地应力平衡方法介绍
- 格式:docx
- 大小:41.81 KB
- 文档页数:10
ABAQUS岩土隧道入门地应力平衡基本问题一:Abaqus地应力平衡方法理解Abaqus地应力平衡现常用分为两种方法:(6.10版以前那种笨拙修改csv文件和添加keywords自己计算每层土应力的方法,就真的很折腾,而且适应性还不好)1.通过Geostatic中Automatic平衡,这种方法是自动平衡,通过设置最小位移精度,迭代计算达到平衡的最小位移精度;算盘放小胖版主案例说法“依据小胖的经验,对于标准的隧道开挖,几何简单,采用1e-5的位移准则是可以的。
但如果比较复杂的模型,宝宝们也不要太吝啬,放宽到0.5 mm以下也是可以的。
毕竟我们玩的是大尺度模拟,半个毫米都不一定能测得出来。
”,而对于单元数量巨大的模型,本身计算一次就需要不短的时间,再通过迭代自动计算地应力平衡,这个时间。
;并且Automatic只有100个increment,如果100到了还没平衡好,虽然“可以在上次计算的应力基础上再平衡一次。
”但是这样下去如果遇见不收敛,就是何年何月才能算好地应力平衡。
So,再看第二种方法咯2.通过导入自重变形结果odb文件,定义应力场来计算。
若用Geostatic分析步换成Fixed平衡固定计算一次的自重变形结果odb;再通过Predefined field导入这个自重变形结果odb;具体小胖版主有实例截图,就是在Predefined field中initial分析步stress进行设置“从外部文件导入”这个自重变形结果,Geostatic分析步Fixed 下也只有一步step 和Increment,所有就应是1。
但是再计算七万别忘啦,再复制重命名或者新建一个job,要是覆盖了自重变形结果的odb,就白搭若采用的static general分析步,控制初始增量步默认是Automatic,初始和最大控制一步计算就行,与geostatic的fixed的自重变形计算结果是一样滴,导入平衡方法也一样,结果可以比较一下,具体可以看看算盘坊小胖的地应力平衡初、中、高教程,这个只能算基础入门的概念理解二:keywords语言基本单元生死法以及场变语言理解(注:自用的6.14-1和新版,全部都可以通过UG窗口界面设置逻辑了,不用向上世纪那样自己编语言,当然后期还是要学习一下编程)▲原始方法地应力平衡语句:*initial conditions, type=stress, geostatic土层名,大力,竖向坐标,小力,竖向坐标,侧向系数▲单元生死(可通过相互作用控制):*model change, addXXXX*model change, removeXXXX▲控制场变:*field, variable=1XXXX,2三:文件存储路径问题未汉化英文版是不能读取中文路径的,中文路径会有乱码汉化版中路径文件夹命名不能带类似上面“.”的标点,比如odb文件这样就无法调用Job文件再命名可以用日期加“-”来隔断调用odb文件需要在temp工作目录下。
地应力平衡1、地应力平衡好坏评判标准1)地应力平衡后,位移云图中最大位移达到10-6量级或更低(接近于0)。
(主要判别条件)2)地应力平衡后,应力云图中应力有一定的数值。
(也就是应力不为0,但变形接近于0)2、进行地应力平衡的原因总的来说,如果不进行地应力平衡,而只施加重力,模型会在重力作用下产生变形,而实际工程中,我们施加荷载时,重力产生的而变形已经产生,实际上得到的是附加应力产生的变形。
1)我们所建立的几何模型一般和工程实际情况或尺寸相对应、相一致,比如边坡几何模型和实际边坡尺寸一致,但我们可以夸张一点想像,实际边坡应是由一个更大一点或更高一点的不受重力的初始边坡在n年前突然受重力和类似目前的边界条件作用下逐渐形成了今天的尺寸大小,n年前受重力和类似目前的边界条件作用之前边坡的尺寸大小,我们不得而知,如果能准确知晓,我们就可以建立一个那时的几何模型,再施加重力和边界条件进行计算,变形后形状和现状边坡形状一致,其内力也就是初始应力场或地应力,就不用专门去施加地应力了,但问题是我们不能知晓边坡受力前的形状尺寸,我们现在的几何模型就是边坡现在的实际尺寸,受力后将会变成一个更小的或与现状不一致的边坡,这不符合我们模拟现状边坡的目的。
如果我们知道现状边坡的内力,将其提取出来作为几何模型的内力,再和外力(重力)平衡,则我们建立的模型才能算和实际模型一致。
真实地知道现状边坡的内力是很难的,我们采取的办法是,用我们所建立的几何模型施加和实际模型一致的重力和边界条件进行计算,得到变形后或变得更小或与现状边坡不完全一致的边坡内力近似的作为现状边坡的内力,并重新将其施加于与现状边坡一致的几何模型,再施加重力(当然边界条件也应基本一致)以平衡,这样才算建立了与现状模型基本一致的模型,其下的计算才成为可能。
这就是所谓“地应力平衡”的含义、目的、作用。
2)地应力平衡中的外力和内力的问题。
地应力平衡中,显然,重力是外力,应力场是内力,仅有外力重力,没有内力是不可能的,同样,仅有内力(专指初始应力场)而不受重力也是不可能的,否则,整个体系的力不会平衡。
地应力平衡odb导入法详解在工程建设中,地应力平衡是一个非常重要的概念,它是指地下岩体内各点受到的应力相等,即地下岩体处于一种平衡状态。
地应力平衡对于岩土工程的稳定性、地下水的流动、地下开采等方面都有着重要的影响。
因此,准确地预测地应力平衡状态对于岩土工程的设计和实施具有非常重要的意义。
在岩土工程领域,常常需要对地下岩体进行数值模拟分析,以预测其稳定性和变形情况。
为了准确地预测地应力平衡状态,需要对岩体的物理性质、地质条件、地下水等因素进行全面的考虑,并采用适当的数值模拟方法。
其中,odb导入法是一种非常有效的数值模拟方法,可以很好地模拟地下岩体的应力平衡状态。
odb导入法是一种基于有限元分析的方法,它可以将实测的地下应力数据导入到有限元模型中,以模拟地下岩体的应力平衡状态。
具体来说,该方法的步骤如下:1. 对地下岩体进行野外实测,获取地下应力数据。
2. 建立岩体的有限元模型,包括岩体的几何形状、物理性质、边界条件等。
3. 将实测的地下应力数据导入到有限元模型中,作为岩体的边界条件。
4. 进行有限元分析,计算地下岩体的应力分布情况。
5. 根据计算结果,进行岩体的稳定性分析和变形预测等工作。
与传统的有限元分析方法相比,odb导入法具有以下优点:1. 可以很好地模拟地下应力平衡状态,提高分析结果的准确性。
2. 可以充分利用实测数据,避免了传统有限元分析中需要进行大量假设的情况。
3. 可以减少计算量,提高计算效率。
4. 可以更好地考虑地下水对岩体应力的影响。
在实际应用中,odb导入法已经被广泛应用于岩土工程领域。
例如,在地下隧道工程中,需要对隧道周围的地下岩体进行稳定性分析。
采用odb导入法,可以很好地模拟地下岩体的应力平衡状态,预测隧道周围岩体的变形情况,从而为隧道的设计和施工提供重要的依据。
总之,odb导入法是一种非常有效的数值模拟方法,可以很好地模拟地下岩体的应力平衡状态。
在岩土工程领域的应用前景非常广阔,可以为工程设计和实施提供重要的技术支持。
