数字电子技术基础 ch05-1
- 格式:ppt
- 大小:294.50 KB
- 文档页数:10
第五章部分习题解答5.2 (在“画出电路的状态转换图。
”后加:“作功能说明。
”)解:1.写方程式输出方程:y=A Q2n Q1n驱动方程:D1=AQ2nD2=AQ2n Q1n =A(Q2n+Q1n)状态方程:Q1n+1= D1=AQ2nQ2n+1= D2= A(Q2n+Q1n )2.列状态转换表,如右表所示;3.从状态转换表画出状态转换图,如右图所示;4.作功能说明:此电路是“1111…”序列检测器。
5.7四个CP作用后,A寄存器的状态:A3A2A1A0=1100 ;B寄存器的状态:B3B2B1B0=0000。
此电路是一个四位串行加法器(和不能超过四位)。
5.24(在原题后加:“用三片74LS194实现。
”)S1=高电平时,CP上升沿作用后,将“0010110111”存入三片74LS194内,S1=低电平后,在CP上升沿作用下,开始循环输出该序列。
5.4 (将图P5.4中的异或门改为同或门)解:1.写方程式输出方程:y=A Q2n Q1n A Q2n Q1n驱动方程:J1=K1=1J2=K2=A⊙Q1n状态方程:Q1n+1= J1Q1n+K1Q1n= Q1nQ2n+1= J2Q2n+K2Q2n= A⊙Q1n⊙Q2n2.依次设定初态,代入方程求出次态和输出,如上表所示;再整理成状态转换图,如上图所示;3.作功能说明:此电路是同步两位二进制加/减计数器。
A=0时作减计数;A=1时作加计数。
5.8S a=0011,S b=1001,S a→S b→S a计数循环共有7个状态,故此电路是七进制计数器。
5.11S b=1001;M=1:S a=0100,S a→S b→S a计数循环共有6个状态,故此电路是六进制计数器。
M=0:S a=0010,S a→S b→S a计数循环共有8个状态,故此电路是八进制计数器。
5.12S a=0000;A=1:LD=Q3Q1Q0,故S b=1011。
S a→S b→S a计数循环共有12个状态,故此电路是十二进制计数器。
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
附录C 部分习题参考答案C.1 第一章 概述 本章习题1.1 在一段连续的观察时间内,数字信号只有有限个时间点有意义,也只有有限个幅值;而模拟信号则在任意时间点都有意义,且在任意的幅值范围内都有无限种可能取值。
两种信号的区别在于时间和幅值方面模拟信号是连续的(时间和取值不可分割),而数字信号则是离散的。
C.2 第二章 数制与编码 本章习题2.1(1)(10000001)2;(2)(0.01101010)2;(3)(100101.0111)2;(4)(1010001.0110)2。
2.2(1)(123)10=(7B)16; (2)(0.171875)10=(0.2C)16; (3)(46.375)10=(2E.6)16;(4)(41.5625)10=(29.9)16。
2.3(1)16210FEED =1111111011101101=65261'''()()(); (2)162100.24=0.001001=0.140625'()()(); (3)16210A70.BC =101001110000.101111=2672.734375'''()()() (4)16210(10A.C)(1'0000'1010.11)(266.75)==2.4 (1)102(19)(00010011)(00010011)=(00010011)=(00010011)==原反补(2)2(0.125)(0.0010000)=(0.0010000)=(0.0010000)=原反补 (3)2(0.1101)(1.1101000)=(1.0010111)=(1.0011000)-=原反补(4)102(1.39)( 1.011001)(01.011001)=(01.011001)=(01.011001)=+=原反补2.6 (1)108421542124213(48)(01001000)(01001011)(01001110)(01111011)''''====余码 (2)108421542124213(34.15)(00110100.00010101)(00110100.00011000)(00110100.00011011)(01100111.01001000)''''==''''==余码(3)108421542124213(121.08)(000100100001.00001000)(000100100001.00001011)=(00010010000100001110)(010*********.00111011)''''''''==''''''''=余码(4)108421542124213(241.86)(001001000001.10000110)(001001000001.10111001)=(001001000001.11101100)(010*********.10111001)''''''==''''''=余码(5)1610842154213(5B.C)(91.75)(1001'0001.0111'0101) (1100'0001.1010'1000)(1100'0100.1010'1000)====余码(6)1610842154212421(2.B7)(2.71484375)(0010.01110001010010000100001101110101)(0010.10100001010010110100001110101000)=(0010.11010001010011100100001111011011)(0101.10100100011110'''''''=='''''''=''''''''''=3110111011010101000)''''余码(7) 8108421542124213(74.32)(60.40625)(01100000.01000000011000100101)(10010000.01000000100100101000)(11000000.01000000110000101011)(10010011.01110011100101011000)'''''=='''''='''''='''''=余码(8) 8108421542124213(101.1)(65.0125)(01100101.0000000100100101)(10011000.0000000100101000)(11001011.0000000100101011)(10011000.0011010001011000)''''==''''=''''=''''=余码本章自测 一、填空题1. 4321012222(11011.011)(1212021212021212)---=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 2.162105421(10A.C)(1'0000'1010.11)(266.75)=(001010011001.10101000)'''== 3.10216(74.5)(1001010.1)(4A.8)== 4.10A A 00= 5.16102(5B)(91)(1011011)(01011011)=(01011011)===原6.-75 二、选择题 1. D 2. B 3. C 4. D 三、分析题1. 对于表(a)所示BCD 码,设该编码是有权码,则由10BCD (1)(0010)=,10BCD (0)(0011)=,10BCD (6)(1000)=,以及10BCD (2)(0101)=,可以求得各位权值应为(6,3,1,1)-。
《数字电子技术》目录第1章数制与编码1.1 数字电路基础知识1.1.1 模拟信号与数字信号1.1.2 数字电路的特点1.2 数制1.2.1 十进制数1.2.2 二进制数1.2.3 八进制数1.2.4 十六进制数1.3 数制转换1.3.1 二进制数与八进制数的相互转换1.3.2 二进制数与十六进制数的相互转换1.3.3 十进制数与任意进制数的相互转换1.4 二进制编码1.4.1 加权二进制码1.4.2 不加权的二进制码1.4.3 字母数字码1.4.4 补码1.5带符号二进制数的加减运算1.5.1 加法运算1.5.2 减法运算第2章逻辑门2.1 