第一章建立数学模型
- 格式:ppt
- 大小:561.00 KB
- 文档页数:1
《数学建模(公选)》课程教学大纲一、课程基本信息课程代码:12130541课程英文名称: Mathematical Modelling课程面向专业:理工类专业课程类型:选修课先修课程:高等数学、线性代数、概率论与数理统计学分:2.5总学时:48 (其中理论学时:48 ;实验学时:0)二、课程性质与目的本课程主要介绍用数学知识解决实际问题的手段——建立数学模型。
通过教学,使学生掌握数学模型的基本知识;培养学生认识问题,用数学模型和计算机分析解决实际问题的初步能力;增强学生学习数学的兴趣和自学的能力,了解数学的一些应用分支的理论,会建立相应的简单模型,并能对模型进行分析。
三、课程教学内容与要求第一章建立数学模型1、教学内容与要求主要内容:学习数学建模课程的意义;数学模型的定义及分类;建立数学模型的方法及步骤;数学建模示例。
基本要求:了解数学模型的意义及分类,理解建立数学模型的方法及步骤。
2、教学重点:数学建模的基本方法和步骤。
3、教学难点:数学建模初步能力的培养。
第二章初等模型1、教学内容与要求主要内容:比例方法建模;类比方法建模;定性分析方法建模;量纲分析方法建模;初等模型举例。
基本要求:掌握比例方法,类比方法,定性分析方法及量纲分析方法建模的基本特点。
能运用所学知识建立数学模型,并对模型进行综合分析。
2、教学重点:比例方法建模,类比方法建模。
3、教学难点:量纲分析法建模第三章简单的优化模型1、教学内容与要求主要内容:存贮模型;生猪的出售时机;森林救火;冰山运输;量纲分析法基本要求:理解优化模型的一般意义,能运用高等数学的知识解决简单的优化模型。
掌握较简单的优化模型的建立和解法。
2、教学重点:比例方法建模,类比方法建模3、教学难点:量纲分析法建模第四章数学规划模型1、教学内容与要求主要内容:奶制品的生产与销售;自来水输送与货机装运;汽车生产与原油采购;接力队的选拔与选课策略;饮料厂的生产与检修;钢管和易拉罐下料基本要求:理解线性规划、整数规划模型和非线性规划模型的基本特点,能熟练利用数学软件进行数学规划模型的求解与灵敏度分析。
数学建模第一章 习题1.举出两三个实例说明建立数学模型的必要性。
包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型等。
2.怎样解决下面的实际问题。
包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等]21[。
①估计一个人体内血液的总量。
②为保险公司制定人寿保险金计划(不同年龄的人应缴纳的金额和公司赔偿的金额)。
③估计一批日光灯管的寿命。
④确定火箭发射至最高点所需的时间。
⑤决定十字路口黄灯亮的时间长度。
3.在1.2节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
4.模仿1.3节商人过河问题中的状态转移模型作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一安全过河方案,并使渡河次数尽量地少。
5.1650年世界人口为5亿,当时的年增长率为0003。
用指数增长模型计算什么时候世界人口达到10亿(实际上1850年前已超过10亿)。
1970年世界人口为36亿,年增长率为21000。
用指数增长模型预测什么时候世界人口会翻一番(这个结果可信吗)。
你对用两样的模型得到的两结果有什么看法。
6.利用 1.4节表1-1给出的1790~1980年的美国实际人口资料建立下列模型:①分段的指数增长模型。
譬如按时间分三段,分别确定增长率r 。
②阻滞增长模型。
重新确定固有增长率r 和最大容量m x 。
7.假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t t ∆+时间内人口的增量与m x )(t x -成正比(其中m x 为最大容量)。
试建立模型并求解。
作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。
8.为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考。
试尽可能迅速地回答下面的问题:①某甲早8时从山下旅店出发沿一条路径上山,下午5时到达山顶并留宿。
《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。
数学建模课教案数学建模的基本步骤与方法一、教学内容本节课我们将学习《数学建模》的第一章“数学建模的基本步骤与方法”。
具体内容包括数学模型的构建、数学模型的求解、数学模型的检验和优化等。
二、教学目标1. 理解数学建模的基本概念,掌握数学建模的基本步骤。
2. 学会运用数学方法解决实际问题,培养解决问题的能力。
3. 培养学生的团队协作能力和创新精神。
三、教学难点与重点教学难点:数学模型的构建和求解。
教学重点:数学建模的基本步骤及方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:数学建模教材、计算器、草稿纸。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的数学问题,激发学生的兴趣,引入数学建模的概念。
2. 理论讲解(15分钟)讲解数学建模的基本步骤:问题分析、模型假设、模型建立、模型求解、模型检验和优化。
