当前位置:文档之家› 第八章 催化重整答案

第八章 催化重整答案

第八章 催化重整答案
第八章 催化重整答案

第 1 页 共 4 页

(学生填写)

: 姓名: 学号: 命题: 审题: 审批: --------------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 -----------------------------------------------------------

(答题不能超出密封装订线)

催化重整在线测试试题

一、填空题(每题2分,共30分)

1.催化重整是以石脑油为原料生产 高辛烷值汽油、轻芳烃(苯、甲苯、二甲苯,简称BTX ) ,同时副产 氢气 的重要炼油过程。

2.工业催化重整按催化剂类型可分为 单金属重整 、 双金属重整 和 多金属重整 。

3.催化重整包括的主要化学反应有有:六元环烷烃脱氢反应 、 五元环烷烃的异构脱氢反应 、 烷烃的环化脱氢反应 , 烷烃的异构化反应 、 烷烃的加氢裂化反应 。

4.现代重整催化剂是由 基本活性组分 、 助催化剂 、 酸性载体 所组成的。其中 基本活性组分(如铂) 是催化剂的核心。

5.目前工业实际使用的主要是两类催化剂,即主要用于固定床重整装置的 铂铼 催化剂和主要用移动床连续重整装置的 铂锡 催化剂。

6.催化重整催化剂是一种双功能催化剂即 脱氢和裂化 功能和 异构化 功能 。

7.重整催化剂的失活原因有: 催化剂表面上积碳 、 卤素流失 、 长时间处于高温下引起铂晶粒聚集使分散度减小 、以及 催化剂中毒 等。

8.重整催化剂的再生过程包括 烧焦 、 氯化更新 及 干燥 。 9.重整的原料的选择有三方面的要求即 馏分组成 、 族组成 、 毒物及杂质含量 。 10.重整原料的预处理由 预馏分 、 预加氢 、 预脱砷 、 脱氯和脱水 等单元组成。 11.当重整以生产高辛烷值汽油为目的时,工艺流程比较简单,由 原料预处理 和 重整反应 等部分组成。

12.当重整以生产芳烃为目的时,工艺流程由 原料预处理 、 重整反应 、 芳烃抽提过程 及 单体芳烃的精馏 组成。

13.催化重整采用多个串联的绝热反应器,各反应器的温降是有差异的,温降最大的是 第一反应器 ,最小的是 最后一个反应器 。

14在生产芳烃时,采用 较高 (较高或较低)空速;在铂铼重整中,催化剂的选择性较铂催化剂好,为促进烷烃的环化脱氢,宜采用 较低 (较高或较低)空速。

15.从固定床反应器的结构来看,工业用重整反应器主要有 轴向式反应器 和 径向式反应器 两种结构形式。

二、概念题(每小题3分,共15分)

1.重整转化率

答:重整转化率又称芳烃转化率,是重整生成油中的实际芳烃含量与原料的芳烃潜含量之比。

2.芳烃潜含量

答:原料中的环烷烃全部转化为芳烃时所能得到的芳烃量。(原料中6C ~8C 环烷烃全部转化为芳烃再加上原料中的芳烃含量。)

3.水-氯平衡

答:水氯平衡是个动态平衡,水氯平衡的良好控制将使催化剂的活性、稳定性和选择性得到最佳发挥,也是提高重整转化率的关键所在。

4.氢油比

答:氢油比即循环氢流量与原料油流量之比。 5.空速

答:空速为单位时间、单位催化剂上所有通过的原料油数量。 三、简答题(共55分)

1.在催化重整反应系统中,循环氢的目的是什么?(5分)

答:重整过程中循环氢的目的是:改善反应器内温度分布;起热载体作用;抑制生焦反应;稀释反应原料。

2.重整的各种反应对生产芳烃和提高汽油辛烷值有何贡献?(10分)

