第2章 数据的整理与展示
- 格式:pdf
- 大小:1.86 MB
- 文档页数:64
第二节统计整理一、统计整理的概念和意义统计整理是指根据统计研究的目的和任务,对统计调查或科学实验获得的大量原始资料进行科学的分类、汇总,或对已经加工过的资料进行再加工,使之成为系统化、条理化、标准化的能反映总体特征的综合统计资料的工作过程。
通过统计调查或实验,我们取得了大量的原始资料,但这些原始资料一般是分散的、不系统的个体资料。
它们只能说明总体各单位的具体情况,而不能说明总体特征,难以反映总体的全貌情况。
用这样的资料,无法从总体上认识和研究社会经济现象的数量表现,无法揭示社会经济现象发展变化的本质和规律。
因此,必须对这些分散的、不系统的个体资料采用科学的方法进行加工、整理、汇总,使之成为系统化、条理化、标准化的能反映总体特征的综合统计资料,并以此计算各种反映总体特征的综合指标,认识社会经济现象的总体特征和全貌,认识、分析社会经济现象的本质和发展变化规律。
可见,统计整理不是单纯的数据汇总,而是运用科学的方法,对调查资料进行分类和综合,从感性认识上升到理性认识。
它是从对社会经济现象个体量的认识到社会经济现象总体量的认识的连接点,是统计调查的继续,是统计显示与分析的前提和基础,在整个统计工作中起着承前启后的作用。
统计数据整理的质量,直接影响着统计工作的成果。
二、统计整理的内容统计整理的内容,主要包括以下几个方面:(1)对原始资料进行审核与检查,如果发现被调查单位的资料不齐全或有差错,要及时查询订正。
(2)对各项指标进行综合汇总,并按调查和分析目的的要求进行各种分组,汇总出各组单位数和各项指标的总数。
(3)将汇总的结果编制成统计表与统计图,以便进一步分析和应用。
三、统计整理的方法与步骤(一)统计分组统计分组是根据研究的任务和对象的特点,按照某种分组标志将统计总体分为若干组成部分。
理解统计分组的概念要注意三点:(1)统计分组的对象是总体。
(2)统计分组应有分组标志。
(3)统计分组对总体而言是“分”,对总体单位而言是“合”。
《数据收集整理》教案设计范文第一章:数据收集与整理概述1.1 数据收集的意义与目的解释数据收集在学习和生活中的重要性探讨数据收集的方法和途径1.2 数据整理的基本概念介绍数据整理的定义和作用解释数据分类、排序和筛选的方法第二章:数据收集的方法与技巧2.1 问卷调查法介绍问卷调查的步骤和注意事项分析问卷设计的原则和方法2.2 观察法探讨观察法的优点和局限性讲解观察法的实施技巧第三章:数据整理与分析3.1 数据清洗解释数据清洗的重要性介绍数据清洗的方法和工具3.2 数据整理与展示讲解数据整理的步骤和技巧探讨数据可视化的方法和工具第四章:数据分析方法与应用4.1 描述性统计分析解释描述性统计分析的概念和作用介绍描述性统计分析的方法和工具4.2 推断性统计分析探讨推断性统计分析的方法和步骤分析推断性统计分析在实际应用中的意义第五章:数据收集整理的综合案例5.1 案例介绍提供一个实际的数据收集整理案例分析案例中的数据收集整理方法和过程5.2 案例分析与讨论引导学生进行案例分析和讨论探讨如何从案例中吸取经验和教训第六章:使用计算机软件进行数据整理6.1 数据整理软件介绍介绍常用的数据整理软件(如Excel、Google Sheets等)解释这些软件在数据整理中的作用和功能6.2 数据整理软件的操作技巧讲解数据导入、数据清洗、数据排序等基本操作探讨如何利用软件进行高级数据整理和分析7.1 数据可视化基本概念解释数据可视化的意义和目的介绍常用的数据可视化工具(如Tableau、Power BI等)讲解数据报告的结构和要素第八章:数据隐私与伦理8.1 数据隐私的基本概念解释数据隐私的重要性介绍保护数据隐私的方法和措施8.2 数据伦理considerations探讨数据伦理在数据收集整理中的重要性分析数据伦理在实际应用中的案例和问题第九章:数据收集整理的实践项目9.1 项目设计提供数据收集整理的实际项目案例分析项目的目标、方法和步骤9.2 项目实施与评估引导学生进行项目实施和评估探讨如何从项目中吸取经验和教训第十章:总结与展望10.1 课程总结回顾整个数据收集整理教案的要点和内容强调数据收集整理在学习和生活中的重要性10.2 展望未来探讨数据收集整理的发展趋势和未来方向引导学生对未来数据收集整理的思考和规划重点和难点解析重点环节1:数据收集的意义与目的数据收集是整个教案的核心部分,需要重点关注。