ABAQUS地应力平衡:进行地应力平衡的原因陈述如下:我们建立的几何模型一般都和工程实际情况一致,例如边坡的几何模型与边坡实际尺寸相一致。
但是由于边坡的沉降和徐变作用,可以想像到,现在的边坡应该是由一个体积更大的原始边坡在很久以前由于受到重力作用和边界约束条件,逐渐形成了现今的边坡形态.但是对于那个原始的边坡形态,我们不得而知.假如能准确知晓,我们就能够建立原始边坡的几何模型,接着对边坡施加重力和边界条件,受力后边坡形态应该和现在的边坡相一致,其内力就是初始应力场(地应力),这样就不用专门施加地应力了。
但现实情况是我们不能知晓原始边坡的形态.现在的边坡几何模型就是其实际形态,受力之后将会变成一个与现状不一致的边坡,这不符合现在的实际情况。
如果我们计算出现今边坡的内力,并将其作为边坡的初始应力场,再去和外力平衡,这样我们建立的模型就和现实边坡情况相一致了。
对于涉及开挖、回填的动态岩土工程问题,地应力平衡是正确模拟施工过程的前提条件。
初始应力的加载必须满足地应力平衡,而地应力平衡就是为了使地基仅存在初始应力,而不存在初始应变。
当地基自重是产生地应力场的主要因素时,重力是外力,初始应力场是内力,将提取出的内力施加于模型后再施加重力,此时内力和外力平衡,该状态就是工程建设的初始状态.在表面水平的情况下,ABAQUS中初始地应力场的平衡一般只和密度有关,土体的密度一样,平衡的效果就好,别的参数对地应力平衡的结果影响很小.对于表面不平的情况,尽量通过inp文件导入初始应力的方法进行地应力平衡。
ABAQUS中进行地应力平衡的时间点的选择十分重要,地应力平衡是指在工程建设之前,地表的位移应为零, 而土体的应力却存在。
也就是说不管土体原来的样子如何(例如高山, 河流,丘陵, 平原等),进行地应力平衡的正确时间点应当是在我们对它做任何扰动之前.具体采取的办法如下所述,我们对所建立的边坡几何模型施加和实际模型一致的重力和边界条件,得到变形以后边坡的内力,变形后边坡形状和原始边坡略有不同,其内力可近似作为现状边坡的内力,将其作为初始应力施加于现在的边坡中,接着施加外力(重力)来平衡初始应力,这样就建立了一个与现今边坡形态基本相同的边坡模型,这样之后的分析计算才是符合实际的。
地应力平衡odb导入法详解地应力是指地球内部各层物质受到的压力状态,是地球物理学和地质学领域中的重要参数之一。
在地质勘探、工程地质、岩土工程等领域中,地应力的研究和分析具有重要意义。
地应力平衡odb导入法是一种用于分析地应力的方法,本文将对其进行详细介绍。
一、地应力平衡odb导入法的基本原理地应力平衡odb导入法是一种基于有限元分析的方法。
其基本原理是:在地下工程施工过程中,地应力状态会发生变化,而地应力平衡odb导入法通过对地下工程的有限元模型进行分析,确定施工过程中地应力状态变化的影响范围和程度,从而为工程设计和施工提供理论依据。
具体来说,地应力平衡odb导入法主要包括以下步骤:1.建立地下工程有限元模型,包括地质模型和工程模型。
2.确定地下工程施工过程中的应力变化情况,包括垂直应力、水平应力和剪切应力等。
3.将应力变化情况导入有限元模型中,进行数值模拟分析,得出地应力状态的变化情况。
4.根据分析结果,确定地下工程施工过程中的应力状态变化对工程的影响范围和程度,为工程设计和施工提供理论依据。
二、地应力平衡odb导入法的应用场景地应力平衡odb导入法主要适用于以下场景:1.地铁、隧道等地下工程的设计和施工。
2.石油、天然气等油气勘探和开发工程的设计和施工。
3.地震、火山等地质灾害的研究和预测。
4.地下水资源开发和保护工程的设计和施工。
5.岩土工程、地质勘探等领域的研究和应用。
三、地应力平衡odb导入法的优缺点地应力平衡odb导入法具有以下优点:1.能够准确分析地应力状态的变化情况,为工程设计和施工提供理论依据。
2.能够对地下工程施工过程中的应力变化情况进行数值模拟分析,具有较高的可靠性和准确性。
3.能够预测地下工程施工过程中可能出现的问题,提前采取措施,避免工程事故的发生。
地应力平衡odb导入法也存在一些缺点:1.需要建立较为复杂的有限元模型,对模型的建立和分析需要较高的技术水平和专业知识。
2.分析过程中需要考虑多种因素的影响,如地质条件、工程施工方式等,分析过程较为繁琐。
地应力平衡odb导入法详解地应力平衡是地下工程设计和施工中非常重要的一个问题。
在地下工程中,地应力状态的合理分析和掌握,对于工程的安全和经济性都有着至关重要的作用。
因此,地应力平衡的研究一直是地下工程领域的热点问题之一。
近年来,随着计算机技术和有限元方法的不断发展,地应力平衡的研究也逐渐向着计算机模拟的方向发展。
其中,odb导入法是一种较为常见的方法,该方法可以通过有限元分析软件将地下模型的应力状态导入到odb文件中,从而实现对地应力平衡状态的分析和掌握。
一、odb导入法的基本原理1.1 有限元分析模型的建立odb导入法的基本原理是通过有限元分析软件建立地下模型,并将模型的应力状态导入到odb文件中。
在建立地下模型时,需要考虑地下工程的实际情况,如地质条件、地下水位、地下建筑物等,以及所采用的材料和结构形式等因素。
在建立地下模型时,需要进行网格划分和材料参数的设定。
网格划分需要考虑到地下结构的几何形态和力学性质,以及计算精度和计算效率等因素。
材料参数的设定需要根据实际情况进行,如土体的强度参数、压缩模量、剪切模量等。
1.2 应力状态的计算有限元分析软件可以通过数值计算的方法,求解地下模型在不同荷载作用下的应力状态。
在计算应力状态时,需要考虑到地下结构的初始状态和荷载作用方式等因素。
在计算应力状态时,需要采用合适的材料本构关系和边界条件,以确保计算结果的准确性和可靠性。
此外,还需要对计算结果进行后处理,如应力云图、变形云图等,以便于分析和掌握地应力平衡状态。
1.3 odb文件的导出和处理有限元分析软件可以将地下模型的应力状态导出到odb文件中,以供后续分析和处理。
在导出odb文件时,需要考虑到文件的格式和数据的完整性等因素。
导出odb文件后,需要进行后续处理和分析。
其中,最常见的处理方法是使用ABAQUS软件进行后处理和分析。
ABAQUS软件可以对odb 文件进行读取和处理,并生成相应的应力云图、变形云图等结果。
ABAQUS:进行地应力平衡的原因xx如下:我们建立的几何模型一般都和工程实际情况一致,例如边坡的几何模型与边坡实际尺寸相一致。
但是由于边坡的沉降和徐变作用,可以想像到,现在的边坡应该是由一个体积更大的原始边坡在很久以前由于受到重力作用和边界约束条件,逐渐形成了现今的边坡形态。
但是对于那个原始的边坡形态,我们不得而知。
假如能准确知晓,我们就能够建立原始边坡的几何模型,接着对边坡施加重力和边界条件,受力后边坡形态应该和现在的边坡相一致,其内力就是初始应力场(地应力),这样就不用专门施加地应力了。
但现实情况是我们不能知晓原始边坡的形态。
现在的边坡几何模型就是其实际形态,受力之后将会变成一个与现状不一致的边坡,这不符合现在的实际情况。
如果我们计算出现今边坡的内力,并将其作为边坡的初始应力场,再去和外力平衡,这样我们建立的模型就和现实边坡情况相一致了。
对于涉及开挖、回填的动态岩土工程问题,地应力平衡是正确模拟施工过程的前提条件。