答:六元环烷烃的脱氢反应、五元环烷烃的异构脱氢反应和烷烃的环化脱氢反应都是生成芳烃的反应,无论生产目的是芳烃还是高辛烷值汽油,这些反应都是有利的。尤其是正构烷烃的脱氢环化反应会使辛烷值大幅度提高。六元环烷的脱氢反应进行的很快,在工业条件下能达到化学平衡,是生产芳烃的最重要的反应;五元环烷的异构脱氢反应比六元环烷的脱氢反应慢得多,但大部分也能转化为芳烃;烷烃环化脱氢反应的速率较慢,在一般铂重整过程中,烷烃转化为芳烃的转化率很小,但铂铼等双金属和多金属催化剂重整的芳烃转化率有很大的提高。异构化反应对五元环烷异构脱氢反应生成芳烃具有重要意义,烷烃的异构化反应虽然不能生成芳烃,但却能提高汽油辛烷值。加氢裂化反应生成较小的烃分子,而且在催化重整条件下的加氢裂化还包含有异

构化反应,因此加氢裂化反应有利于提高汽油辛烷值,但是过多的加氢裂化反应会使液体产物收率和氢气产率降低,因此,对加氢裂化反应要适当控制。

3.如何利用分子管理的策略显著提高原料的芳烃潜含量? (10分)

答:5C 以前的轻组分不能生产芳烃,对提高汽油辛烷值也无实际意义,相反,它们发生较多的加氢裂化反应,导致液体重整汽油收率下降,循环氢纯度降低,为了提高重整汽油芳烃产率,需要将其脱除,重整汽油芳烃潜含量则可提高。原料切割出6C ~8C 馏分去抽提,可有效提高重整进料的芳烃潜含量。

4.简述催化重整1~3(4)反应器中催化剂装填量确定的主要依据? (10分)

答:催化重整1~3(4)反应器串联,催化剂床层的温度是变化的,反应温降主要集中在反应器床层的顶部,在床层下部很大区域中几乎没有温降。因此,为了有效利用催化剂,各反应器催化剂装填比例是很重要的。为了促进反应速率较慢的烷烃环化和异构化等反应,重整各反应器催化剂常采用前面少,后面多的装填方式。若采用3个反应器,催化剂装填比约为1.5: 3.5: 5 ;在使用四个反应器串联时,催化剂的装入比例一般为1:1.5:3.0:4.5

5.重整反应器为何要采用多个串联、中间加热的形式?(10分)

答:由于重整反应是强吸热的,所以一般由三或四个反应器串联,反应器之间设管式加热炉供热,以保证所需的反应温度。主要的芳构化反应在第一个反应器中完成,故三个管式加热炉中第一个热负荷最大。反应器反应温度依次递增,从400~450℃升到480~500℃。

6.重整的良好原料是什么?试说明原因.并阐述对重整原料的选择有哪些要求? (10分) 答:不同的目的产品需要不同的馏分原料,这是重整的化学反应所决定的。在催化重整过程中,人们最关心的芳构化反应主要是在相同的碳原子数的烃类上进行的,六碳、七碳、八碳的环烷烃和烷烃,在重整条件下相应的脱氢或异构脱氢和环化脱氢生成苯、甲苯、二甲苯。小于六碳院子的环烷烃及烷烃,则不能进行芳构化反应。C 6烃类沸点在60℃~80℃,C 7沸点在90℃~110℃,C 8沸点大部分在120℃~144℃。<60℃的馏分烃分子的碳原子数小于六,如也作为重整原料进行反应系统,它并不能生成芳烃,而只能降低装置的处理能力。

对生产高辛烷值汽油来说<=C 6的烷烃本身已有较高的辛烷值,而C 6环烷转化为苯后其辛烷值反而下降,而且有部分被裂解成C 3、C 4或更低的低分子烃,降低重整液体产品收率,使装置的经济效益降低。因此,重整原料一般应切去大于C 6馏分,即初馏点在90℃左右。至于