商务数据分析与应用教案第一章:商务数据分析概述1.1 商务数据分析的定义与重要性解释商务数据分析的概念强调商务数据分析在企业运营中的重要性引发学生对商务数据分析的兴趣和热情1.2 商务数据分析的基本流程介绍商务数据分析的基本流程,包括数据收集、数据整理、数据分析和数据解释等步骤解释每个步骤的目的和意义引导学生了解商务数据分析的操作流程和方法1.3 商务数据分析的方法和技术介绍常用的商务数据分析方法,如描述性分析、因果分析、预测分析和优化分析等介绍常用的商务数据分析技术,如统计学、机器学习和数据挖掘等引导学生了解不同的商务数据分析方法和技术,并选择合适的工具进行数据分析第二章:数据整理与展示2.1 数据整理的基本概念解释数据整理的概念和重要性介绍数据整理的基本步骤,包括数据清洗、数据转换和数据整合等引导学生了解数据整理的操作流程和方法2.2 数据整理的工具和技术介绍常用的数据整理工具和技术,如Excel、Python和R等介绍数据整理的技术,如数据清洗、数据转换和数据整合等引导学生了解不同的数据整理工具和技术,并选择合适的工具进行数据整理2.3 数据展示的基本概念解释数据展示的概念和重要性介绍数据展示的基本方法,如图表、可视化和报告等引导学生了解数据展示的操作流程和方法第三章:描述性分析3.1 描述性分析的定义与目的解释描述性分析的概念和目的强调描述性分析在商务数据分析中的重要性引发学生对描述性分析的兴趣和热情3.2 描述性统计分析方法介绍常用的描述性统计分析方法,如均值、中位数、众数、标准差、方差分析等解释每个方法的含义和应用场景引导学生了解不同的描述性统计分析方法,并选择合适的方法进行数据分析3.3 数据可视化与展示强调数据可视化在描述性分析中的重要性介绍常用的数据可视化工具和技术,如图表、柱状图、折线图、饼图等引导学生了解不同的数据可视化工具和技术,并选择合适的工具进行数据展示第四章:商务数据分析案例研究4.1 商务数据分析案例的选择与分析目标解释商务数据分析案例的选择原则和重要性介绍商务数据分析案例研究的基本流程,包括案例选择、数据收集、数据整理和数据分析等步骤引导学生了解商务数据分析案例研究的操作流程和方法4.2 商务数据分析案例的深入分析分析案例中的商务数据,包括描述性分析、因果分析和预测分析等解释分析结果的含义和启示引导学生了解商务数据分析的方法和技术,并运用到实际案例中介绍商务数据分析案例报告的基本结构和内容强调报告的可读性和清晰性第五章:因果分析5.1 因果分析的概念与重要性解释因果分析的概念和重要性强调因果分析在商务数据分析中的作用引发学生对因果分析的兴趣和热情5.2 回归分析方法介绍常用的回归分析方法,如线性回归、多元回归和逻辑回归等解释每个方法的含义和应用场景引导学生了解不同的回归分析方法,并选择合适的方法进行数据分析5.3 因果分析的应用案例通过案例分析,展示因果分析在商务决策中的应用解释案例中的因果关系和分析结果引导学生了解如何将因果分析应用到实际商务场景中第六章:预测分析6.1 预测分析的定义与目的解释预测分析的概念和目的强调预测分析在商务数据分析中的重要性引发学生对预测分析的兴趣和热情6.2 时间序列分析方法介绍常用的时间序列分析方法,如ARIMA、季节性分解和趋势分析等解释每个方法的含义和应用场景引导学生了解不同的时间序列分析方法,并选择合适的方法进行数据分析6.3 