当前位置:文档之家› 带通滤波器

带通滤波器

带通滤波器
带通滤波器

有源模拟带通滤波器的设计

时间:2009-08-2110:51:10来源:电子科技作者:张亚黄克平

滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。

1滤波器的结构及分类

以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。

通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。

滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

文中结合实例,介绍了设计一个工作在低频段的二阶有源模拟带通滤波器应该注意的一些问题。

2二阶有源模拟带通滤波器的设计

2.1基本参数的设定

二阶有源模拟带通滤波器电路,如图1所示。图中R1、C2组成低通网络,R3、C1组成高通网络,A、Ra、Rb组成了同相比例放大电路,三者共同组成了具有放大作用的二阶有源模拟带通滤波器,以下均简称为二阶带通滤波器。

根据图l可导出带通滤波器的传递函数为

令s=jω,代入式(4),可得带通滤波器的频率响应特性为

波器的通频带宽度为BW0.7=ω0/(2πQ)=f0/Q,显然Q值越高,则通频带越窄。

通频带越窄,说明其对频率的选择性就越好,抑制能力也就越强。理想的幅频特性应该是宽度为BW0.7的矩形曲线,如图3(a)所示。在通频带内A(f)是平坦的,而通带外的各种干扰信号却具有无限抑制能力。各种带通滤波器总是力求趋近理想矩形特性。

然而实际设计出来的带通滤波器的幅频特性曲线,如图3(b)所示。

在工程上,定义增益自A(f0)下降3 dB(即0.707倍)时的上、下限频率之差值为通频带,用BW0.7表示。要求其值大于有用信号的频谱宽度,保证信号的不失真传输。

综上分析可知:当有源带通滤波器的同相放大倍数变化时,既影响通带增益A0,又影响Q值(进而影响通频带BW0.7),而中心角频率ω0与通带增益A0无关。

2.2实际电路设计效果分析

为了能更好的了解二阶带通滤波器在实际电路中应用的效果,设计了如图4的电路进行实验验证。图中U1A部分为放大电路,U1B部分为二阶带通滤波器电路。

根据式(2)~式(4),设计出了中心频率在30 kHz附近,品质因素Q为1.55,频带宽度约为19.35 kHz的二阶带通滤波器,并分别对它进行了一级到四级级联所产的电压及频率数据的记录,将记录结果绘制成电压/V~频率/kHz图,如图5所示。

从图5(a)中可以看出,随着级联次数的增加,A(f0)在逐渐变大,BW0.7也在逐渐变窄,说明其对频率的选择性越来越好,对干扰信号的抑制能力也越来越强。

除了级联能增强带通滤波器对频率的选择能力以外,另外,改变品质因素Q值的大小也能达到此效果。众所周知,品质因素Q如果小于0,电路就会自激振荡,无法正常工作。从图2可以看出,Q值越高,则通频带越窄,也就是说滤波器对频率的选择性就越好,对干扰信号的抑制能力也就越强,但并不是Q值越大,电路就越好越稳定。为此,也做了如下实验,即根据式(2)~式(4),设计出了品质因素Q分别为1.55、2.99、7.87这3种中心频率(理论值)一样的二阶带通滤波器,并分别绘制出了它们的电压/V~频率/kHz图,如图5(b)所示。

从图5(b)中可以发现,品质因素Q值越大,其A(f0)在逐渐变大,BW0.7也在逐渐变窄,但是随着Q值的增加,其中心频率也在向低频端倾斜,并且低频端上升的坡度较陡,相对于低频端,高频端下降的幅度较缓。根据前面的分析也不难看出,Q值如果无限的大,会造成电路的自激振荡,无法正常工作。为了确定这点,也分别测试了Q值为2.99和7.87两种带通滤波器在无信号输入情况下输出端的情况,如图6(a),图6(b)所示。从两个示波器的图可以看出,Q值越大,其自激的程度也就越大,当Q值达到一定数值时,自激程度与输入

信号的强度相当或者比输入信号还要强,就会影响整个电路的正常工作。

2.3数值的选取

值得注意的是,在设计电路时,首先要根据式(3)确定带通滤波器的中心频率,因为二阶带通滤波器中的元器件比较多,相互干系也比较烦琐。首先确定中心频率对以后的数值计算会有很大的简化。为了方便,也可以取R1=R3=R,C1=C2=C,R a=Rb=R’,如果想设计一

个带放大的带通滤波器,可以根据式(2)或者根据有源带通滤波器的同相放大倍数

在确定了其它数值后适当改变Ra和Rb的值得到你想要的放大倍数。这里建议不要随意大幅度改变Ra和Rb的值,因为根据式(4)可以看出在确定了其他数值后改变Ra和Rb会影响Q值,而Q值的大小直接影响到电路的工作状态是否稳定。此外,Q值对元器件数值的大小比较敏感,所以在选择元器件时尽量选取精度较高的器件。

3结束语

虽然由集成运放和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻,集成运放的开环电压增益和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用等优点。但是因其品质因素Q值无法做的很大,也就导致其通频带宽度无法做的很窄,造成了该滤波器对频率的选择性不是很好,对干扰信号的抑制能力也不是很强,所以在选择设计滤波器方案的同时,要注意结合实际情况,在满足实际要求的状态下合

理选用滤波器的设计方案。

该电路在负反馈支路上是一个带阻滤波齐器,以使其只允许通过被反馈支路阻断的频率信号。

带通滤波器的应用电路带通滤波器应用非常广泛,下面列举几个典型带通滤波器的应用电路。

1.高Q值的带通滤波器

如图所示为高0值的带通滤波器。图中,A1,A2是高输人阻抗型集成运放SF356。第一级是普通单级滤波器,其Q值较低,R3的值较小,信号衰减较大,放大倍数小.第二级是反相器,放大倍数为10倍。为了提高整个电路的Q值,用反馈电阻R2引入一定量的正反馈,所以此电路有较好的选频特性。