原料的终馏点则一般取180℃,因为烷烃和环烷烃转化为芳烃后其沸点会升高,如果原料的终馏点过高则重整旗有的干点会超过规格要求,通常原料经重整后其终馏点上升6℃~14℃。若从全炼厂综合考虑,为保证航空煤油的生产,重整原料油的终馏点不宜>145℃。此外,原料切取太重,则在反应时焦炭和气体产率增加,使液体收率降低,生产周期缩短。

2018年全国II卷化学(含答案)

绝密★启用前 2018年普通高等学校招生全国统一考试 理科综合能力测试试题(Ⅱ)卷化学可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 P 31 S 32 Fe 56 7.化学与生活密切相关。下列说法错误的是 A.碳酸钠可用于去除餐具的油污 B.漂白粉可用于生活用水的消毒 C.氢氧化铝可用于中和过多胃酸 D.碳酸钡可用于胃肠X射线造影检查 8.研究表明,氮氧化物和二氧化硫在形成雾霾时与大气中的氨有关(如下图所示)。下列叙述错误的是 A.雾和霾的分散剂相同 B.雾霾中含有硝酸铵和硫酸铵 C.NH3是形成无机颗粒物的催化剂 D.雾霾的形成与过度施用氮肥有关 9.实验室中用如图所示的装置进行甲烷与氯气在光照下反应的实验。 光照下反应一段时间后,下列装置示意图中能正确反映实验现象的是

10.W 、X 、Y 和Z 为原子序数依次增大的四种短周期元素。W 与X 可生成一种红棕色有刺激性气味的气体; Y 的周期数是族序数的3倍;Z 原子最外层的电子数与W 的电子总数相同。下列叙述正确的是 A .X 与其他三种元素均可形成两种或两种以上的二元化合物 B .Y 与其他三种元素分别形成的化合物中只含有离子键 C .四种元素的简单离子具有相同的电子层结构 D .W 的氧化物对应的水化物均为强酸 11.N A 代表阿伏加德罗常数的值。下列说法正确的是 A .常温常压下,124 g P 4中所含P —P 键数目为4N A B .100 mL 1mol·L ?1FeCl 3溶液中所含Fe 3+的数目为0.1N A C .标准状况下,11.2 L 甲烷和乙烯混合物中含氢原子数目为2N A D .密闭容器中,2 mol SO 2和1 mol O 2催化反应后分子总数为2N A 12.我国科学家研发了一种室温下“可呼吸”的Na —CO 2二次电池。将 NaClO 4溶于有机溶剂作为电解液,钠 和负载碳纳米管的镍网分别作为电极材料,电池的总反应为3CO 2+4Na 2 Na 2CO 3+C ,下列说法错 误的是 A .放电时,4ClO -向负极移动 B .充电时释放CO 2,放电时吸收CO 2 C .放电时,正极反应为:3CO 2+4e ? 223CO - +C D .充电时,正极反应为:Na + + e ? Na

炼厂基本工艺流程

海科公司主要装置知识汇总 常减压装置: 原料:原油 产品:汽油(7-8%)、柴油(20-30%)、蜡油(20-30%)、渣油(40%左右) 常减压蒸馏:将原油按其各组分的沸点和饱和蒸汽压的不同而进行分离的一种加工手段。这是一个物理变化过程,分为常压过程和减压过程。我公司大常减压装置加工能力是100万吨/年。 精馏过程的必要条件: 1)主要是依靠多次气化及多次冷凝的方法,实现对液体混合物的分离。因此,液体混合物中各组分的相对挥发度有明显差异是实现精馏过程的首要条件。 2)塔顶加入轻组分浓度很高的回流液体,塔底用加热或汽提的方法产生热的蒸汽。 3)塔内要装设有塔板或者填料,使下部上升的温度较高、重组分含量较多的蒸气与上部下降的温度较低、轻组分含量较多的液体相接处,同时进行传热和传质过程。 原油形状:天然石油通常是淡黄色到黑色的流动或半流动的粘稠液体,也有暗绿色、赤褐色的,通常都比水轻,比重在0.8-0.98之间,但个别也有比水重的,比重达到1.02。许多石油都有程度不同的臭味,这是因为含有硫化物的缘故。 石油主要由C和H两种元素组成,由C和H两种元素组成的碳氢化合物,是石油炼制过程中加工和利用的主要对象。 主要元素:C、H、S、O、N