3. 例题讲解(20分钟)以一个简单的实际问题为例,带领学生逐步完成数学建模的过程。
4. 随堂练习(15分钟)学生分组讨论,针对给定的问题,完成数学建模的练习。
5. 小组展示与讨论(15分钟)6. 知识巩固(10分钟)六、板书设计1. 数学建模的基本步骤1.1 问题分析1.2 模型假设1.3 模型建立1.4 模型求解1.5 模型检验和优化2. 例题及解答七、作业设计1.1 问题:某城市现有两个供水厂,如何合理调配水源,使得居民用水成本最低?1.2 作业要求:列出模型的假设、建立模型、求解模型并检验。
2. 答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对数学建模的基本步骤和方法掌握程度如何?哪些环节需要加强?2. 拓展延伸:引导学生关注社会热点问题,尝试用数学建模的方法解决实际问题。
重点和难点解析1. 实践情景引入2. 例题讲解3. 教学难点:数学模型的构建和求解4. 作业设计一、实践情景引入情景:某城市准备举办一场盛大的音乐会,门票分为三个档次:VIP、一等座和二等座。
第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。
例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。
表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。
由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。
若用z表达利润,这时z=2x1+3x2。
综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。
已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。
假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。
又设该制冰厂每年第3季度末对贮冰库进行清库维修。
问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。
按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。
,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。
第一章 线性规划模型线性规划(Linear Programming )是数学规划的一个重要组成部分,是最优化与运筹学理论中的一个重要分支和常用的方法,是最优化理论的基础性内容。
第一节 线性规划问题及其数学模型一、问题的提出在生产管理和经营活动中经常提出一类问题,即如何利用有限的人力、物力、财力等资源,以便得到最好的经济效果。
例1 生产计划问题某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A 、B 两种原材料的消耗以及每件产品可获得的利润如下表所示。
问应如何安排生产计划使该工厂获利最多?解:设12,x x 分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。
由于资源的限制,所以有:机器设备的限制条件: 1228x x +≤原材料A 的限制条件: 1416x ≤(称为资源约束条件) 原材料B 的限制条件: 2412x ≤同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有120,0x x ≥≥(称为变量的非负约束)。
显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。
而工厂的目标是在不超过所有资源限量的条件下,如何确定产量12,x x 以得到最大的利润,即使目标函数1223z x x =+的值达到最大。
综上所述,该生产计划安排问题可用以下数学模型表示:例2 运输问题某公司经销某种产品,三个产地和四个销地的产量、销量、单位运价如下表所示。
问在保证产销平衡的条解:(1)决策变量:设(1,2,3;1,2,3,4)ij x i j ==为从产地i 运到销地j 的运量(2)目标函数:总运费最小3411min ij iji j z c x===∑∑(3)约束条件: 产量约束 销量约束 非负约束 模型为:二、线性规划问题的模型上述几例所提出的问题,可归结为在变量满足线性约束条件下,求使线性目标函数值最大或最小的问题。
它们具有以下共同的特征。
(1)每个问题都可用一组决策变量12(,,,)n x x x 表示某一方案,其具体的值就代表一个具体方案。
《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。
通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。
通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。
并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。
【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。