2.频率可调的带通滤波器

如图所示为频率可调的带通滤波器。在此电路中A,AL,A,均是集成运放pA748,电位器RP1,RP2是同轴电位器。通过调节同轴电位器调节滤波器的中心频率,在调节中心频率时,其Q值基本保持不变。此电路的C值约为30,中心频率可以从150Hz变化到1.5kHz,在此频率变化范围内,Q值的变化范围在5%以内。当同轴电位器位于上端时,带通滤波器的中心频率、带宽、品质因数Q分别为

1

当调节电位器时,相当于加入了一分压,于是减小了R 1,R 2,R 3的电流,所以可以认为等效地增加了R 1,R 2,R 3的阻值。当电位器的阻值改变时,因为R 1,R 2,R 3的阻值变化相同,所以电路的Q 值基本不变,滤波器的中心频率和带宽将会改变。

欢迎转载,信息来源维库电子市场网(https://www.doczj.com/doc/3b11592356.html, )

来源:ks99

本页面信息由维库用户提供,如有侵犯您的知识产权,请致电本站,本站核实后将迅速删除!

帐号

个人用户注册 企业免费注册

基于MAX274的有源带通滤波器设计

解放军信息工程大学信息工程学院(郑州450002)周俊刘立柱金俊利

摘要:介绍了MAXIM公司系列芯片MAX274的工作性能与特点,并详细分析了利用MAX274设计Chebyshev型带通滤波器的方法,提出了设

计中应该注意的一些问题。

关键词:MAX274,有源滤波器,二阶节,Chebyshev带通滤波器

随着现代科学技术的发展,滤波技术在通信、测试、信号处理、数据采集和实时控制等领域都得到了广泛的应用。滤波器的设计在这些领域中是必不可缺的,有时甚至是至关重要的环节。比如说,在通信领域,常常利用各种滤波器来抑制噪声,去除干扰,以提高信噪比;在数据采集中,为了无失真地从数字信号中恢复原来的信号,在A/D转换之前大多需要设置“限带抗混叠滤波”等等[1]。

某系统的设计中,需要有尖锐截止特性的带通滤波器,经调查研究,我们采用了美国MAXIM公司开发的8阶连续时间有源滤波器芯片MAX274,设计出了令人满意的带通滤波器。现将设计方法及经验体会进行归纳总

结,供感兴趣的科技工作者参考。

1通用滤波器的选择

随着电子计算机的普及和材料科学的进步,特别是集成芯片制造工艺的飞速发展,市场上出现了第二代和第三代有源滤波器和开关电容滤波器,各种各样的滤波器芯片及滤波器辅助设计软件也得以不断推出,设计人员可以选择高功效的滤波器芯片及设计软件而获得所需要的电路

性能。

在低频范围内,对滤波器特性诸如带内平坦度、带外衰减、过渡带宽度等参数有较高要求时,往往采用高阶有源滤波器。通常的有源滤波器是由运算放大器及R、C电路组合而成。由于阶数高,因而使用的元器件也比较多,这样设计出的RC有源滤波器进行参数调整特性亦会造成很大影响,最终的效果并不是很好。加之在设计RC滤波器时,我们还不得不考虑谐振现象。因此,一般说来,具有较大R值的RC滤波器是比较理想的,它不会产生明显的谐振。但在信号频率为几kHz以上,或传输率为kb/s以上的电路中,高R值是不合适的,这些问题我们在实际的电路

设计中深有体会。

在音频及传感器信号处理的过程中,由于前端一般都会混入50Hz的交流电源噪声,因此,在后端的处理过程中必须要通过滤波器将其滤掉。方法之一是通过陷波滤波器,另外,还可以利用带通滤波器。陷波滤波器往往对性能要求精确,并且要在抑制频率处幅频特性优良,而这一点往往是不容易做到的。可考虑在音频信号处理领域,设计一个带通滤波

器,既可以保持话带信号的完整性,也能够去除不需要的频率分量。 Chebyshev滤波器的设计是为了在接近通带的止带产生最佳的衰减,即,具有最快的滚降。但是它在相位上不是线性的。也就是说,不同的频率分量要受至少同时间延迟的支配。

Bessel型滤波器同受到广泛应用的Buterworth滤波器相比,具有最佳的线性响应,但是滚降就慢得多,并且较早就开始滚降。逐次增大阶次的Bessel滤波器能获得改善的线性相位函数。

椭圆函数滤波器可以产生比Butterworth、Chebyshev或Bessel滤波器更陡峭的截止,不过却在通带和止带代入内容复杂的纹波,并造成

高度的非线性相位响应[4]。

我们在系统设计中所需要的带通滤波器,要在接近通带的止带产生最佳的衰减,因此,我们选择了Chebyshev类型滤波器。

2 Chebyshev高阶有源带通滤波器设计原理

美国MAXIM公司开发的8阶连续时间有源滤波器芯片MAX274将4个二阶节合而为一,最高中心设计频率可达150kHz。该滤波器不需要外置电容,每个单元二阶工的中心频率F0、Q值,放大倍数均可由其外接电阻R1~R4的设计来确定。集成化后的二阶节较之由运放和R、C电路组成的二阶节,其外接元件少、参数调节方便、不受运放频响影响,对电

路杂散电容也有更优的抗干扰性[2]。

MAX274是包含四个互相独立的二阶滤波单元的高效和集成芯片。通过调整外接的几个电阻,可以组成各种高阶有源低通、高通、带通滤波器,如Butterworth、Chebyshev、Bessel和椭圆函数型等。