初始应力的加载必须满足地应力平衡,而地应力平衡就是为了使地基仅存在初始应力,而不存在初始应变。
当地基自重是产生地应力场的主要因素时,重力是外力,初始应力场是内力,将提取出的内力施加于模型后再施加重力,此时内力和外力平衡,该状态就是工程建设的初始状态。
在表面水平的情况下,ABAQUS中初始地应力场的平衡一般只和密度有关,土体的密度一样,平衡的效果就好,别的参数对地应力平衡的结果影响很小。
对于表面不平的情况,尽量通过inp文件导入初始应力的方法进行地应力平衡。
ABAQUS中进行地应力平衡的时间点的选择十分重要,地应力平衡是指在工程建设之前,地表的位移应为零,而土体的应力却存在。
也就是说不管土体原来的样子如何(例如高山,河流,丘陵,平原等),进行地应力平衡的正确时间点应当是在我们对它做任何扰动之前.具体采取的办法如下所述,我们对所建立的边坡几何模型施加和实际模型一致的重力和边界条件,得到变形以后边坡的内力,变形后边坡形状和原始边坡略有不同,其内力可近似作为现状边坡的内力,将其作为初始应力施加于现在的边坡中,接着施加外力(重力)来平衡初始应力,这样就建立了一个与现今边坡形态基本相同的边坡模型,这样之后的分析计算才是符合实际的。
地应力平衡odb导入法详解地应力是指地球内部各部分之间的力的平衡状态,是地球内部结构和构造的基础,对于地质灾害预测、岩石力学研究、地下工程设计等领域具有重要的意义。
而ODB(Object Database)则是一种面向对象的数据库,与传统的关系型数据库相比,具有更高的可扩展性和灵活性。
在地应力研究中,将ODB导入到数值模拟软件中进行分析,可以更加准确地模拟地下结构的力学行为,从而得到更加精细的地应力分布图。
一、ODB的特点及应用ODB是一种面向对象的数据库,与关系型数据库相比,其最大的特点是具有更高的可扩展性和灵活性。
传统的关系型数据库采用的是表格的形式来存储数据,而ODB则采用的是对象的形式,每个对象都可以包含多个属性和方法,从而使得数据的存储和处理更加灵活和方便。
此外,ODB还具有以下特点:1、支持多种数据类型ODB支持多种数据类型,包括数字、字符、日期等,同时还支持图像、音频、视频等非结构化数据的存储和管理。
2、支持复杂查询ODB支持复杂的查询操作,可以对多个对象进行联合查询、嵌套查询等操作,从而得到更加精确的查询结果。
3、支持事务处理ODB支持事务处理,可以保证数据的完整性和一致性。
4、支持多用户并发访问ODB支持多用户并发访问,可以满足多用户同时访问和修改数据的需求。
在地应力研究中,ODB主要应用于地下结构的建模和力学分析。
将地下结构的各个部分建模成为对象,通过ODB将其存储起来,然后再将其导入到数值模拟软件中进行分析,可以更加准确地模拟地下结构的力学行为,从而得到更加精细的地应力分布图。
二、地应力平衡分析的基本原理地应力平衡分析是指分析地下结构受到各种力的作用后所达到的力学平衡状态。
在地下结构中,存在着各种力的作用,包括地表荷载、地下水压力、岩层重力应力等。
这些力的作用会使地下结构发生变形和破坏,因此需要进行地应力平衡分析,以确定地下结构的稳定性和安全性。
地应力平衡分析的基本原理是力的平衡。
初始地应力平衡方法当模型并不是水平地面或地基成层分布时,用Initial conditions, type = stress, geostatic方法难以奏效,这里介绍一种可适用于复杂地形下的初始地应力平衡法。
1 CAE中建立仅有重力作用的模型,在提交Job前,输入Python命令产生没有Part信息的Input文件mdb.models['模型名字'].setValues(noPartsInputFile=ON)2 提交Job,求解完成后,进入CAE后处理部分1) Report——Report Field Output——下拉菜单中选择Centriod——勾选上S11、S22、S33、S12、S13和S23;2) Setup页面选择拟生成报告文件的名字***.CSV,其下方Write栏里仅选择Field Output。
3 用软件UltraEdit打开***.CSV文件进行编辑1) 删除CSV文件中不必要的内容,仅保留以下内容;单元号S11 S22 S33 S12 S13 S231 -29.3229E+03 -54.4569E+03 -29.3229E+03 23.1405E-12 339.116E-15 -53.1765E-122 -29.3229E+03 -54.4569E+03 -29.3229E+03 -14.2653E-12 -2.41752E-12 -39.8307E-12……n -29.3229E+03 -54.4569E+03 -29.3229E+03 -42.7399E-12 -4.38639E-12 -3.0521E-122) 利用UltraEdit的“列模式”,在各列中进行“插入/填充列”操作,添加逗号,并删除文件第一行和末尾的空行,保存文件。
1 , -29.3229E+03 , -54.4569E+03 , -29.3229E+03 , 23.1405E-12 , 339.116E-15 , -53.1765E-122 , -29.3229E+03 , -54.4569E+03 , -29.3229E+03 , -14.2653E-12 , -2.41752E-12 , -39.8307E-12……n , -29.3229E+03 , -54.4569E+03 , -29.3229E+03 , -42.7399E-12 , -4.38639E-12 , -3.0521E-12Tips:1) CSV文件中所保存的内容只有数字;2) 这里选用UltraEdit而不是Excel处理CSV文件是因为:Excel有行数限制,当n>65536时,将不能载入全部文件内容。
地应力平衡的方法以及有关地应力平衡的理解地应力平衡方法:第一步:建立模型,材料,分析步(GEOSTATIC)第二步:施加荷载,LOAD,选择施加重力GRAVITY,在你想施加重力的方向输入数值9.8 第三步:在命令行中输入mdb.models['模型名字'].setValues(noPartsInputFile=ON)(请严格按照这个格式,,注意大小写的字母,同时注意输入模型名字时的大小字)第四步;提交JOB,完成计算后,第五步:[报告-场输出(位置选质心)-选s11-s66 设置用.csv---写入中只选”场输出”---处理.csv 文件(分列+排序),继续第7步]按以下步骤,[Module]Visualization-Report---Report Field Output---下拉菜单里面选择centriod,然后依次把s11、s22、s33、s12、s13、s23点选上,setup页面选择报告文件的名字---***.csv---Write中选择Field Output-------------ok!!!第六步:处理EXCEL(数据中的分列和排序)先打开然后打开excel在菜单:数据——》导入外部数据——》导入数据选中abaqus.rpt打开,(选固定宽度)下一步,然后调整分界线,确定,然后删除不需要的,然后存为csv格式(注意不要用空格,否则会有很多逗号的)单元号S11 S22 S33 S12 S13 S23 (请注意,在保存内容中没有这一行的)1 , . , . , . , . , . ,2 , . , . , . , . , . ,. , . , . , . , . , . ,. , . , . , . , . , . ,这个结果文件是最重要的,在所保存的文件中只有数值部分,没有英文字母,没有上面那个“单元号”这一行,而且单元号前面也没有什么PART名字什么的,就是1,2........这些数字。