基本逻辑门2.1.1 与门2.1.2 或门2.1.3 非门2.2 复合逻辑门2.2.1 与非门2.2.2 或非门2.2.3 异或门2.2.4 同或门2.3 其它逻辑门2.3.1 集电极开路逻辑门2.3.2 集电极开路逻辑门的应用2.3.3 三态逻辑门2.4 集成电路逻辑门2.4.1 概述2.4.2 TTL集成电路逻辑门2.4.3 CMOS集成电路逻辑门2.4.4 集成逻辑门的性能参数2.4.5 TTL与CMOS集成电路的接口*第3章逻辑代数基础3.1 概述3.1.1 逻辑函数的基本概念3.1.2 逻辑函数的表示方法3.2 逻辑代数的运算规则3.2.1 逻辑代数的基本定律3.2.2 逻辑代数的基本公式3.2.3 摩根定理3.2.4 逻辑代数的规则3.3 逻辑函数的代数化简法3.3.1 并项化简法3.3.2 吸收化简法3.3.3 配项化简法3.3.4 消去冗余项法3.4 逻辑函数的标准形式3.4.1 最小项与最大项3.4.2 标准与或表达式3.4.3 标准或与表达式3.4.4 两种标准形式的相互转换3.4.5 逻辑函数表达式与真值表的相互转换3.5 逻辑函数的卡诺图化简法3.5.1 卡诺图3.5.2 与或表达式的卡诺图表示3.5.3 与或表达式的卡诺图化简3.5.4 或与表达式的卡诺图化简3.5.5 含无关项逻辑函数的卡诺图化简3.5.6 多输出逻辑函数的化简*第4章组合逻辑电路4.1 组合逻辑电路的分析4.1.1 组合逻辑电路的定义4.1.2 组合逻辑电路的分析步骤4.1.3 组合逻辑电路的分析举例4.2 组合逻辑电路的设计4.2.1 组合逻辑电路的一般设计步骤4.2.2 组合逻辑电路的设计举例4.3 编码器4.3.1 编码器的概念4.3.2 二进制编码器4.3.3 二-十进制编码器4.3.4 编码器应用举例4.4 译码器4.4.1 译码器的概念4.4.2 二进制译码器4.4.3 二-十进制译码器4.4.4 用译码器实现逻辑函数4.4.5 显示译码器4.4.6 译码器应用举例4.5 数据选择器与数据分配器4.5.1 数据选择器4.5.2 用数据选择器实现逻辑函数4.5.3 数据分配器4.5.4 数据选择器应用举例4.6 加法器4.6.1 半加器4.6.2 全加器4.6.3 多位加法器4.6.4 加法器应用举例4.6.5 加法器构成减法运算电路*4.7 比较器4.7.1 1位数值比较器4.7.2 集成数值比较器4.7.3 集成数值比较器应用举例4.8 码组转换电路4.8.1 BCD码之间的相互转换4.8.2 BCD码与二进制码之间的相互转换4.8.3 格雷码与二进制码之间的相互转换4.9 组合逻辑电路的竞争与冒险4.9.1 冒险现象的识别4.9.2 消除冒险现象的方法第5章触发器5.1 RS触发器5.1.1 基本RS触发器5.1.2 钟控RS触发器5.1.3 RS触发器应用举例5.2 D触发器5.2.1 电平触发D触发器5.2.2 边沿D触发器5.3 JK触发器5.3.1 主从JK触发器5.3.2 边沿JK触发器5.4 不同类型触发器的相互转换5.4.1 概述5.4.2 D触发器转换为JK、T和T'触发器5.4.3 JK触发器转换为D触发器第6章寄存器与计数器6.1 寄存器与移位寄存器6.1.1 寄存器6.1.2 移位寄存器6.1.3移位寄存器应用举例6.2 异步N进制计数器6.2.1 异步n位二进制计数器6.2.2 异步非二进制计数器6.3 同步N进制计数器6.3.1 同步n位二进制计数器6.3.2 同步非二进制计数器6.4 集成计数器6.4.1 集成同步二进制计数器6.4.2 集成同步非二进制计数器6.4.3 集成异步二进制计数器6.4.4 集成异步非二进制计数器6.4.5 集成计数器的扩展6.4.6 集成计数器应用举例第7章时序逻辑电路的分析与设计7.1 概述7.1.1 时序逻辑电路的定义7.1.2 时序逻辑电路的结构7.1.3 时序逻辑电路的分类7.2 时序逻辑电路的分析7.2.1时序逻辑电路的分析步骤7.2.2 同步时序逻辑电路分析举例7.2.3 异步时序逻辑电路分析举例7.3 同步时序逻辑电路的设计7.3.1 同步时序逻辑电路的基本设计步骤7.3.2 同步时序逻辑电路设计举例第8章存储器与可编程器件8.1 