第二节数学建模的重要意义基本要求:了解数学建模的重要性。
第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。
第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。
第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。
第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。
第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。
第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。
难点:建立模型的过程。
第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。
第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。
第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。
1数学建模概述⏹ 数学模型 ⏹ 数学建模过程 ⏹ 数学建模示例⏹ 建立数学模型的方法和步骤 ⏹数学模型的分类1数学模型模型:是我们对所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质,模拟不一定是对实体的一种仿造,也可以是对某些基本属性的抽象。
直观模型: 实物模型,主要追求外观上的逼真。
物理模型:为一定目的根据相似原理构造的模型,不仅可以显示原型的外形或某些特征,而且可以进行模拟试验,间接地研究原型的某些规律。
思维模型,符号模型,数学模型 数学模型:1)近藤次郎(日)的定义:数学模型是将现象的特征或本质给以数学表述的数学关系式。
它是模型的一种。
2)本德(美)的定义:数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的简化的数学结构。
3)姜启源(中)的定义:是指对于现实世界的某一特定对象,为了某个特定的目的,做出一些必要的简化和假设,运用 适当的数学工具得到一个数学结构。
数学结构:是指数学符号、数学关系式、数学命题、图形图表等,这些基于数学思想与方法的数学问题。
总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形图表等来刻画客观事物的本质属性与其内在联系。
古希腊时期:“数理是宇宙的基本原理”。
文艺复兴时期:应用数学来阐明现象“进行尝试”。
微积分法的产生,使得数学与世界密切联系起来,用公式、图表、符号反映客观世界越来越广泛,越来越精确。
费马(P.Fermal 1601-1665)用变分法表示“光沿着所需时间最短的路径前进”。
牛顿(Newton 1642-1727)将力学法则用单纯的数学式表达,如,牛顿第二定律:结合开普勒三定律得出万有引力定律航行问题:甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各多少?用y x ,分别代表船速、水速,可以列出方程解方程组,得221r m m G F =ma F =⎩⎨⎧=⋅-=⋅+75050)(75030)(y x y x 小时)(千米小时)(千米/5/20==y x答:船速、水速分别为20千米/小时、5千米小时。
数学建模教学大纲【课程编码】 JSZB0240【适用专业】 信息与计算科学【课 时】 78【学 分】 4【课程性质、目标和要求】数学建模是信息与计算科学专业的一专业课。
它是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
本课程主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型、图论模型、线性规划模型等模型的基本建模方法及求解方法.数学建模是继本科生高等数学、工程数学之后为了进一步提高运用数学知识解决实际问题的基本技能,培育和训练综合能力所开设的一门新学科。
通过具体实例的引入使学生掌握数学建模基本思想、基本方法、基本类型,学会进行科学研究的一般过程,并能进入一个实际操作的状态。
通过数学模型有关概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力,综合分析能力;培养学生应用数学方法解决实际问题的能力。
【教学时间安排】本课程计4学分,78学时(理论学时54,实验学时24) 学时分配如下:序号课程内容课时备注(教学形式)1建立数学模型4课堂讲授 作业 辅导2初等模型4课堂讲授 作业 辅导3简单的优化模型4课堂讲授 作业 辅导4数学规划模型8课堂讲授 作业 辅导5微分方程模型6课堂讲授 作业 辅导6差分方程模型4课堂讲授 作业辅导7离散模型6课堂讲授 作业 辅导8概率统计模型8课堂讲授 作业 辅导9动态优化模型6课堂讲授 作业 辅导10大作业讲评:露天矿生产的车辆安排4课堂讲授 课堂讨论11实验1:LINDO软件的使用方法4上机练习 12实验2:LINGO软件的使用方法4上机练习13实验3:用LINDO/LINGO软件包求解部分优化建模赛题4上机练习14实验4:用Matlab进行统计回归分析4上机练习15实验5:用Matlab作散点插值4上机练习16实验6:用Matlab作数据拟合4上机练习合 计78【教学内容要点】第一章 建立数学模型一、学习目的要求 使学生正确了解数学描述和数学建模不同于常规数学理论的思维特征,了解数学模型的意义及分类,掌握建立数学模型的一般方法及步骤。