地应力平衡方法:第一步:建立模型,材料,分析步(GEOSTATIC)第二步:施加荷载,LOAD,选择施加重力GRAVITY,在你想施加重力的方向输入数值9.8 第三步:在命令行中输入mdb.models['模型名字'].setValues(noPartsInputFile=ON) (请严格按照这个格式,注意大小写的字母)第四步:提交J0B,完成后第五步:按以下步骤,Roport---Report Field Output---选中S11,S22,S33,S12,S13,S23---Name:XX.INP---Write中选择Field Output-------------ok!!!第六步:用软件(推荐使用UltraEdit很好编辑的)打开XX.INP,保存格式内容单元号 S11 S22 S33 S12 S13 S23 (请注意,在保存内容中没有这一行的)1 , . , . , . , . , . , .2 , . , . , . , . , . , .. , . , . , . , . , . , .. , . , . , . , . , . , .这个结果文件是最重要的,在所保存的文件中只有数值部分,没有英文字母,没有上面那个“单元号”这一行,而且单元号前面也没有什么PART名字什么的,就是1,2........这些数字。
第七步:在ABAQUS----Model---Edit keywords---Model-1(这就是你的Model名字)---在材料属性后面加上:*initial conditions,type=stress,input=xx.inp 完成第八步:重新提交JOB,OK第九步:如果你还没有成功的话,那我只能说----------------我无语了。
:)ABAQUS的这项功能确实很不错。
:)这个功能让基坑开挖、隧道开挖等的初始应力,开挖后的残余应力很好的显示;也可以很好的模拟铁路设计中的工后沉降的概念,在地应力平衡后,加上荷载所得沉降即为工后沉降;也很好的模拟了桩土复合地基的问题,如果没有初始应力的模拟,使土对桩产生了挤压应力,从而通过设定摩擦系数就可以模拟了桩与土之间的摩擦力;除此之外,在进行挡土墙计算时也需要ABAQUS的这项功能,反正很多都用得着。
地应力平衡方法熊志勇陈功奇第一部分地应力平衡方法简介地应力平衡有三种方法:(1)*initial conditions,type=stress,input=FileName.csv(或inp)该方法中的文件FILENAME.INP获取方法为:首先将已知边界条件施加到模型上进行正演计算,然后一般是将计算得到的每个单元的应力外插到形心点处并导出6个应力分量(也可以导出积分点处的应力分量,视要求平衡的精确程度而定)。
其所采用的几何模型可以考虑地表起伏不平的情况以及岩土材料极其不均匀的情况,适用范围广。
但由于外插的应力有一定误差,因此采用弹塑性本构模型时,可能会导致某些点的高斯点应力位于屈服面以外,当大面积的高斯点上的应力超出屈服面之后,应力转移要通过大量的迭代才能完成,而且有可能出现解不收敛的情况。
在仅考虑自重情况下只能考虑受泊松比的影响带来的侧压力系数效应,因此平衡后的效果不一定很理想,但无疑其适用性很强。
(2)*initial conditions,type=stress,geostatic该方法需给出不同材料区域的最高点和最低点的自重应力及其相应坐标。
所采用的几何模型一般较规则,表面大致水平,地应力平衡的好坏一般只受岩体密度的影响,无论采用弹性或弹塑性本构模型都能很好的达到平衡,可以不必局限于仅受泊松比的影响,能够通过考虑水平两个方向的侧压力系数值来施加初始应力场。
计算速度快,收敛性好。
缺点就是不能够很好平衡具有起伏表面的几何模型,需知道平整后模型的上覆岩体自重。
(3)*initial conditions,type=stress,geostatic,user该方法采用用户子程序SIGINI来定义初始应力场,可以定义其为应力分量为坐标、单元号、积分点号等变量的函数,要达到精确平衡需已知具体边界条件,在实际中应用较少。
第二部分 地应力平衡方法实例详解地应力平衡是岩土工程数值模拟分析的重要的内容,为了让师弟师妹们快点上手,我利用第一种方法做一个较简单的模型,希望对大家有用。
ABAQUS地应力平衡:进行地应力平衡的原因陈述如下:我们建立的几何模型一般都和工程实际情况一致,例如边坡的几何模型与边坡实际尺寸相一致。
但是由于边坡的沉降和徐变作用,可以想像到,现在的边坡应该是由一个体积更大的原始边坡在很久以前由于受到重力作用和边界约束条件,逐渐形成了现今的边坡形态.但是对于那个原始的边坡形态,我们不得而知。
假如能准确知晓,我们就能够建立原始边坡的几何模型,接着对边坡施加重力和边界条件,受力后边坡形态应该和现在的边坡相一致,其内力就是初始应力场(地应力),这样就不用专门施加地应力了。
但现实情况是我们不能知晓原始边坡的形态.现在的边坡几何模型就是其实际形态,受力之后将会变成一个与现状不一致的边坡,这不符合现在的实际情况.如果我们计算出现今边坡的内力,并将其作为边坡的初始应力场,再去和外力平衡,这样我们建立的模型就和现实边坡情况相一致了。
对于涉及开挖、回填的动态岩土工程问题,地应力平衡是正确模拟施工过程的前提条件。
初始应力的加载必须满足地应力平衡,而地应力平衡就是为了使地基仅存在初始应力,而不存在初始应变。
当地基自重是产生地应力场的主要因素时,重力是外力,初始应力场是内力,将提取出的内力施加于模型后再施加重力,此时内力和外力平衡,该状态就是工程建设的初始状态。
在表面水平的情况下,ABAQUS中初始地应力场的平衡一般只和密度有关,土体的密度一样,平衡的效果就好,别的参数对地应力平衡的结果影响很小。
对于表面不平的情况,尽量通过inp文件导入初始应力的方法进行地应力平衡。
ABAQUS中进行地应力平衡的时间点的选择十分重要,地应力平衡是指在工程建设之前,地表的位移应为零, 而土体的应力却存在。
也就是说不管土体原来的样子如何(例如高山, 河流,丘陵,平原等), 进行地应力平衡的正确时间点应当是在我们对它做任何扰动之前。
具体采取的办法如下所述,我们对所建立的边坡几何模型施加和实际模型一致的重力和边界条件,得到变形以后边坡的内力,变形后边坡形状和原始边坡略有不同,其内力可近似作为现状边坡的内力,将其作为初始应力施加于现在的边坡中,接着施加外力(重力)来平衡初始应力,这样就建立了一个与现今边坡形态基本相同的边坡模型,这样之后的分析计算才是符合实际的。
地应力平衡方法方法11)建立模型,材料,分析步(GEOSTATIC)。