采用MAX274/275芯片设计高阶的带通滤波器,对于相同设计指标,Chebyshev和椭圆函数型滤波器,所需二阶节数少于Butterworth、Bessel型。MAX274不支持椭圆函数型带通滤波器结构,所以,我们选择设计了高阶Chebyshev带通滤波器结构。

根据MAXIM提供的滤波单元原理图,我们可以先求出所需滤波器的频谱(幅度谱)表达式,计算出滤波单元的传输函数,然后再通过调整滤波器的口若悬河质因数Q、增益G和带通滤波器的中心频率w0,用实际滤波器的频谱来似合所需的频谱。图1是二阶滤波单元的原理图。

图1中,生个滤波单元外接四个电阻R1、R2、R3、R4,其余元件封装在芯片内,并有准确参数。每个滤波单元有五个外接管脚,分别为输入(IN)、带通输入(BPI)、带通输出(BPO)、带通输入(LPI)和低通输出(LPO)。在作带通滤波器用时,Ui为输入,Uo为输出。

下面,我们具体分析一下此电路在作带通滤波器时的原理及应用:

经分析可知:

求解得滤波单元的传输函数H(S):

为确保系统的稳定性,传输函数的极点应在S域的负平面内。因为希望得到的是带通滤波器,所以它的两个极点应该是共轭极点。不妨设它的两个极点为:

带通滤波器幅度谱最大值对应的w值即为中心角频率w0;要使|H(w)|取得最大值,只需分母最小。显然,当w=w0时,分母最小,|H(w)|取最大值,取w0是带通滤波器的中心角频率。

将w0带入|H(w)|得:|H(w0)|=A/2a,好为滤波器的增益G。

求为带宽。解得:

由以上推导公式可知:当带通滤波器的中心角频率w0一定时,R2、R4都唯一地确定下来了,并且Q值决定于R3;而系统增益G为R3与R1的比值。这样,四个外接电阻与三个系统参数w0、Q、G之间的关系也就确定了。我们只需要通过改变w0、Q、G这三个参数,就可以得到所

需要的幅度谱。

在高w0和低Q值时,如电阻大于5kΩ,应将FC接至GND;电阻小于5kΩ,将

低4MΩ。从MAX274所提供的设计指标可知,若根据FC接至V+。对于w

计算采用阻值大于4MΩ的外接电阻时,寄生电容的影响会明显地表现出来,将造成过大的F0/Q误差。因此,在FC已经至V-管脚而计算出的电阻值依然大于4MΩ的情况下,可以使用T型网络反馈结构来降低大于4M Ω的电阻阻值,这样能够有效地降低寄生电容的影响。就是说,当R大于4MΩ,需要给它增加两个电阻,用T型网络将它们分压变换成小电阻

[3]。

推导过程中的K为一常数,当FC分别接至V+、GND和V-时,K的取

值对应为4、1/5、1/25。

3 Chebyshev高阶有源带通滤波器设计实践

当滤波器的阶数较高时,就需要通过多个滤波单元级联来实现。为了得到满意的影响,当多个滤波单元级联时,要按照Q值从小到大的顺序排列,以保证带通滤波器可以实现较大的动态范围,达到较好的滤波

效果。

根据Q和G之间的关系,(由上面的电阻求导公式可得:,可以发现,当Q值从小到大排列时,增益G也按照相应的顺序排列。增益从小到大排列,可以避免因前级放大太大,而造成的后级输入饱和。在验证过程中,我们发现G的大小并不影响最终的频谱形状,只是每一级的G都会对总增益产生较大的影响。这与MAX274手册上提供的设计指

标也完全吻合。

在总体设计之前,我们一定要预先对各个二阶节的中心频率进行安排。一般来说,两端通带和止带处的特性曲线变化陡峭,因此,二阶节的Q值较大,求出的电阻值一般也比较大;而中间部分的二阶节则Q值较小,曲线平缓。合理地分配各个中心频率非常重要,它将直接影响到滤波器的结构复杂程度,甚至最终的滤波效果。

在求出各个电阻值后,不要急着将它设计成电路,可以事先通过MATHEMATIC或者是MATLAB对滤波器的频谱进行仿真。观察不同的外接电阻值对整个频带的影响,以求得最佳的通带。

操作过程中需要注意的一种事情就是:我们所能购买到的电阻和计算值之间有一定误差,因此要对电阻值进行取舍。但一般只要误差不要超过5%,电阻值对滤波器的频谱影响就不会很大,所得到的频谱关系也

就足以达到拟合要求了。

另外,对于一些对滤波器参数要求不高的场合,我们可以利用MAX274所附带的滤波器设计软件来设计滤波器。程序中所描述的各个参数如下:

A

max 表示通带最大衰减;A

min

表示阻带最小衰减;F

c

表示中心频率;F

bw

-

表示通带最低频率;F

bw +表示通带最高频;F

sw

-表示阻带最低频率;F

sw

+表

示阻带最高频率。软件支持低通、高通及Butterworth、Chebyshev型带通滤波器的设计。进入程序界面后,有四个菜单选项分别为:根据设计指标确定滤波器零极点、Q值;电路设计和完善;打印机配置及文件输出;退出。首先,根据所要设计的滤波器类型选择高通、低通或者是带通滤波器,之后分别输入滤波器的各项设计指标,软件就帮你完成了初步的设计。在这一步完成之后,可以通过屏幕大致浏览设计好的滤波器幅度及相位响应。保存设计进入第二步,导入第一步完成的设计模型,这时软件会提醒你选择Butterworth、 Chebyshev还是Bessel型滤波器,确定后就进入电路设计部分。在这一部分,我们可以具体观看每一个二阶节的外接电阻值及电路连接情况,并且允许对每个电阻进行调节,你甚至还可以将某一二阶节去掉或者是重新增加一个二阶节,保存调整后可以通过相应的命令观察各二阶节以及滤波器整体的幅频特性。完成电路设计之后,选择配置打印机,可以打印出电路的具体参数、各二阶节外接电阻值和电路原理图,或者是直接将结果作为文件输出保存。