数学建模综合练习第一章数学建模方法论1.举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型.2.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等.(1)估计一个人体内血液的总量.(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额).(3)估计一批日光灯管的寿命.(4)确定火箭发射至最高点所需的时间.(5)决定十字路口黄灯亮的时间长度.(6)为汽车租赁公司制订车辆维修、更新和出租计划.(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划3.下面是众所周知的智力游戏:人带猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米.试设计一个安全过河方案,并使渡河次数尽量地少.4.假定人口的增长服从这样的规律:时间t的人口为x (t),t到t+∆t时间内人口的增长与x m- x(t)成正比(其中x m为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.5.为了培养想象力、洞察力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考,试尽可能迅速地回答下列的问题:(1)某甲早8:00从山下旅馆出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅馆.某乙说,甲必在2天中的同一时刻经过路径中的同一地点.为什么?(2)甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同,甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(3)某人住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家.一日他提前下班搭乘早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前往,在半路上遇到他,即接他回家,此时发现比往常提前10分钟.问他步行了多长时间.6.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g装的每支1.50元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c与商品重量w的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素.(2)给出单位重量价格c与w加c减小的程度变小.解释实际意义是什么?7.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角α应多大(如图1).若知道管道长度,需用多长布条(可考虑两端的影响).如果管道是其它形状呢?8.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,k >r .在每一生产周期T 内,开始的一段时间(0<t <T 0)一边生产一边销售,后来的一段时间(T 0<t <T )只销售不生产,画出贮存量)(t q 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期.讨论k 》r 和k ≈ r 的情况.第二章 初等数学模型1.在2.5节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.2.设某产品的售价为p ,成本为q ,售量为x (与产量相等),则总收入与总支出分别为px I =,qx C =.试在产销平衡的情况下建立最优价格模型.3.在最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型.4.在考虑最优价格模型问题时,设销售期为T ,由于商品的损耗,成本q 随时间增长,设q =q 0 +βt ,β为增长率.又设单位时间的销售量为x = a – bp (p 为价格).今将销售期分为0< t <T /2和T /2< t <T 两段,每段的价格固定,记作p 1,p 2.求p 1,p 2的最优值,使销售期内的总利润最大.如果要求销售期T 内的总销售量为Q 0,再求p 1,p 2的最优值.第三章 微分方程模型1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的.(2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用.2.建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与v ,h ,α的关系式,并求v ,h 一定的条件下求最佳出手角度.3.