2)施加荷载,LOAD,选择施加重力GRAVITY,在你想施加重力的方向输入数值9.8。
3)在JOB中提交分析。
4)按以下步骤,Report---Report Field Output---选中S11,S22,S33,S12,S13,S23---Name:cc.inp。
Write中只选择Field Output。
5)修改cc.inp,用excel,打开(分隔符,Tap键、空格键、逗号)6)删除都是1的那列。
在1,2,3,4等的前面加上(part instance)的name和小数点。
7)另存为,文件类型设置为CSV。
8)用文字编辑软件删除小数点后面的逗号。
9)最后变为soil-1.1,S11,S22,S33,S12,S13,S2310)另存为cc.dat11)在Edit keywords中材料属性后面加上*initial conditions,type=stress,input=cc.dat12)重新提交JOB,OK方法21)地表水平、土体材料在水平方向相同,可应用这种简单方法。
2)在Edit keywords中材料属性后面加上。
*initial conditions,type=stress,geostaticset-1,0.0,5,-392e3,-5,0.93)单元集名称、应力竖向分力第一个值、对应垂直坐标、应力竖向分力第二个值、对应垂直坐标、侧压力系数。
4)水平地应力通过竖向应力乘以侧压力系数得到。
补充6.10及6.11可以实现自动地应力平衡自动地应力平衡是新版本最为关注的新功能之一,因为它省去了计算自重应力以及生成相应初应力文件和导入的麻烦。
在地应力步中选择自动增量步就能使用自动地应力平衡功能,还能指定允许的位移变化容限。
不过自动地应力平衡功能仅支持有限的几种材料,D-P并不包含在内,而且对单元也有一定的要求。
虽然可以使用不支持的材料和单元,但可能自动地应力平衡不容易收敛或位移差值超过容限。
地应力计算公式讲解地应力是指地层中各点所受到的垂直或水平方向的应力大小。
地应力的计算公式是建立在岩石力学和地震学原理的基础之上的,其可以通过以下方法进行计算:1.应力平衡原理地应力计算的基本原理是应力平衡原理。
根据牛顿第一定律,处于静止或等速运动状态的岩石体,处处受到的合外力为零。
根据牛顿第三定律,每个点所受到的应力的合力向下且等于岩石体的重力,在垂直与地表方向上可以表达为:σz = ρgh其中,σz为垂直方向的应力(垂直地应力),ρ为岩石的密度,g为重力加速度,h为该点的深度。
2.各向同性应力例如,当地层处于横向应力均匀的状态时,且无水平主动构造应力的作用,即沿所有方向都具有相同的应力大小。
在这种情况下,可以使用各向同性应力模型来计算地应力。
根据椭球体的主应力理论,可以得出:σr=aσθ=aσz=a其中,σr、σθ、σz分别表示径向向外、周向和垂直地应力,而a为岩石内部的等效应力。
3.强度理论强度理论是地应力计算中另一个重要的方法。
它是建立在岩石强度与应变的关系上的。
岩石强度表示岩石承受外界加剧条件下的稳定性。
在计算地应力时,根据岩石强度的大小可以推导出不同的地应力情况。
例如,当岩石强度为σc时,岩石处于临界平衡的边缘,此时垂直地应力可以通过如下公式计算:σc=σz当岩石强度小于σc时,岩石发生塑性变形,此时垂直地应力可以通过如下公式计算:σz=σc+μhρg其中,σc为岩石强度,μ为岩石的内摩擦系数,h为深度,ρ为岩石的密度,g为重力加速度。
以上是地应力计算公式的基本介绍。
需要注意的是,地应力的计算是一个复杂而多变的过程,与地层形态、地震活动、构造应力等因素都有关系,因此,仅凭公式无法完全准确地计算出地应力。
为得到更精确的计算结果,需要结合地质勘探、地形测量等实际情况进行分析和计算。
abaqus地应力平衡先说为什么要施加地应力:1、我们所建立的几何模型一般和工程实际情况或尺寸相对应、相一致,比如边坡几何模型和实际边坡尺寸一致,但我们可以夸张一点想像,实际边坡应是由一个更大一点或更高一点的不受重力的初始边坡在n年前突然受重力和类似目前的边界条件作用下逐渐形成了今天的尺寸大小,n年前受重力和类似目前的边界条件作用之前边坡的尺寸大小,我们不得而知,如果能准确知晓,我们就可以建立一个那时的几何模型,再施加重力和边界条件进行计算,变形后形状和现状边坡形状一致,其内力也就是初始应力场或地应力,就不用专门去施加地应力了,但问题是我们不能知晓边坡受力前的形状尺寸,我们现在的几何模型就是边坡现在的实际尺寸,受力后将会变成一个更小的或与现状不一致的边坡,这不符合我们模拟现状边坡的目的。
如果我们知道现状边坡的内力,将其提取出来作为几何模型的内力,再和外力(重力)平衡,则我们建立的模型才能算和实际模型一致。
真实地知道现状边坡的内力是很难的,我们采取的办法是,用我们所建立的几何模型施加和实际模型一致的重力和边界条件进行计算,得到变形后或变得更小或与现状边坡不完全一致的边坡内力近似的作为现状边坡的内力,并重新将其施加于与现状边坡一致的几何模型,再施加重力(当然边界条件也应基本一致)以平衡,这样才算建立了与现状模型基本一致的模型,其下的计算才成为可能。
这就是所谓“地应力平衡”的含义、目的、作用。
2. 地应力平衡中的外力和内力的问题,地应力平衡中,显然,重力是外力,应力场是内力,仅有外力重力,没有内力是不可能的,同样,仅有内力(专指初始应力场)而不受重力也是不可能的,否则,整个体系的力不会平衡。
这就是为什么我们将提取出的内力施加于几何模型后必须再施加重力的原因。
为的是内力和外力平衡。
3. 地应力场的方向问题,有网友在论坛里问,既然重力是向下,为与重力平衡,那应力场的方向是不是向上呢,这同样是我开始接触abaqus 的疑问,相信很初学者也有这样的疑问,我的理解是内力是没有向上、向下或者向其它方向的概念的,内力只有拉力或压力或剪力之分,其方向也按是拉是压是顺时针或逆时针而分,内力往往都是成对出现,如地应力场中的应力以压应力为主,取一个微元,则压应力同时出现在向下和向上,你能说地应力就是向上,与重力反向吗?aba中初始地应力场平衡一般在表面水平的情况下仅仅和密度相关,密度一样的话平衡的结果很好,别的参数改变之后经过计算,差别很小。