微量元素:Ni、V、Fe、Cu、Ga、S、Cl、P、Si 常减压装置的原理:根据石油中各种组分的沸点不同且随压力的变化而改变的特点,通过蒸馏的办法将其分离成满足产品要求或后续装置加工要求的各种馏分。因此,原油蒸馏的基本过程是:加热、汽化、冷凝、冷却以及在这些过程当中所发生的传质、传热过程。 常减压蒸馏是石油加工的第一个程序,第一套生产装置。根据原油的品质情况和生产的目的不同,常减压蒸馏装置通常有三种类型,一种是燃料型,另一种是燃料润滑油型,还有一种是化工型。 燃料型生产装置,主要生产:石脑油、煤油、柴油、催化裂化原料或者加氢裂化、加氢处理原料、减粘原料、焦化原料、氧化沥青原料或者直接生产道路沥青;燃料润滑油型生产装置,主要生产除燃料之外,还在减压蒸馏塔生产润滑油基础油原料;化工型生产装置主要生产的是裂解原料。 原油预处理(电脱盐)部分、换热网络(余热回收)及加热炉部分、常压蒸馏部分、减压蒸馏部分。 三塔流程:初馏塔、常压蒸馏塔、减压蒸馏塔 焦化联合装置: 我公司延迟焦化装置规模37.5万吨/年,加氢精制装置40万吨/年,干气制氢装置规模3000Nm3/年。 焦化联合装置配套配合生产,焦化部分采用国内成熟的常规焦化技术,运用一炉两塔工艺,井架式水力除焦系统,无堵焦阀,尽量多产汽、柴油。加氢部分采用国内成熟的加氢精制工艺技术,催化剂采用中国石油化工集团公司抚顺石油化工研究所开发的FH-UDS、FH-UDS-2加氢精制催化剂。反应部分采用炉前

第5章催化重整(答案)

第5章催化重整 自测练习 1、活性成分、助催化剂、裁体构成 2、芳构化反应、异构化反应、加氢裂化反应、缩合生 焦反应 3、馏分组成、族组成、毒物及杂质含量 4、重度芳烃、单体芳烃 5、六元环脱氢反应、五元环烷烃异构脱氢反应、烷烃 环化脱氢反应 6、积炭生成、金属聚焦、催化剂污染中毒 思考题及习题 1、无论是生产高辛烷值汽油还是芳烃,都是通过化学过程来实现的,在催化重整中发生了一系列的芳构化、异构化、裂化和生焦等复杂的平行和顺序反应;对于芳构化反应强吸热的特点在实际生产中必须不断的补充反应过程中所需的热量,体积增大的特点可生产高纯度的富产氢气,可逆的特点可在实际过程中控制操作条件提高芳烃产率,对于加氢裂化反应要适当控制,对于缩合生焦反应工业上常采用循环氢保护 2、略 3、目的为一是生产高辛烷值汽油组分,二是为化纤、橡胶、塑料和精细化工提供原料,除此之外,还生产化工过程所需的溶剂、油品加氢所需高纯度廉价氢气和民用燃料液化气等副产品 4、具备脱氢和裂化、异构化两种活性功能;这两种功能是有机配合的他们并不是互不相干,而是应保持一定平衡,适当配合,才能得到满意的结果 5、温度、压力、空速、氢油比;如果反映受热力学控 制,则提高反映平衡常数,反之,则提高反应速率。反映平衡常数和反应速率都与某些反应条件有关,既可以改变反应条件,是反应达到最优化,最大限度的提高目的产物的收率。 6、图略 7、抽提、溶剂回收、溶剂再生;操作温度、溶剂比、 回流比、溶剂含水量、压力 8、要求产品纯度高,应在99.9%以上,同时要求馏分很 窄;需采用温差控制法实现