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNrx t xln )(= ,其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度E m 和渔场鱼量水平x *0.4.在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象.第四章 运筹学模型1.一家保姆公司专门向顾主提供保姆服务.根据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日.公司新招聘的保姆必须经过5天的培训才能上岗,每个保姆每季度工作(新保姆包括培训)65天,保姆从该公司而不从顾主那里得到报酬,每人每月工作800元.春季开始时公司拥有120名保姆,在每个季度结束后,将有15%的保姆自动离职. (1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划.(建立数学模型) (2)如果在每个季度结束后允许解雇保姆,请为公司制定下一年的招聘计划.(建立数学模型)2.某工厂生产两种产品A、B分两班生产,每周生产总时间为80小时,两种产品的预测销售量、生产率和赢利如下表(1)充分利用现有能力,避免设备闲置;(2)周加班时间限制在10小时以内;(3)两种产品周生产品量应满足预测销售,满足程度的权重之比等于它们单位利润之比;(4)尽量减少加班时间.例3 医院为病人配制营养餐,要求每餐中含有铁不低于50单位,蛋白质不低于40单位,钙不低于42单位.假设仅有两种食品A和B可供配餐,相关数据见下表.试问,如何购买两种食品进行搭配,才能即使病人所需营养达到需求,又使总花费最低?第五章概率统计模型1.报童每天订购的报纸,每卖出一份赢利a元,如果卖不出去并将报纸退回发行单位,将赔本b元.每天买报人数不定,报童订报份数如超过实际需要,就要受到供过于求的损失;反之,要受到供不应求的损失.设P(m)是售出m份报纸的概率,试确定合理的订报份数,使报童的期望损失最小.2.血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型.3.假设有一笔1000万元的资金于依次三年年初分别用于工程A和B的投资.每年初如果投资工程A,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略.4.某石油公司必须就下一个打井位置作出决定.如果打出来的井什么也没有(既无油也无天然气),则投资费用(打井费用)全部赔掉.如果打出来的是气井,则可以说是部分成功,如果打出来的是油井,则是完全成功.由于结果的不确定性,更由于做某种测试(取样)只能得到不完全的信息,因而作出决定是困难的.试建立一个数学模型,使公司的预期收益最大参考答案第一章数学建模方法论1.解(略)2.解(1)注射一定量的葡萄糖,采集一定容量的血样,测量注射前后葡萄糖含量的变化,即可估计人体的血液总量.注意采集和测量的时间要选择恰当,使血液中的葡萄糖含量充分均匀,又基本上未被人体吸收.(2)调查不同年龄的人的死亡率,并估计其在未来一定时期的变化,还应考虑银行存款利率和物价指数,保险金与赔偿金之比大体上应略高于死亡率.(3)从一批灯管中取一定容量的样本,测得其平均寿命,可作为该批灯管寿命的估计值.为衡量估计的精度,需要从样本寿命确定该批灯管寿命的概率分布,即可得到估计值的置信区间.还可试验用提高电压的办法加速寿命测试,以缩短测量时间.(4)根据牛顿第二定律建立火箭向上发射后的运动方程,初速已知,若不考虑空气阻力,很容易算出到达最高点(即速度为零)时间;若考虑空气阻力,不妨设其与火箭速度(或速度的平方)成正比,并有试验及拟合方法确定阻力系数,再解方程得到结果.(5)司机看到黄灯后停车要有一定的刹车距离S 1,设通过十字路口的距离为S 2,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线S 1之内的汽车能通过路口,即t ≈(S 1+S 2)/v .S 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.(6)根据资料和经验确定维修费用随着车龄和行驶里程的增加而增加的关系,再考虑维修和更新费用,可以以一年为一个时段,结合租金决定应该维修或更新.(7)统计在各层上班的人数,通过数据或计算确定电梯运行时间,以等待的人数与时间乘积为目标,建立优化模型,确定每部电梯运行的楼层(有的从大厅直接运行到高层).3.解 人、猫、鸡、米分别记为i =1, 2, 3, 4,当i 在此岸时记x i =1,否则记x i =0,则此岸的状态可用s =(x 1, x 2, x 3, x 4)表示.记s 的反状态为s '=(1-x 1, 1-x 2, 1-x 3, 1-x 4),允许状态集合为S ={(1, 1, 1, 1),(1, 1, 1, 0),(1, 1, 0, 1),(1, 0, 1, 1)(1, 0, 1, 0)及它们的5个反状态}. 决策为乘船方案,记作d =(u 1, u 2, u 3, u 4),当i 在船上时记u i =1,否则记u i =0,允许决策集合为D ={(1, 1, 0, 0),(1, 0, 1, 0),(1, 0, 0, 1),(1, 0, 0, 0)}.记第k 次渡河前的状态为s k ,第k 次渡河的决策为d k ,则状态转移律为s k +1=s k +(-1)k d k ,设计安全过河方案归结为求决策序列d 1, d 2, …, d n ∈D ,使状态s n ∈S 按状态转移律由初始状态s 1=(1, 1, 1, 1)经n 步到达s n +1=(0, 0, 0, 0).