6.19 Enhancements to the geostatic procedureProducts: Abaqus/Standard Abaqus/CAEBenefits: The geostatic procedure for obtaining the initial equilibrium state has been enhanced so that you no longer have to specify initial stresses that are close to the equilibrium state to obtain a solution corresponding to the original configuration.Description: The geostatic procedure is normally used as the first step of a geotechnical analysis; in such cases gravity loads (and possibly other types of loads) are applied during this step. Ideally, the loads and initial stresses should exactly equilibrate and produce zero deformations. However, in previous releases of Abaqus the geostatic procedure did not enforce this condition. In complex problems it may be difficult to specify initial stresses and loads that equilibrate exactly. Consequently, the displacements corresponding to the equilibrium solution might be large unless a special procedure is used to enforce small displacements.The enhanced geostatic procedure allows you to obtain equilibrium in cases when the initial stress state is unknown or is known only approximately. Abaqus automatically computes the equilibrium corresponding to the initial loads and the initial configuration, allowing only small displacements within user-specified tolerances. The procedure is available with continuum and cohesive elements with pore pressure degrees of freedom and the corresponding stress/displacement elements. The elastic, porous elastic, Cam-clay plasticity, and Mohr-Culomb plasticity material models are supported. Although the list of supported materials includes materials that exhibit inelastic behavior, the procedure is intended to be used in analyses in which the material response is primarily elastic; that is, inelastic deformations are small.The new enhancements are available from the Incrementation tabbed page when you create or edit a geostatic step in Abaqus/CAE. You must select automatic incrementation to access the new controls. The default settings for increment size and maximum displacement change are shown in Figure 6–6.Figure 6–6 The Incrementation options for a geostatic step.Abaqus/CAE Usage:Step module:Create Step: General: Geostatic; IncrementationReferences:Abaqus Analysis User's Manual∙“Geostatic stress state,” Section 6.8.2Abaqus/CAE User's Manual∙“Configuring a geostatic stress field procedure” in “Configuring general analysis procedures,” Section 14.11.1Abaqus Keywords Reference Manual∙*GEOSTATICAbaqus Verification Manual∙“*GEOSTATIC, UTOL,” Section 5.1.9ABAQUS 地应力平衡2011-03-30 14:42:12关于地应力的平衡方法,综合了版上的一些意见,结合了自己的想法,对于初始地应力的施加,得到了e-6的效果,方法比较简单,与大家分享!1.先施加重力荷载的作用,可以在cae中实现;2.在inp文件中的output request中写上*el prints,这样就会将施加重力荷载后的应力输出到*.dat文件中了;3.在*.dat文件中,将单元应力的序号及单元的应力拷出,例如ELEMENT T FOOT- S11 S22 S33 S12 NOTE1 1 -1.2598E+05 -1434. -3.1852E+04 892.72 1 -1.2249E+05 -6287. -3.2194E+04 1223.3 1 -1.1795E+05 -497.7 -2.9611E+04 1664.4 1 -1.1210E+05 -7240. -2.9834E+04 1992.5 1 -1.0485E+05 579.0 -2.6068E+04 2600.6 1 -9.5803E+04 -8272. -2.6019E+04 3031.7 1 -8.4709E+04 1915.-2.0698E+04 4083.8 1 -7.0634E+04 -9746. -2.0095E+04 4339.9 1 -5.1088E+04 5401.-1.1422E+04 8519.10 1 -2.4353E+04 -1.1150E+04 -8876. 1.2126E+0411 1 -1.2847E+05 268.1 -3.2050E+04 738.112 1 -1.2786E+05 -9868. -3.4433E+04 629.113 1 -1.2938E+05 -4224. -3.3402E+04 502.514 1 -1.3039E+05 -3458. -3.3461E+04 165.9 单独存为一个*.dat文件,4.用excel打开该文件,将其中的1所在的列去掉,在每个单元号前面加上其instance. ,即单元编号变为: instance名称.