9、除去硫,防止污染 10.重整转化率是如何定义的?影响重整转化率的因素有哪些?(重整装置) 答案: 重整转化率,定义为重整转化过程产物中所得到的芳烃量与原料中芳烃潜含量之比值。因此,重整转化率又称芳烃转化率,即: 重整生成油中芳烃产率 重整转化率= ×100% 原料油中芳烃潜含量 影响重整转化率的因素很多,几乎所有影响反应温降的因素对转化率均有影响,具体来说,影响重整转化率的因素有: 催化剂的组成与活性; 原料的性质及组成; 反应压力; 氢油比; 空速; 环境控制和氯水平衡; 反应温度; 催化剂积炭程度等。 11.循环氢的作用是什么?为什么说压缩机是重整装置的心脏?(重整装置) 答案: 重整循环氢的作用主要有三点: ⑴改善反应器内温度分布,起热载体作用; ⑵抑制生焦反应,保护催化剂活性寿命; ⑶稀释反应原料,使物料更均匀地分布于床层中。 由于循环压缩机能使氢气在系统中得以循环,好比人的心脏促使血液在人体循环一样,因此,人们都说循环压缩机就是重整装置的心脏,这种形容是很形象、很恰当的。一旦循环压机出现故障不能运转,系统含氢气体不再流动,催化剂将迅速结焦,催化剂活性和寿命就要下降,这是非常危险的。就像人的心脏停止跳动一样,必须采取紧急措施进行抢救,如采取停油、降温、灭火、停止注氯等。 12.为什么要搞好水氯平衡?不断地注入一定量的氯和水?(重整装置) 答案:

催化重整过程安全(新版)

催化重整过程安全(新版) Safety technology is guided by safety technology, based on personnel protection, and an orderly combined safety protection service guarantee system. ( 安全技术) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

催化重整过程安全(新版) 汽油馏分的催化重整是一种石油化学加工过程,它是在催化剂的作用及一定温度、压力条件下,使汽油中烃分子重新排列成新的分子结构的过程,它不仅可以生产优质(高辛烷值)汽油,还可以生产芳烃。根据所用催化剂种类的不同,催化重整又可分为铂重整、铂铼重整和多金属重整等。 催化重整装置一般包括原料预处理、催化重整反应、稳定和分馏等3大部分。 原料是初馏~150℃(180℃)汽油馏分,先经预分馏塔,切取60~130℃馏分作为重整原料。而后与氢气混合,经过预加氢,把原料中的硫、氮、氧、烯烃和金属杂质分别转化为易于除去的硫化氢、氨、水、饱和烃和吸收金属杂质于催化剂中,以保证后面的重整催化剂不受害。预加氢所用催化剂是担体为氧化铝

的钼酸钴或钼酸镍。预加氢是一种放热反应,所以反应温度不能过高,一般控制在320~370℃(铝酸钴)或280~340℃(钼酸镍)。压力大致是2.0~5.0MPa。采用固定床反应器。 国内催化重整一般采用3个固定床反应器串联运转,也可以采用4个反应器,其中有3个反应器在运转,1个反应器在再生以恢复催化剂活性。有的装置还在后面设加氢反应器,目的是使重整生成油中的不饱和烃转化为饱和烃,以保证最终芳烃产品的质量。3个主要的重整反应器大致在480~500℃范围内操作,因为主要的脱氢反应是强烈的吸热反应,要补充加入热量以保证反应温度,操作压力一般大于2.0MPa。所以3个反应器必须串联操作,其间反应器应当有附属部件热电偶管和催化剂引出管。无论是反应器还是再生器,为了严格控制温度,必须采用绝热措施。为了观察壁温,常在反应器外表涂上变色漆,只要温度超过规定指标就会通过颜色显示出来。对于铂重整来说,反应装置包括加氢精制反应器,由于高温、氢腐蚀和受压,要求采用较好的材质。