一个可行方案如下:4.解 )(d d x x r txm -=,r 为比例系数,0)0(x x =,解为rtm m x x x t x ---=e )()(0,如图2中粗实线所示.当t 充分大时,它与Logistic 模型相近.5.解(1)设想有两个人一人上山,一人下山,同 一天同时出发,沿同一路径,必定相遇.(2)不妨设从甲站到乙站经过丙站的时刻表是: 8:00,8:10,8:20,…,那么从乙站到甲站经过丙 图2 站的时刻表应该是:8:09,8:19,8:29,….(3)步行了25分钟.设想他的妻子驾车遇到他后,先带他去车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻是5:55.x x6.解 (1)生产成本主要与重量w 成正比,包装成本主要与表面积s 成正比,其它成本也包含与w 和s 成正比的部分,上述三种成本中都含有与w 和s 无关的成分.又因为形状一定时一般有s ∝w 2/3,故商品的价格可表为C = αw +β w 2/3+γ(α,β,γ为大 于0的常数).(2)单位重量价格131--++==w w wCc γβα,其简图 如图3所示.显然c 是w 的减函数,说明大包装商品比小包 装商品便宜;曲线是下凸的,说明单价的减少值随包装的变大是逐渐降低的,不要追求太大包装的商品. 图3 7.解 将管道展开如图4,可得απcos d w =,若d 一 定,0→w ,2πα→;d w π→,0→α.若管道长度为l ,不考虑两端的影响时布条长度显然为wdlπ,若考虑两端的影响,则应加上απsin dw.对于其它形状管道,只需将d π改为相应的周长即可. 图48.解 贮存量)(t q 的图形如图5.单位时间总费用KT r k r c T c T c 2)()(21-+=, 使)(T c 达到最小值的最优周期)(221r k r c kc T -=*.当k 》r 时,rc c T 212=*,相当 于不考虑生产的 图5 情况.当k ≈ r 时,∞→*T ,因为产量被销量抵消,无法形成贮存量.第二章 初等数学模型1.解 不妨设1)(+'=b b λλ,表示火势b 越大,灭火速度λ越小,分母b +1中的1是防止b →0x时λ→∞而加的.最优解为λβλβλ'++'+++'=)1()(21]()1(2[23221b c b b b c b c x . 2.解 因为售量x 依赖于价格p ,记作)(p f x =,称为需求函数,它是p 的减函数.由此可知收入I 和支出C 都是价格p 的函数,所以利润U 可以表示为)()()(p C p I p U -= (1)使利润U (p )达到最大的最优价格p *可以由0d d *==p p p U 得到,即**d d d d p p p p pC pI ===(2)其中p I d d 称为边际收入,pC d d 称为边际支出.(2)式表明最大利润在边际收入等于边际支出时达到. 假设需求函数是线性函数,即bp a p f -=)(,0,>b a (3)并且每件产品的成本q 与产量x 无关,将总收入函数、总支出函数、需求函数和(3)式代入(1)式可得))(()(bp a q p p U --=用微分法求出使U (p )达到最大的最优价格p *为baq p 22*+=(4) 在(3)式中a 可以理解为这种产品免费供应时(p = 0)社会的需求量,称为“绝对需求量”.pxb d d -=表示价格上涨一个单位时销售量下降的幅度.在实际工作中a ,b 可以由价格p 和售量x 的统计数据用最小二乘法拟合来确定.(4)式表明最优价格是两部分之和,一部分是成本q 的一半,另一部分与“绝对需求量”成正比,与市场需求对价格的敏感系数成反比. 3.不妨设kx q x q -=0)(,k 是产量增加一个单位时成本的降低.最优价格为bakb ka q p 2)1(20*+--=.4.总利润为 ⎰⎰--+--=TT T t bp a t q p t bp a t q p p p U 222201121d ))](([d ))](([),()]}43([)()]4([){(022011Tq p b bp a Tq p b bp a ββ+---++---= 由01=∂∂p U ,02=∂∂p U,可得最优价格 )]4([2101T q b a b p β++=,)]43([2102Tq b a b p β++= 设总销量为Q 0,)(2d )(d )(21222010p p bTaT t bp a t bp a Q T T T +-=-+-=⎰⎰在此约束条件下),(21p p U 的最大值点为8~01T bT Q b a p β--=,8~02T bT Q b a p β+-=第三章 微分方程模型1.解 设t 时刻采用新技术的人数为x (t ).(1)指数模型x t xλ=d d . (2)Logistic 模型)(d d x N ax tx-=,N 为总人数.(3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图6.图6 2.解 在图7坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x= ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为ααααcos )2sin (cos sin 212222v g hgv g v R ++=图7 这个关系还可表为 )tan (cos 2222ααR h v g R +=. 