序号 ;注意不同的instance和part要都按照其所在的单元从小到大编号,而不是按照他们在整体单元编号来编号!5.接下来就在excel把该文件另存为*.csv格式的文件(即带有逗号分隔符的格式),6.最后在inp文件的step之前写上*initial conditions,type=stress,input=文件名.csv即可!这种方法不需要用python,比较简单,希望能对大家有用!先说为什么要施加地应力:1、我们所建立的几何模型一般和工程实际情况或尺寸相对应、相一致,比如边坡几何模型和实际边坡尺寸一致,但我们可以夸张一点想像,实际边坡应是由一个更大一点或更高一点的不受重力的初始边坡在n年前突然受重力和类似目前的边界条件作用下逐渐形成了今天的尺寸大小,n年前受重力和类似目前的边界条件作用之前边坡的尺寸大小,我们不得而知,如果能准确知晓,我们就可以建立一个那时的几何模型,再施加重力和边界条件进行计算,变形后形状和现状边坡形状一致,其内力也就是初始应力场或地应力,就不用专门去施加地应力了,但问题是我们不能知晓边坡受力前的形状尺寸,我们现在的几何模型就是边坡现在的实际尺寸,受力后将会变成一个更小的或与现状不一致的边坡,这不符合我们模拟现状边坡的目的。
第六篇:地应力平衡方法以及注意事项注意:只有采用弹塑性本构模型时需要地应力平衡,弹性本构不需要地应力平衡!第一部分地应力平衡方法简介地应力平衡主要有五种方法:(1)自动平衡:第一步创建分析步geostatic ,这种方法注意只能在第一步只能有土和重力的情况下能使用,有其他部件或者接触时计算不能收敛,效果是最好的,方便简单!(2)*initial conditions,type=stress,geostatic该方法需给出不同材料区域的最高点和最低点的自重应力及其相应坐标。
所采用的几何模型一般较规则,表面大致水平,地应力平衡的好坏一般只受岩体密度的影响,无论采用弹性或弹塑性本构模型都能很好的达到平衡,可以不必局限于仅受泊松比的影响,能够通过考虑水平两个方向的侧压力系数值来施加初始应力场。
计算速度快,收敛性好。
缺点就是不能够很好平衡具有起伏表面的几何模型,需知道平整后模型的上覆岩体自重。
高版本在CAE里也能操作用计算器算出每个分界面上的应力和坐标对应填入,也比较方便不需要修改关键字(3)*initial conditions,type=stress,geostatic,user导入ODB里的方法,也比较简单,高版本可在截面上操作,不需要修改关键字你放入ODB后,填入第一步不需要填名称就是1 ,增量步就是你第一步计算的最后一个增量步(4)*initial conditions,type=stress,input=FileName.csv(或inp)该方法中的文件FILENAME.INP获取方法为:首先将已知边界条件施加到模型上进行正演计算,然后一般是将计算得到的每个单元的应力外插到形心点处并导出6个应力分量(也可以导出积分点处的应力分量,视要求平衡的精确程度而定)。
其所采用的几何模型可以考虑地表起伏不平的情况以及岩土材料极其不均匀的情况,适用范围广。
但由于外插的应力有一定误差,因此采用弹塑性本构模型时,可能会导致某些点的高斯点应力位于屈服面以外,当大面积的高斯点上的应力超出屈服面之后,应力转移要通过大量的迭代才能完成,而且有可能出现解不收敛的情况。
6.19 Enhancements to the geostatic procedureProducts: Abaqus/Standard Abaqus/CAEBenefits: The geostatic procedure for obtaining the initial equilibrium state has been enhanced so that you no longer have to specify initial stresses that are close to the equilibrium state to obtain a solution corresponding to the original configuration.Description: The geostatic procedure is normally used as the first step of a geotechnical analysis; in such cases gravity loads (and possibly other types of loads) are applied during this step. Ideally, the loads and initial stresses should exactly equilibrate and produce zero deformations. However, in previous releases of Abaqus the geostatic procedure did not enforce this condition. In complex problems it may be difficult to specify initial stresses and loads that equilibrate exactly. Consequently, the displacements corresponding to the equilibrium solution might be large unless a special procedure is used to enforce small displacements.The enhanced geostatic procedure allows you to obtain equilibrium in cases when the initial stress state is unknown or is known only approximately. Abaqus automatically computes the equilibrium corresponding to the initial loads and the initial configuration, allowing only small displacements within user-specified tolerances. The procedure is available with continuum and cohesive elements with pore pressure degrees of freedom and the corresponding stress/displacement elements. The elastic, porous elastic, Cam-clay plasticity, and Mohr-Culomb plasticity material models are supported. Although the list of supported materials includes materials