存储器概述8.1.1 存储器的分类8.1.2 存储器的相关概念8.1.3 存储器的性能指标8.2 RAM8.2.1 RAM分类与结构8.2.2 SRAM8.2.3 DRAM8.3 ROM8.3.1 ROM分类与结构8.3.2 掩膜ROM8.3.3 可编程ROM8.3.4 可编程ROM的应用8.4 快闪存储器(Flash Memory)8.4.1 快闪存储器的电路结构8.4.2 闪存与其它存储器的比较8.5 存储器的扩展8.5.1 存储器的位扩展法8.5.2 存储器的字扩展法8.6 可编程阵列逻辑8.6.1 PAL的电路结构8.6.2 PAL器件举例8.6.3 PAL器件的应用8.7 通用阵列逻辑8.7.1 GAL的性能特点8.7.2 GAL的电路结构8.7.3 OLMC8.7.4 GAL器件的编程与开发8.8 CPLD、FPGA和在系统编程技术8.8.1 数字可编程器件的发展概况8.8.2数字可编程器件的编程语言8.8.3数字可编程器件的应用实例第9章D/A转换器和A/D转换器9.1 概述9.2 D/A转换器9.2.1 D/A转换器的电路结构9.2.2 二进制权电阻网络D/A转换器9.2.3 倒T型电阻网络D/A转换器9.2.4 D/A转换器的主要技术参数9.2.5 集成D/A转换器及应用举例9.3 A/D转换器9.3.1 A/D转换的一般步骤9.3.2 A/D转换器的种类9.3.3 A/D转换器的主要技术参数9.3.4 集成A/D转换器及应用举例第10章脉冲波形的产生与整形电路10.1 概述10.2 多谐振荡器10.2.1 门电路构成的多谐振荡器10.2.2 采用石英晶体的多谐振荡器10.3 单稳态触发器10.3.1 门电路构成的单稳态触发器10.3.2 集成单稳态触发器10.3.3 单稳态触发器的应用10.4 施密特触发器10.4.1 概述10.4.2 施密特触发器的应用10.5 555定时器及其应用10.5.1 电路组成及工作原理10.5.2 555定时器构成施密特触发器10.5.3 555定时器构成单稳态触发器10.5.4 555定时器构成多谐振荡器第11章数字集成电路简介11.1 TTL门电路11.1.1 TTL与非门电路11.1.2 TTL或非门电路11.1.3 TTL与或非门电路11.1.4 集电极开路门电路与三态门电路11.1.5 肖特基TTL与非门电路11.2 CMOS门电路11.2.1 概述11.2.2 CMOS非门电路11.2.3 CMOS与非门电路11.2.4 CMOS或非门电路11.2.5 CMOS门电路的构成规则11.3 数字集成电路的使用。
《数字电子技术基础(第5版)》是2006年高等教育出版社出版的图书,作者是阎石、清华大学电子学教研组。
本书是普通高等教育“十五”国家级规划教材。
本书以前各版曾分别获得北京市教育教学成果一等奖、国家教委优秀教材一等奖、国家级优秀教材奖。
新版教材是在基本保持第四版教材内容、理论体系和风格的基础上,按照教育部2004年修订的“数字电子技术基础课程教学基本要求”修订而成的。
本次修订除改写了部分章节外,还增加了硬件描述语言和EDA软件应用的基础知识。
此外,还在多数小节后面增设了复习思考题。
为了便于教学,也为了便于读者今后阅读外文教材和使用外文版的EDA软件,书中采用了国际上流行的图形逻辑符号。
全书主要内容有:数制和码制、逻辑代数基础、门电路、组合逻辑电路、触发器、时序逻辑电路、半导体存储器、可编程逻辑器件、硬件描述语言、脉冲波形的产生和整形、数-模和模-数转换等共11章。
本书可作为电气信息类、仪器仪表类各专业的教科书,也可供其他相关理工科专业选用以及社会选者阅读。
阎石,清华大学教授、全国高等学校电子技术研究会理事长。
1937年生人。
1958年毕业于清华大学自动控制系,其后一直在清华大学从事电子技术的教学与科研工作。
曾任国家教委工科本科基础课程教学指导委员会第一、二届委员,华北地区高等学校电子技术教学研究会理事长。
1989年与童诗白教授等一起获得普通高等学校优
秀教学成果国家级特等奖。
主编的《数字电子技术基础》第二版获国家教委优秀教材一等奖,第三版获国家优秀教材奖,第四版获北京市教育教学成果一等奖。