由此计算0d d =*ααR ,得最佳出手角度)(2sin 21gh v v +=-*α,和最佳成绩gh v gvR 22+=*.设h =1.5m ,v =10m/s ,则 4.41=*α,m 4.11=*R . 3.解 模型为Ex xNrx x F x-==ln )( ,如图8所rN/示,有2个平衡点:x = 0和x 0 =rE N -e.可证x = 0不稳定,x 0稳定(与E ,r 的大小无关).最大持续产量为h m = rN/e ,获得h m 的E m = r ,x *0 =e /N .4.解 记B 的浓度为时间t 的函数y (t ),A 的浓度为x (t ). 图8 一、假设1.1molA 分解后产生n molB . 2.容体的体积在反应过程中不变. 二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx tx-=d d 其中k 为比例系数.设反应开始时t = 0,A 的浓度为x 0,由题中条件知当t = 20(分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-)0(d d x x kx tx得 ktx t x -=e )(0它应满足020021e )20(x x x k ==⨯- 解得 2ln 201=k 所以得 )2ln 200e )((tx t x -=由于B 的浓度为x 浓度减少量的n 倍,故有)e1(]e[)(2ln 2002ln 2000ttnx x x n t y ---=-=三、作图(如图9) 图9第四章 运筹学模型1.解 (1)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度开始时nx保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为s .t .⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥+=+=+=+=+≥+≥+≥+≥+++=0,,,,,,,85.085.085.01205900065555006557500655600065min4321432143432321211443322114321S S S S x x x x x S S x S S xS S x S x S x S xS x S S S S S Z (2)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度结束时解雇的保姆数量分别为y 1, y 2, y 3, y 4人,4个季度开始时保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为s .t .⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥-+=-+=-+=+=+≥+≥+≥+≥+++=0,,,,,,,,,,85.085.085.01205900065555006557500655600065min4321321432134342323121211443322114321S S S S y y y x x x x y x S S y x S S yx S S x S x S x S xS x S S S S S Z 2.解 (1)建立模型设:①每班上班时间为8小时,在上班时间内只能生产一种产品; ②周末加班时间内生产哪种产品不限;③生产A 产品用x 班,生产B 产品用y 班,周加班时生产A 产品用x 1小时,生产B 产品用y 1小时.则有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤+=++≤+≤+=+且为整数0,,,101:2148:987084581011111111y x y x y x x x y y x x y y y x (2)求解现在求满足(1)中第2,3个方程可看出:8≤x ,5≥y ;将(1)中的第1个方程代入第4个方程得:1179720128y x y -+= 现在就是在满足5≤y ,1011≤+y x 条件下,使上式两端的取值尽量接近.显然5=y ,01=x ,101=y因此 5=x制定方案为,生产A ,B 两种产品所占总时间各一半,周加班10小时全用于生产产品B .3.解:设购买食品A 和B 依次为x 1和x 2(kg ),则有 营养最低要求满足:10x 1+5x 2≥50 (铁含量) 5x 1+8x 2≥40 (蛋白质含量)6x 1+5x 2≥42 (钙含量)总花费数记为Z ,则有数学模型2134min x x Z +=s .t .⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥+0,)3.3(,4256)2.3(,4085)1.3(,5051021212121x x x x x x x x 用图解法求解上述问题.首先以x 1,x 2为坐标轴,建立平面直角坐标系(如图3-10),由于x 1,x 2均非负,故只画出了第一象限.其次,将其余约束条件几何化.