that exhibit inelastic behavior, the procedure is intended to be used in analyses in which the material response is primarily elastic; that is, inelastic deformations are small.The new enhancements are available from the Incrementation tabbed page when you create or edit a geostatic step in Abaqus/CAE. You must select automatic incrementation to access the new controls. The default settings for increment size and maximum displacement change are shown in Figure 6–6.Figure 6–6 The Incrementation options for a geostatic step.Abaqus/CAE Usage:Step module:Create Step: General: Geostatic; IncrementationReferences:Abaqus Analysis User's Manual∙“Geostatic stress state,” Section 6.8.2Abaqus/CAE User's Manual∙“Configuring a geostatic stress field procedure” in “Configuring general analysis procedures,” Section 14.11.1Abaqus Keywords Reference Manual∙*GEOSTATICAbaqus Verification Manual∙“*GEOSTATIC, UTOL,” Section 5.1.9ABAQUS 地应力平衡2011-03-30 14:42:12关于地应力的平衡方法,综合了版上的一些意见,结合了自己的想法,对于初始地应力的施加,得到了e-6的效果,方法比较简单,与大家分享!1.先施加重力荷载的作用,可以在cae中实现;2.在inp文件中的output request中写上*el prints,这样就会将施加重力荷载后的应力输出到*.dat文件中了;3.在*.dat文件中,将单元应力的序号及单元的应力拷出,例如ELEMENT T FOOT- S11 S22 S33 S12 NOTE1 1 -1.2598E+05 -1434. -3.1852E+04 892.72 1 -1.2249E+05 -6287. -3.2194E+04 1223.3 1 -1.1795E+05 -497.7 -2.9611E+04 1664.4 1 -1.1210E+05 -7240. -2.9834E+04 1992.5 1 -1.0485E+05 579.0 -2.6068E+04 2600.6 1 -9.5803E+04 -8272. -2.6019E+04 3031.7 1 -8.4709E+04 1915.-2.0698E+04 4083.8 1 -7.0634E+04 -9746. -2.0095E+04 4339.9 1 -5.1088E+04 5401.-1.1422E+04 8519.10 1 -2.4353E+04 -1.1150E+04 -8876. 1.2126E+0411 1 -1.2847E+05 268.1 -3.2050E+04 738.112 1 -1.2786E+05 -9868. -3.4433E+04 629.113 1 -1.2938E+05 -4224. -3.3402E+04 502.514 1 -1.3039E+05 -3458. -3.3461E+04 165.9 单独存为一个*.dat文件,4.用excel打开该文件,将其中的1所在的列去掉,在每个单元号前面加上其instance. ,即单元编号变为: instance名称.序号 ;注意不同的instance和part要都按照其所在的单元从小到大编号,而不是按照他们在整体单元编号来编号!5.接下来就在excel把该文件另存为*.csv格式的文件(即带有逗号分隔符的格式),6.最后在inp文件的step之前写上*initial conditions,type=stress,input=文件名.csv即可!这种方法不需要用python,比较简单,希望能对大家有用!先说为什么要施加地应力:1、我们所建立的几何模型一般和工程实际情况或尺寸相对应、相一致,比如边坡几何模型和实际边坡尺寸一致,但我们可以夸张一点想像,实际边坡应是由一个更大一点或更高一点的不受重力的初始边坡在n年前突然受重力和类似目前的边界条件作用下逐渐形成了今天的尺寸大小,n年前受重力和类似目前的边界条件作用之前边坡的尺寸大小,我们不得而知,如果能准确知晓,我们就可以建立一个那时的几何模型,再施加重力和边界条件进行计算,变形后形状和现状边坡形状一致,其内力也就是初始应力场或地应力,就不用专门去施加地应力了,但问题是我们不能知晓边坡受力前的形状尺寸,我们现在的几何模型就是边坡现在的实际尺寸,受力后将会变成一个更小的或与现状不一致的边坡,这不符合我们模拟现状边坡的目的。
如果我们知道现状边坡的内力,将其提取出来作为几何模型的内力,再和外力(重力)平衡,则我们建立的模型才能算和实际模型一致。
真实地知道现状边坡的内力是很难的,我们采取的办法是,用我们所建立的几何模型施加和实际模型一致的重力和边界条件进行计算,得到变形后或变得更小或与现状边坡不完全一致的边坡内力近似的作为现状边坡的内力,并重新将其施加于与现状边坡一致的几何模型,再施加重力(当然边界条件也应基本一致)以平衡,这样才算建立了与现状模型基本一致的模型,其下的计算才成为可能。
这就是所谓“地应力平衡”的含义、目的、作用。
2. 地应力平衡中的外力和内力的问题,地应力平衡中,显然,重力是外力,应力场是内力,仅有外力重力,没有内力是不可能的,同样,仅有内力(专指初始应力场)而不受重力也是不可能的,否则,整个体系的力不会平衡。
这就是为什么我们将提取出的内力施加于几何模型后必须再施加重力的原因。
为的是内力和外力平衡。
) q0 F3 q6 H1 O#3. 地应力场的方向问题,有网友在论坛里问,既然重力是向下,为与重力平衡,那应力场的方向是不是向上呢,这同样是我开始接触abaqus的疑问,相信很初学者也有这样的疑问,我的理解是内力是没有向上、向下或者向其它方向的概念的,内力只有拉力或压力或剪力之分,其方向也按是拉是压是顺时针或逆时针而分,内力往往都是成对出现,如地应力场中的应力以压应力为主,取一个微元,则压应力同时出现在向下和向上,你能说地应力就是向上,与重力反向吗?不怕各位笑话,以上几点在高手看来是很简单的问题,却是我经历了漫长而艰辛的摸索才得到的,今天也写给初学者,不要再走我的老弯路了。