预测分析的应用案例通过案例分析,展示预测分析在商务决策中的应用解释案例中的预测结果和分析意义引导学生了解如何将预测分析应用到实际商务场景中第七章:优化分析7.1 优化分析的概念与目的解释优化分析的概念和目的强调优化分析在商务数据分析中的重要性引发学生对优化分析的兴趣和热情7.2 线性规划与网络优化介绍线性规划和技术,如最大收益问题和资源分配问题介绍网络优化技术,如最短路径问题和最大流问题引导学生了解不同的优化分析方法,并选择合适的方法进行数据分析7.3 优化分析的应用案例通过案例分析,展示优化分析在商务决策中的应用解释案例中的优化结果和分析意义引导学生了解如何将优化分析应用到实际商务场景中8.1 商务数据分析报告的结构与内容介绍商务数据分析报告的基本结构和内容强调报告的可读性和清晰性8.2 数据可视化与报告呈现强调数据可视化在报告呈现中的重要性介绍常用的数据可视化工具和技术,如图表、柱状图、折线图、饼图等引导学生了解不同的数据可视化工具和技术,并选择合适的工具进行报告呈现强调报告的逻辑性和条理性第九章:商务数据分析项目管理与团队协作9.1 商务数据分析项目管理的重要性解释商务数据分析项目管理的概念和重要性强调项目管理在商务数据分析中的作用引发学生对商务数据分析项目管理的兴趣和热情9.2 项目管理的基本流程与工具介绍项目管理的基本流程,如项目规划、项目执行和项目监控等介绍常用的项目管理工具,如Gantt图、敏捷看板和项目管理软件等引导学生了解不同的项目管理流程和工具,并选择合适的工具进行项目管理9.3 团队协作与沟通技巧强调团队协作在商务数据分析项目中的重要性介绍有效的团队协作和沟通技巧引导学生了解如何在团队中进行有效的协作和沟通第十章:商务数据分析的未来趋势与挑战10.1 商务数据分析的未来趋势探讨商务数据分析的未来发展趋势,如大数据分析、和物联网等强调学生了解商务数据分析的最新动态和发展方向引发学生对商务数据分析未来趋势的兴趣和热情10.2 商务数据分析的挑战与应对策略讨论商务数据分析面临的挑战,如数据质量、数据隐私和技术更新等介绍应对这些挑战的策略和方法引导学生了解如何应对商务数据分析中的挑战,并持续改进数据分析能力10.3 职业发展指导与建议提供商务数据分析领域的职业发展指导和建议强调学生提升数据分析能力和持续学习的重要性引导学生了解如何在商务数据分析领域取得成功并实现职业发展重点和难点解析重点环节1:商务数据分析的定义与重要性需要重点关注的概念是商务数据分析的定义和其在企业运营中的重要性。
统计学知识点(前四章)第1章导论1.统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2.按数据分析方法分类:↗描述统计—数据收集、处理、汇总、图表描述↘推断统计—利用样本数据推断总体特征3.统计数据是对现象进行测量的结果。
4.按照计量尺度的不同,将统计数据分为分类数据、顺序数据和数值型数据。
1)分类数据:对事物分类的结果,用文字表述,数据表现为类别(男女);2)顺序数据:有序的类别,如,一等品二等品、小学初中高中、同意;3)数值型数据:按数字尺度测量的观察值,具体的数值。
5.数据的计量尺度:1)定/分类尺度:数据表现为类别,按照事物的属性平行的分类,计量层次最低,具有“=”或“≠”的数学特性;2)定/顺序尺度:数据表现为有序的类别,具有“>”或“<”的数学特性;3)定距/间隔尺度:数据表现为数字,没有绝对零点;4)定比/比率尺度:数据表现为数字,有绝对零点。
3、4统称数值型数据。
6.定性/品质数据:分类数据和顺序数据统称。
定量/数量数据:数值型数据。
7.按照数据的收集方法:观测数据和实验数据。
按时间状况:截面数据和时间序列数据。
(统计数据的分类)8.总体:是包含所研究的全部个体(数据)的集合。
组成总体的每个元素成为个体。
按包含数目是否可数,分为有限总体和无限总体。