在带通滤波器的设计方面,软件最高可以支持具有10个二阶节的带通滤波器。值得提醒的是,在软件辅助设计的过程中,本身并没有考虑Q值对滤波器动态范围的影响。所以设计完成之后,还必须重新调整各个二阶节次序,并完成对电阻值的取舍(软件求得的电阻值都精确到小数点后四位),再在MATHEMATIC或MATLAB下完成领导具。虽然MAXIM集成滤波器辅助设计程序也提供观看频谱的窗口,但是我觉得在频率特性变化非常剧烈的地方,所观察到的滤波器频谱基本上就是一条竖线,根

据不足以反映真实的幅频特性,即使你用了软件自带的放大(ZOOM)命

令。

至此,我们利用这个软件完成了一个通带范围为300Hz~3400Hz的带通滤波器,采用16阶Chebyshev型结构,在求得各二阶节的具体参数之后,将它们按照Q值从小到大的顺序重新排列,进行仿真并微调之后,最终实现的滤波器电路非常成功,通带最大衰减A

低于100mdB,而阻

max

则超过了70dB。设计出的带通滤波器可以实现较大的动带最小衰减A

min

态范围,达到了非常理想的滤波效果。

4结束语

实验证明,采用连续时间集成滤波器MAX274设计和制作的Chebyshev高阶带通滤波器,其结构简单,易于设计,性能可靠,避免了传统高阶滤波器电子元件多、不宜调节的缺点。

但是值得提出的是,由于高阶滤波器滤波节数多,因而不可避免地会带来一些高噪声,这对于弱信号来说是极为不利的;另外,模拟滤波器在通带范围内还会产生一定的相移,这也是实际操作过程中需要考虑

的因素。

带通带阻数字滤波器

以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半%即,f1,f3,fs1,fsh,的值小于Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs);

[bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h)); figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱

带通滤波器

四川大学 电子信息专业实验报告 课程射频通信电路 实验题目射频实验 实验人许留留 2012141451075 实验时间周一晚上 带通滤波器

要求: 通带频率:4.8-5.2GHz 通带内波纹:<3dB 阻带抑制:>30dB (5.3GHz 处) 输入输出阻抗:50Ω 介质基板相对介电常数:2.65 计算过程: f 0=2f f L +H =5GHz Ω=??? ? ??f -f -f f f f f 000L H =1.467 按照设计要求,需要选用3dB 等波纹契比雪夫低通滤波电路。在归一化频率Ω=1.467处,需要具有大于30dB 的衰减。因此,要满足设计要求必须选用5阶 滤波电路。 设计电路图如下

采用优化的方式。 仿真步骤: 用微带线连接电路图,参数TL1=TL2,w=2.69mm,l=10.03mm (用ADS自带软件算出)。

由于CLin1=CLin6,CLin2=CLin5,CLin3=CLin4。设置9个变量L1,L2,L3;W1,W2,W3;S1,S2,S3。单位为mm。在V AR 1,中同样添加,初始值w设为1,l设为10,s设为1(l的长度约为 4 w和s大于0.2mm)。调节范围设置,L(9-11),W(0.2-3),S(0.2-3)。 从4GHz开始,到6GHz结束,步长为10MHz。 波形与带通滤波器较为形似则继续。

用OPTM来优化波形,设置两个GOAL,使频率在4.8-5.2GHz 间波纹大于-3dB,同时在5.3-5.4GHz间衰减小于-30dB。 按下仿真键开始仿真出现以下结果 波形图如下

基于MATLAB的IIR数字带通滤波器设计

1 绪论 (1) 1.1 数字滤波器的优点 (2) 1.2 数字滤波器的发展概况 (3) 1.3 开发工具 (4) 1.3.1 MATLAB软件简介 (4) 1.3.2 MATLAB特点 (5) 2 数字滤波器理论研究 (6) 2.1 滤波器的设计 (6) 2.2 数字滤波器的定义 (7) 2.3 滤波器的设计步骤 (8) 2.4 数字滤波器的类型 (8) 2.5 滤波器的选择 (9) 2.5.1 FIR和IIR数字滤波器的比较 (9) 2.5.2 FIR或IIR滤波器的选取原则 (10) 2.6 数字滤波器的实现方法 (10) 3 IIR滤波器的设计 (11) 3.1 数字滤波器 (11) 3.2 IIR数字滤波器设计方法 (12) 3.2.1用脉冲相应不变法设计IIR数字滤波器 (13) 3.2.2 用双线性变换法设计IIR数字滤波器 (15) 4 IIR数字带通滤波器设计过程 (18) 4.1 设计步骤: (18) 4.2 程序流程框图: (19) 4.3 MATLAB程序: (19) 结论 (21) 参考文献 (22) 致谢 (23)