条件(3.1)表示的是一个半平面,先画出直线10x 1+5x 2=50,因为10x 1+5x 2≥50,故直线(3.1)的上方区域即条件(3.1)所满足的x 1,x 2的取值范围;同理将条件(3.2)、(4.3)也几何化,并注意到几个条件要同时满足,便求得一个以顶点A 、B 、C 、D 为顶点的右上方无界的五边形区域1x ABCD 2x .这个区域内的任一点(x 1,x 2)都是一个可行性配餐方案.图3—10图3—11最后,为了求出最优解,将目标函数也进行几何化,有11)4.3(33412Z x x +-=称为目标函数直线族,因为其中的Z 作为参数出现.易见,随着Z 的逐渐增大,目标函数直线(3.4)向右上方平行移动.也就是说,随着目标函数直线的逐渐往右上方平移,Z 的值越来越大,反之,Z 的值越来越小(如图3-11).又原问题是求函数Z 的最小值,故应令目标函数直线尽可能往左下方平移.但这种平移是有限制的,即点(x 1,x 2)必须在可行域内.于是两者的结合便可确定本例的最优解.通过上述斜率关系分析可知目标函数直线与直线(3.1)和直线(3.3)的交点(顶点C )相切,即直线(3.1)与直线(3.3)的交点即最优解点.于是问题就变成了求解方程组⎩⎨⎧=+=+.4256,505102121x x x x 易解得x 1=2,x 2=6为最优解,通常记作:Tx )6,2(62=⎪⎪⎭⎫⎝⎛=* 对应的目标函数值称为最优值,记作 Z *=26第五章 概率统计模型1.解 设报童每天订购Q 份报纸,则其收益函数为⎩⎨⎧>≤--=Q m am Qm b m Q am m y ,,)()( 利润的期望为∑∑∞+==+-+=1)()(])[()]([Q m Qm m aQP m P bQ m b a m y E比较各个m 的)]([m y E 值,使其最大者即为所求.若m 的取值过多,可将)]([m y E 当成m 的连续函数或借鉴连续函数求极值的方法令0d )]([d =mm y E .2.解 假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为 %2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .3.解 建立决策树(如图13).图13在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者. 4.解 建立模型B 1——预测是油井,B 2——预测是气井,B 3——预测是无油气井.由于做取样只能得到不完全的信息,因此根据取样结果,计算出在B 1,B 2,B 3分别发生的条件下,B 1,B 2,B 3发生的概率.然后利用贝叶斯公式,计算出实际是油井、气井和废井情况下,而预测是B 1,B 2,B 3之一的概率值,若给出各种情况下的费用,计算出各个期望值即可.下面画出决策3000 0 20001000 2000 4000 4000 3000 1000 3000 3000 2000树(如图14).图14。
数学模型程序代码-M a t l a b-姜启源-第一章-建立数学模型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 建立数学模型1.(求解,编程)如何施救药物中毒p10~11人体胃肠道和血液系统中的药量随时间变化的规律(模型):d ,(0)1100d (,0)d ,(0)0d xx x ty x y y tλλμλμ⎧=-=⎪⎪>⎨⎪=-=⎪⎩ 其中,x (t )为t 时刻胃肠道中的药量,y (t )为t 时刻血液系统中的药量,t =0为服药时刻。
1.1(求解)模型求解p10~11要求:① 用MATLAB 求解微分方程函数dsolve 求解该微分方程(符号运算)。
② 用MATLAB 的化简函数simplify 化简所得结果。
③ 结果与教材P11上的内容比较。
提示:dsolve 和simplify 的用法可用help 查询。
建议在命令窗口中操作。
1.2(编程)结果分析p11已知λ=0.1386, μ=0.1155,将上题中得到x (t )和y (t )两条曲线画在同一个图形窗口内。
参考图形如下。
MATLAB命令plot, fplot, hold on/off, grid on/off, xlabel, ylabel, text 。
★ 编写的程序和运行结果:2.(编程,验证)商人们怎样安全过河p8~9三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
但是如何乘船的大权掌握在商人们手中。
商人们怎样才能安全渡河呢?[模型构成]决策:每一步(此岸到彼岸或彼岸到此岸)船上的人员。
要求:在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
x k第k次渡河前此岸的商人数y k第k次渡河前此岸的随从数x k , y k=0,1,2,3; k=1,2,⋯过程的状态s k=(x k , y k)允许状态集合S={(x, y)|x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}u k第k次渡船上的商人数v k第k次渡船上的随从数u k , v k=0,1,2; k=1,2,⋯决策d k=(u k , v k)允许决策集合D={(u , v)|u+v =1, 2}状态转移律s k+1=s k+(-1)k d k[多步决策问题]求d k∈D(k=1, 2, ⋯, n), 使s k∈S, 并按转移律由s1=(3,3) 到达s n+1=(0,0)。