9.样本:是从总体中抽取的一部分元素的集合。
构成样本的元素的数目成为样本量。
抽样的目的是为了根据样本提供的信息推断总体的特征。
10.参数:是用来描述总体特征的概括性数字度量。
是研究者想要了解的总体的某种特征值,如,总体平均数μ、总体标准差σ。
11.统计量:是用来描述样本特征的概括性数字度量。
是根据样本数据计算出来的量,如,样本平均数χ 、样本标准差s。
12.变量:是说明现象某种特征的概念。
如,商品销售额、受教育程度。
变量的具体值称为变量值,比如商品的销售额可以是20万、30万。
13.变量的分类——分类变量:性别、行业;顺序变量:产品等级、受教育程度;数值型变量:↗离散型变量:产品数量、企业数(取值以整数位断开)↘连续性变量:年龄、温度、零件尺寸(取值连续不断)随机变量和非随机变量,经验变量和理论变量第2章数据的搜集1.数据的来源:间接来源和直接来源2.间接来源的数据:对原信息重新加工、整理,数据可以取自系统外部或内部。
《统计学原理》教案第一章:统计学概述1.1 统计学的定义解释统计学是研究数据收集、分析、解释和展示的科学。
强调统计学在决策和科学研究中的重要性。
1.2 统计学的应用领域介绍统计学在各个领域的应用,如经济学、生物学、医学、社会科学等。
引导学生思考统计学在解决实际问题中的作用。
1.3 统计学的基本概念介绍数据、样本、总体、变量等基本概念。
解释定量变量和定性变量的区别。
第二章:数据的收集与整理2.1 数据的收集方法介绍调查问卷、实验设计、观察法等数据收集方法。
强调数据收集过程中应考虑的伦理和有效性问题。
2.2 数据的整理与描述介绍数据的整理过程,包括数据清洗、数据排序等。
介绍频数、频率、图表等数据描述方法。
2.3 数据的可视化介绍条形图、折线图、饼图等数据可视化方法。
强调数据可视化在数据理解和交流中的重要性。
第三章:概率与随机变量3.1 概率的基本概念介绍事件的概率、条件概率、独立事件等概念。
解释概率的计算方法和概率论的基本原理。
3.2 随机变量的定义与分类介绍随机变量的概念,包括离散随机变量和连续随机变量。
解释随机变量的期望、方差等统计特性。
3.3 概率分布与概率质量函数介绍概率分布的概念,包括二项分布、正态分布等。
解释概率质量函数的定义和作用。
第四章:统计推断与假设检验4.1 统计推断的基本概念介绍统计推断的目的是根据样本数据推断总体特性。
解释点估计、置信区间、假设检验等概念。
4.2 假设检验的方法与步骤介绍常见的假设检验方法,如t检验、卡方检验、F检验等。
解释假设检验的步骤,包括设定假设、计算统计量、判断结论等。
4.3 置信区间的估计与推断介绍置信区间的概念和计算方法。
强调置信区间在统计推断中的作用和限制。
第五章:回归分析与相关分析5.1 回归分析的基本概念介绍回归分析的目的是研究两个或多个变量之间的关系。
解释线性回归、多元回归等概念。
5.2 线性回归模型的建立与评估介绍线性回归模型的建立过程,包括模型选择、参数估计等。
统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。
(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
(1)分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。
(2)顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。
(3)数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
三、比较总体、样本、参数、统计量和变量:(1)总体是包含所研究的全部个体的集合。
通常是我们所关心的一些个体组成,如由多个企业所构成的集合,多个居民户所构成的集合。