基于MATLAB的IIR数字带通滤波器设计 1 绪论 凡是有能力进行信号处理的装置都可以称为滤波器。在近代电信设备和各类控制系统中,滤波器应用极为广泛;在所有的电子部件中,使用最多,技术最为复杂的要算滤波器了。滤波器的优劣直接决定产品的优劣,所以,对滤波器的研究和生产历来为各国所重视。 1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。20世纪50年代无源滤波器日趋成熟。自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展,到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。当然,对滤波器本身的研究仍在不断进行。 我国广泛使用滤波器是50年代后期的事,当时主要用于话路滤波和报路滤波。经过半个世纪的发展,我国滤波器在研制、生产和应用等方面已纳入国际发展步伐,但由于缺少专门研制机构,集成工艺和材料工业跟不上来,使得我国许多新型滤波器的研制应用与国际发展有一段距离。 目前数字滤波器的设计有许多现成的高级语言设计程序,但他们都存在设计效率较低,不具有可视图形,不便于修改参数等缺点,而Matlab为数字滤波的研究和应用提供了一个直观、高效、便捷的利器。他以矩阵运算为基础,把计算、可视化、程序设计融合到了一个交互式的工作环境中。尤其是Matlab工具箱使各个领域的研究人员可以直观方便地进行科学研究与工程应用。其中的信号处理工具箱、图像处理工具箱、小波工具箱等更是为数字滤波研究的蓬勃发展提供了可能。 1

matlab程序之——滤波器(带通-带阻)教学内容

m a t l a b程序之——滤波器(带通-带阻)

matlab程序之——滤波器(带通,带阻) 以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半 %即,f1,f3,fs1,fsh,的值小于 Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs); [bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h));

figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱 %当style=1时,还可以多输入2个可选参数 %可选输入参数是用来控制需要查看的频率段的 %第一个是需要查看的频率段起点 %第二个是需要查看的频率段的终点 %其他style不具备可选输入参数,如果输入发生位置错误 nfft= 2^nextpow2(length(y));%找出大于y的个数的最大的2的指数值(自动进算最佳FFT步长nfft) %nfft=1024;%人为设置FFT的步长nfft y=y-mean(y);%去除直流分量 y_ft=fft(y,nfft);%对y信号进行DFT,得到频率的幅值分布 y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。

带通滤波器

有源模拟带通滤波器的设计 时间:2009-08-2110:51:10来源:电子科技作者:张亚黄克平 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 1滤波器的结构及分类 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。 文中结合实例,介绍了设计一个工作在低频段的二阶有源模拟带通滤波器应该注意的一些问题。 2二阶有源模拟带通滤波器的设计 2.1基本参数的设定 二阶有源模拟带通滤波器电路,如图1所示。图中R1、C2组成低通网络,R3、C1组成高通网络,A、Ra、Rb组成了同相比例放大电路,三者共同组成了具有放大作用的二阶有源模拟带通滤波器,以下均简称为二阶带通滤波器。 根据图l可导出带通滤波器的传递函数为

令s=jω,代入式(4),可得带通滤波器的频率响应特性为 波器的通频带宽度为BW0.7=ω0/(2πQ)=f0/Q,显然Q值越高,则通频带越窄。

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

数字信号综合设计matlab数字带通滤波器

数字信号处理综合设计 实验报告 一、实验目的: (1) 深刻理解滤波器的设计指标及根据指标进行数字滤波器设计的过程 (2) 了解滤波器在通信系统中的使用 二、实验步骤: 1.通过SYSTEMVIEW 规划整个系统,确定系统的采样频率、观测时间、细化并设计整个系统,仿真调整并不断改进达到正确调制、正确滤波、正确解调的目的。(参考文件zhan3.svu ) (1) 检查滤波器的波特图,看是否达到预定要求; (2) 检查幅度调制的波形以及相加后的信号的波形和频谱是否正常; (3) 检查解调后的的基带信号是否正常,分析波形变形的原因和解决措施; (4) 实验中必须体现带通滤波器的物理意义和在实际中的使用价值。 2.熟悉matlab 中的仿真系统; 3.将1.中设计的SYSTEMVIEW (如zhan3.svu )系统移植到matlab 中的仿真环境中,使其达到相同的效果; 4.或者不用仿真环境,编写程序实现该系统,并验证调制解调前后的信号是否一致。 实验总共提供三个单元的时间(6节课)给学生,由学生自行学习和自行设 sin ω2 基带信号2

计和移植 三、实验内容: 1.使用MATLAB软件中的图形化工具按照zhan3连接带通滤波器、低通滤波器等如下图: 2.其中各参数如下: (1)Plus Generator设置如下: 脉冲类型为Sample based,幅值1,周期100,脉冲宽度50,采样时间0.001s

(2)载波设置如下: 100HZ的载波:幅度为5,采样时间为0.001s 300HZ的载波:幅度为5,采样时间为0.001s

带通滤波器1:

基于matlab的带通、带阻滤波器设计实例

基于matlab的带通、带阻滤波器设计实例 以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半%即,f1,f3,fs1,fsh,的值小于 Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs); [bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h)); figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100;

数字带通滤波器

课程设计报告 专业班级 课程 题目 学号 学生姓名 指导教师 年月

一、设计题目:IIR 数字带通滤波器设计 二、设计目的 1、巩固所学理论知识。 2、提高综合运用所学理论知识独立分析和解决问题的能力。 3、更好地将理论与实践相结合。 4、掌握信号分析与处理的基本方法与实现。 5、熟练使用MATLAB 语言进行编程实现。 三、设计要求 采用适当方法基于MATLAB 设计一个IIR 带通滤波器,其中带通的中心频率为ωp0=0.5π,;通带截止频率ωp1=0.4π,ωp2=0.6π;通带最大衰减αp =3dB;阻带最小衰减αs =15dB;阻带截止频率ωs2=0.7π. 四、设计原理 1.用脉冲相应不变法设计IIR 数字滤波器 利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应 h a (t ),即将h a (t )进行等间隔采样,使h (n )正好等于h a (t )的采样值,满足 h (n )=h a (nT ) 式中,T 是采样周期。 如果令H a (s )是h a(t )的拉普拉斯变换,H (z )为h (n )的Z 变换,利用采样序列的 Z 变换与模拟信号的拉普拉斯变换的关系得 (1-1) 则可看出,脉冲响应不变法将模拟滤波器的S 平面变换成数字滤波器的Z 平面,这个从s 到z 的变换z =e sT 是从S 平面变换到Z 平面的标准变换关系式。 ??? ?? -= Ω-= ∑∑ ∞ -∞=∞ -∞ ==k T j s X T jk s X T z X k a s k a e z sT π21 )(1) (

