学改性;④原位聚合改性——无皂乳液聚合包覆法、预处理乳液聚合法、微乳液聚合法。