常见低通、高通、带通三种滤波器的工作原理

滤波器 滤波器是对波进行过滤的器件,是一种让某一频带内信号通过,同时又阻止这一频带外信号通过的电路。 滤波器主要有低通滤波器、高通滤波器和带通滤波器三种,按照电路工作原理又可分为无源和有源滤波器两大类。今天,小编主要对低通、高通还有带通三种滤波器做以下简单的介绍,希望电子爱好者的朋友们看完有一点小小的收获。 低通滤波器 电感阻止高频信号通过而允许低频信号通过,电容的特性却相反。信号能够通过电感的滤波器、或者通过电容连接到地的滤波器对于低频信号的衰减要比高频信号小,称为低通滤波器。 低通滤波器原理很简单,它就是利用电容通高频阻低频、电感通低频阻高频的原理。对于需要截止的高频,利用电容吸收电感、阻碍的方法不使它通过;对于需要放行的低频,利用电容高阻、电感低阻的特点让它通过。 最简单的低通滤波器由电阻和电容元件构成,如下图。该低通滤波器的作用是让低于转折频率f。的低频段信号通过,而将高于转折频率f。的信号去掉。 这一低通滤波器的工作原理是这样:当输入信号Vin中频率低于转折频率f。的信号加到电路中时,由于C的容抗很大而无分流作用,所以这一低频信号经R输出。当Vin中频率高于转折频率f。时,因C的容抗已很小,故通过R的高频信号由C分流到地而无输出,达到低通的目的。这一RC低通滤波器的转折频率f。由下式决定:

低通滤波器除这种RC电路外,还可以是LC等电路形式。 高通滤波器 最简单的高通滤波器是“一阶高通滤波器”,它的的特性一般用一阶线 性微分方程表示,它的左边与一阶低通滤波器完全相同,仅右边是激励源的 导数而不是激励源本身。当较低的频率通过该系统时,没有或几乎没有什么 输出,而当较高的频率通过该系统时,将会受到较小的衰减。 实际上,对于极高的频率而言,电容器相当于“短路”一样,这些频率,基本上都可以在电阻两端获得输出。换言之,这个系统适宜于通过高频率而 对低频率有较大的阻碍作用,是一个最简单的“高通滤波器”,如下图。 这一电路的工作原理是这样:当频率低于f。的信号输入这一滤波器时,由于C1的容抗很大而受到阻止,输出减小,且频率愈低输出愈小。当频率 高于f。的信号输入这一滤波器时,由于C1容抗已很小,故对信号无衰减作用,这样该滤波器具有让高频信号通过,阻止低频信号的作用。这一电路的 转折频率f。由下式决定: 高通滤波器除可以用元件外,还可以用LC构成。

带通滤波器工作原理与带通滤波器原理图详解

带通滤波器工作原理与带通滤波器原理图详解 带通滤波器(band-pass filter)是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。 带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 工作原理 一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。 实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。 除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。 在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 典型应用 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中

带通滤波器设计

LC椭圆函数带通滤波器设计 要求带通滤波器,在15kHz~ZOkHz的频率范围内,衰减最大变化1dB,低于14.06kHz和高于23kHz频率范围,最小衰减为50dB,Rs=RL=10kΩ。 ③运行Filter Solutions程序。点击“阻带频率”输人框,在“通带波纹(dB)”内输人0.18,在“通带频率”内输人1,在“阻带频率”内输人1.456,选中“频率单位-弧度”逻辑框。在“源阻抗”和“负载阻抗”内输人1。 ④点击“确定阶数”控制钮打开第二个面板。在“阻带衰减(dB)”内输人50,点击“设置最小阶数”按钮并点击“关闭”,主控制面板上形式出“6阶”,选中“偶次阶模式”逻辑框。 ⑤点击“电路”按钮。Filter s。lutions提供了两个电路图。选择“无源滤波器1”,如图1(a)所示。 ⑥这个滤波器必须变换为中心频率ω0=1的归一化带通滤波器。带通滤波器的Q 值为: 把所有的电感量和电容值都乘以Qbp°然后用电感并联每一个电容、用电容串联每一个电感使其谐振频率为ω0=1,该网络被变换为带通滤波器。使用的谐振元仵是原元件值的倒数,如图1(b)所示。 ⑦按照图1的方式转换Ⅱ型支路。

变换后的滤波器见图1(c)。在原理图下标出了以rad/s为单位的谐振频率。 ⑧用中心频率fo=17.32kHz和阻抗10kΩ对滤波器进行去归一化以完成设计。将所有的电感乘以Z/FSF,所有的电容除以z×FSF,其中z=104, FSF=2πfe=1.0882×105。最终的滤波器见图1(d)。图1(c)中的归一化谐振频率直接乘以几何中心频率fo=17.32kHz即可得到谐振频率。频率响应见图1(e)。

基于matlab的FIR低通高通带通带阻滤波器设计

基于matlab的FIR低通-高通-带通-带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期:

北京师范大学 课程设计报告 课程名称: DSP 设计名称:FIR 低通、高通带通和带阻数字滤波器的设计姓名: 学号: 班级: 指导教师: 起止日期: 课程设计任务书

学生班级: 学生姓名: 学号: 设计名称: FIR 低通、高通带通和带阻数字滤波器的设计 起止日期: 指导教师: 设计目标: 1、采用Kaiser 窗设计一个低通FIR 滤波器 要求: 采样频率为8kHz ; 通带:0Hz~1kHz ,带内波动小于5%; 阻带:1.5kHz ,带内最小衰减:Rs=40dB 。 2、采用hamming 窗设计一个高通FIR 滤波器 要求: 通带截至频率wp=rad π6.0, 阻带截止频率ws=rad π4.0, 通带最大衰减dB p 25.0=α,阻带最小衰减dB s 50=α 3、采用hamming 设计一个带通滤波器 低端阻带截止频率 wls = 0.2*pi ; 低端通带截止频率 wlp = 0.35*pi ; 高端通带截止频率 whp = 0.65*pi ; 高端阻带截止频率 whs = 0.8*pi ; 4、采用Hamming 窗设计一个带阻FIR 滤波器 要求: 通带:0.35pi~0.65pi ,带内最小衰减Rs=50dB ; 阻带:0~0.2pi 和0.8pi~pi ,带内最大衰减:Rp=1dB 。

FIR 低通、高通带通和带阻数字滤波器的设计 一、 设计目的和意义 1、熟练掌握使用窗函数的设计滤波器的方法,学会设计低通、带通、带阻滤波器。 2、通过对滤波器的设计,了解几种窗函数的性能,学会针对不同的指标选择不同的窗函数。 二、 设计原理 一般,设计线性相位FIR 数字滤波器采用窗函数法或频率抽样法,本设计采用窗函数法,分别采用海明窗和凯泽窗设计带通、带阻和低通。 如果所希望的滤波器的理想频率响应函数为)(jw d e H ,如理想的低通,由信号系统的知识知道,在时域系统的冲击响应h d (n)将是无限长的,如图2、图3所示。 H d (w) -w c w c 图2 图3 若时域响应是无限长的,则不可能实现,因此需要对其截断,即设计一个FIR 滤波器频率响应∑-=-=1 0)()(N n jwn jw e n h e H 来逼近)(jw d e H ,即用一个窗函数w(n)来 截断h d (n),如式3所示: )()()(n w n h n h d = (式1)。 最简单的截断方法是矩形窗,实际操作中,直接取h d (n)的主要数据即可。 )(n h 作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数为: ∑-=-=1 0)()(N n jwn jw e n h e H (式2) 令jw e z =,则 ∑-=-=1 0)()(N n n z n h z H (式3), 式中,N 为所选窗函数)(n w 的长度。

模拟带通滤波器

MATLAB设计模拟带通滤波器 参数自己改一下就可以了 cheb1 % wp1=0.45*pi;wp2=0.65*pi;ws1=0.3*pi;ws2=0.75*pi;Rp=1;Rs=40 % =============双线型变换法========================================= wp1=0.45*pi; wp2=0.65*pi; ws1=0.3*pi; ws2=0.75*pi; Rp=1; Rs=40; Wp1=tan(wp1/2); Wp2=tan(wp2/2); Ws1=tan(ws1/2); Ws2=tan(ws2/2); BW=Wp2-Wp1; W0=Wp1*Wp2; W00=sqrt(W0); WP=1; WS=WP*(W0^2-Ws1^2)/(Ws1*BW); [N,Wn]=cheb1ord(WP,WS,Rp,Rs,'s'); [B,A]=cheby1(N,Rp,Wn,'s'); [BT,AT]=lp2bp(B,A,W00,BW); [num,den]=bilinear(BT,AT,0.5); [h,omega]=freqz(num,den,64); subplot(2,2,1);stem(omega/pi,abs(h)); xlabel('\omega/\pi');ylabel('|H(z)|'); subplot(2,2,2);stem(omega/pi,20*log10(abs(h))); xlabel('\omega/\pi');ylabel('增益.dB'); % =============直接法================================= wp1=0.45*pi; wp2=0.65*pi; ws1=0.3*pi; ws2=0.75*pi; Rp=1; Rs=40; Wp=[wp1/pi,wp2/pi]; Ws=[ws1/pi,ws2/pi]; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs); [B,A]=cheby1(N,Rp,Wn); [h,omega]=freqz(B,A,64); subplot(2,2,3);stem(omega/pi,abs(h)); xlabel('\omega/\pi');ylabel('|H(z)|'); subplot(2,2,4);stem(omega/pi,20*log10(abs(h))); xlabel('\omega/\pi');ylabel('增益.dB'); %cheby2% % wp1=0.45*pi;wp2=0.65*pi;ws1=0.3*pi;ws2=0.75*pi;Rp=1;Rs=40 % =============双线型变换法========================================= wp1=0.45*pi; wp2=0.65*pi; ws1=0.3*pi; ws2=0.75*pi;

基于MATLAB的IIR数字带通滤波器设计

基于MA TLAB的IIR数字带通滤波器设计 摘要 窗函数法在IIR 数字滤波器的设计中有着广泛的应用, 但这不是最优化的设计。介绍了一种基于等波纹切比雪夫逼近准则的IIR 数字滤波器的最优化设计方法,通过MA TLAB 的仿真实现, 证明了该方法是一种最优化的设计。传统的数字滤波器设计方法繁琐且结果不直观,本文利用MA TLAB具有强大的科学计算和图形显示这一优点,与窗函数法设计理论相结合共同设计IIR数字滤波器,不但使设计结果更加直观,而且提高了滤波器的设计精度,从而更好地达到预期效果。 关键词:IIR数字滤波器;窗函数,等波纹切比雪夫逼近,MA TLAB 仿真 ABSTRACT Window function method in the design of IIR digital filter has a wide range of applications, but this is not the most optimal design. Such as corrugated paper, a Chebyshev approximation for IIR digital filter criteria for the optimization design method to achieve through the MA TLAB simulation proved that the method is one of the most optimized design. Conventional digital filter design method is cumbersome and results are not intuitive, this paper, MA TLAB has a powerful scientific computing and graphics display the advantages, with the window function method combines design theory to design IIR digital filter design results not only more intuitive, but also improve the accuracy of the filter design to better achieve the desired results. KEY WORDS: IIR digital filters,window function,such as ripple Chebyshev approximation,MA TLAB simulation 目录 引言.............................................第页 第1 章数字滤波器................................第页 第2 章IIR数字滤波器设计方法......................第页 2.1用脉冲相应不变法设计IIR数字滤波器..........第页 2.2 脉冲响应不变法优缺点........................第页 2.3用双线性变换法设计IIR数字滤波器............第页 2.4双线性变换法优缺点..........................第页 第3章IIR数字带通滤波器设计过程...................第页 3.1设计步骤.....................................第页 3.2程序流程框图.................................第页 3.3 MA TLAB程序..................................第页 第四章结果及分析.................................第页 第五章总结.......................................第页 参考文献..........................................第页 致谢..............................................第页 附录..............................................第页

带通滤波器设计

¥ 实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 ; 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 , 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数, C A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当=0时,(2)式有最大值1; 。 =C 时,(2)式等于,即A u 衰减了 n=2 3dB ;n 取得越大,随着的增加,滤波器 n=8 的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。如图1所示。 0 C

当 >> C 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线 两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: 20ndB/十倍频或6ndB/倍频,该式称为衰减估算式。 [ 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 n 归一化的巴特沃斯低通滤波器传递函数的分母多项式 1 1+L s 2 122++L L s s 》 3 )1()1(2+?++L L L s s s 4 )184776.1()176537.0(2 2++?++L L L L s s s s 5 )1()161803.1()161807.0(22+?++?++L L L L L s s s s s 6 )193185.1()12()151764.0(222++?++?++L L L L L L s s s s s s [ 7 )1()180194.1()124698.1()144504.0(2 22+?++?++?++L L L L L L L s s s s s s s 8 )196157.1()166294.1()111114.1()139018.0(2222++?++?++?++L L L L L L L L s s s s s s s s 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω, C 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) >

切比雪夫I型数字带通滤波器要点

课程设计 课程名称:数字信号处理 题目编号: 0801 题目名称:切比雪夫I型带通IIR数字滤波器 专业名称:电子信息工程 班级: 1203班 学号: 学生姓名:段超 任课教师:陈忠泽 2015年08月30日

目 录 1. 数字滤波器的设计任务及要求(编号0801) ................... 2 2. 数字滤波器的设计及仿真 .. (2) 2.1数字滤波器(编号0801)的设计 ................................... 2 2.2数字滤波器(编号0801)的性能分析 . (4) 3. 数字滤波器的实现结构对其性能影响的分析 (6) 3.1数字滤波器的实现结构一(0801)及其幅频响应 ...................... 7 3.2数字滤波器的实现结构二(0801)及其幅频响应 ...................... 9 3.3 数字滤波器的实现结构对其性能影响的小结 (12) 4. 数字滤波器的参数字长对其性能影响的分析 (12) 4.1数字滤波器的实现结构一(0801)参数字长及幅频响应特性变化 ...... 14 4.2数字滤波器的实现结构二(0801)参数字长及幅频响应特性变化 ....... 17 4.3 数字滤波器的参数字长对其性能影响的小结 (20) 5. 结论及体会 (20) 5.1 滤波器设计、分析结论 .......................................... 21 5.2 我的体会 ...................................................... 21 5.3 展望 . (21) 1. 数字滤波器的设计任务及要求 (1)切比雪夫I 型带通IIR 数字滤波器各项指标如下: 阻带下截止频率1s ω=rad i d π32 ) ln(; 通带下截止频率1p ω=rad i i d d π???? ?? +20 )(32)ln(log 10 ; 通带上截止频率2p ω=rad i i d d π??? ? ? ?-20 )(32 )ln(-1log 10 ;

FIR低通、带通和带阻数字滤波器的设计

西南科技大学 课程设计报告 课程名称:数字通信课程设计 设计名称:FIR低通、带通和带阻数字滤波器的设计 姓名: 学号: 班级: 指导教师: 起止日期:2011.6.21-2011.7.3 西南科技大学信息工程学院制

课程设计任务书 学生班级:学生姓名:学号: 设计名称:FIR低通、带通和带阻数字滤波器的设计 起止日期:2011.6.21-2011.7.3指导教师: 设计要求: 1、采用Kaiser窗设计一个低通FIR滤波器 要求: 采样频率为8kHz;通带:0Hz~1kHz,带内波动小于5%;阻带:1.5kHz,带内最小衰减:Rs=40dB。 2、采用Hamming窗设计一个带阻FIR滤波器 要求: 通带:0.35pi~0.65pi,带内最小衰减Rs=50dB;阻带:0~0.2pi和0.8pi~pi,带内最大衰减:Rp=1dB。 3、采用Hamming窗设计一个70阶的双通带线性相位FIR滤波器 要求: 第一通带0.2pi~0.4pi,带内最小衰减Rs=50dB;第二通带0.6pi~0.8pi,带内最大衰减:Rp=1dB。 4、分别绘制这三种数字滤波器的幅度响应曲线和相位响应曲线; 课程设计学生日志 时间设计内容 2011.6.21-6.27上网,在图书馆查阅相关资料,看《matlab》、《现代通信原理》、《数字信号处理》等书籍。 2011.6.28根据设计要求,得出设计中的参数。 2011,6.29根据各个功能按模块化格式编写小程序,并实现其部分功能。2011.6.30整理程序,并调试。 2011.7.1检查各项指标是否完成并修改程序。 2011.7.3撰写设计报告,最后完成设计

相关主题
文本预览
相关文档 最新文档