化工工艺学习题答案

(1).干法脱硫:用固体吸收剂吸收原料气中的硫化物,一般只有当原料气中硫化氢质量浓度不高,标况下在3~5g/m3才适用。干法脱硫包括:a.氧化锌法脱硫,可脱除有机硫和无机硫。ZnO+H2S=ZnS+H2O ZnO+C2H5SH=ZnS+C2H5OH ZnO+C2H5SH=ZnS +C2H4+H2O b.钴-钼加氢脱硫法(脱除含氢原料中的有机硫)RCH2SH+H2=RCH3+H2S RCH2S-CH2R’+2H2=RCH3+R’CH3+H2S RCH2S-SCH2R’+3H2=RCH3+R’CH3+2H2S (2).湿法脱硫可脱除大量无机硫 :3.化学-物理综合吸收法。 典型脱硫法:ADA脱硫法(原理)(PH8.5~9.2):Na2CO3+H2S=NaHS+NaHCO3 2NaHS+4NaVO3+H2O=Na2V4O9+4NaOH+2S Na2 V4O9+2ADA(氧化态)+2NaOH+H2O=4NaVO3+2ADA(还原态) 2ADA (还原态)+O2=2ADA(氧化态)+H2O ⒏克劳斯法回收硫磺流程(1).单硫法工艺流程:酸性气体中的硫化氢高于25%,所有酸化气体全部进入燃烧炉,按严格的要求配给空气,使酸性气体中的烃类全部燃烧,硫化氢只反应了1/3,以后生成的二氧化硫与剩余的2/3的硫化氢反应生成单质硫。燃烧炉内的温度一般为1100~1600℃,约60%~70%的硫化氢转化为硫。从燃烧炉出来的含硫蒸汽的高湿气体,经废热锅炉回收热能后,经冷凝分硫后进入一级转换器,转换反应是放热反应,一级转换气经二级冷凝分硫后,再送人二级转换器中,二级转换器中通常装活性较高的催化剂,以获得高效转化率,由于是放热反应,降低转化温度有利于硫的生成,但转换器的温度不能太低。为了防止蒸汽硫凝析出来,造成催化剂阻塞,最后送入三级冷凝器。 (2)分硫法工艺流程:酸化气中的硫化氢不足25%,只让1/3的酸性气体进入燃烧炉。严格按要求配给空气,是全部烃类完全燃烧,其中硫化氢反应生成二氧化硫,剩余的氧气为0,从燃烧炉出来的含二氧化硫的高温气体在废热锅炉回收能量后,与另外的2/3的酸性气体会合,进入一级转化器,之后与单硫法相同,要求气体中不得含有重烃类化合物和其他有机物,以免引起催化剂的结碳和结焦,影响成品硫的含量。 ⒘原油常减压蒸馏的塔釜温度一般控制在什么范围?常减压蒸馏的拔出率一般为多少?常压蒸馏的塔釜温度:350-365℃。拔出率:25-40%;减压蒸馏的塔釜温度;390-400℃,拔出率30%。 20.催化裂化的催化裂化过程中发生的主要反应类型有哪些?生产中采取什么工艺措施来提高目的产物的产率?从烃的类别来说,哪些组分是催化裂化的优质原料?裂化反应异构化反应氢转移反应芳构化烷基化反应,提高反应温度压力,增加反应时间提高油剂比。含有吸附性强的烷烃多的重质馏分油 21.从热力学角度分析烷烃、环烷烃、芳香烃裂解反应规律?其主要反应有哪些类型?烃类裂解的五大主要设备是什么?为什么选择透平压缩机? (1)烷烃裂解规律:正构烷烃最利于生成乙烯、丙烯,分子越小则烯烃的效率越高。环烷烃裂解规律:在裂解过程中,环烷烃可开环生成乙烯、丙烯、丁烯、丁二烯,也可脱氢生成环烷烃和芳烃。有带侧链的环烷烃裂解时,首先是侧链断裂,然后才进行烃环开裂。(2)主要反应类型:裂化、氢转移、叠合、异构化、芳构化。(3)五大主要设备:裂解炉、再生器、反应器、分馏塔、吸收解析塔。 (4)没有活塞环等易损部件,加工制作成本较为经济;转速通常在3500-12000r/min,可直接用同转速透平机驱动变速装置。透平压缩机噪声较小,压力稳定,此时可甲机运转,省去备用机组,其吸收状态最好,可达30万~45万立方米每小时。 23.以乙烷为原料裂解制取乙烯时,从反应的热力学和动力学出发,为了获得最佳裂解效果,应采取什么样的工艺措施?热力学:根据热力学计算可得出不同温度下裂解反应的平衡常数和乙烷裂解体系的平衡组成,若裂解反应达到平衡,基本全部生成氢气和碳。所得的烯烃极少。因此应当在尽可能短的时间内进行裂解,另外,C2H6裂解生成C2H4的平衡常数远远大于C2H4小时的平衡常数,各反应的平衡常数都随温度的升高而增加,因此,提高裂解温度对裂解生成烯烃是有利的动力学,影响速率常数的主因素是反应活化能与温度,活化能越大,速率常数值越小。而原料裂解生成C2H4的反应速率大于原料完全分解为碳和氢的速率,为了生成目的产物,因此,当提高反应温度缩短停留时间,以调高更多的C2H4。 25.液相本体法生产聚丙烯的流程中,如何控制反应温度和分子量(或聚合度)? 用氢调节产品分子量,用氢调节产品分子量,精丙烯经计量进入聚合釜,并将活化剂二乙基氯化铝,(液相)催化剂三氯化钛,分子量调节剂氢化。按一定比例一次性加入聚合釜中,物料加完后,向夹套内同热水,将聚合釜内的物料加热。使液相丙烯在75℃,3.5MPa进行液相本体聚合反应。 26.乙烯氧化制取环氧乙烷属于烃类氧化反应,烃类氧化反应有哪些特点?如何提高反应的选择性? 烃类氧化反应的特点:强烈的放热反应,有很多副产物生成。过程易燃易爆, 提高反应的选择性的主要是选择有良好选择性的催化剂乙烯的纯度保持在百分之30左右,选择合适的温度增加空速。 d) 加入抑制CO2生成的抑制剂,有助于提高催化剂的选择性 27.催化重整的主要目的分别是什么?工业生产中影响催化重整的主要工艺条件有哪些a)反应温度:最积极、最活跃的因素b)反应压力:提高压力会抑制环烷脱氢和烷烃环化脱氢。压力低有利于芳构化反应。 c)空速:随空速增加产品收率增加,但是产品芳香度、辛烷值、气体烃产率下降,芳烃生产通常采用较高空速,中等温度及中等压力。d) 氢油比:标准状态下的氢气流量与进料量的比值。对称性较高的催化剂和生焦倾向小的原料,采用较小氢油比。反之采用较大的氢油比。 e) 原料油组成29.从热力学角度分析乙苯脱氢制取苯乙烯中,影响反应的主要工艺条件有哪些?应如何控制反应条件? 影响乙苯脱氢反应的因素主要有:反应温度、反应压力、水蒸气用量、原料纯度、催化剂。从热力学角度分析:(1)乙苯脱氢是吸热反应。平衡常数随温度的升高而增加,故升温对脱氢反应有利。但是烃类物质在高温下不稳定,易发生许多副反应,所以脱氢在较低的温度下进行。适宜的温度为600~660℃(2)反应压力:乙苯脱氢反应是体积增大的过程,降低压力对反应有利,平衡转化率随压力的降低而升高。适宜的压力位0.01~0.1Mpa(3)水蒸气用量:乙苯脱氢转化率随水蒸气用量增大而提高。当水蒸气与乙苯的摩尔比增加到一定程度时,乙苯转化率提高不显著。故在工业生产中,乙苯与水蒸气质量一般为1:1.2~2.6 (4)原料纯度:为了保证生产的进行,要求原料乙苯中,二甲苯的质量分数<0.04%,为了保证催化剂的活性和寿命,要求乙炔的体积分数≤10×10-6 ,硫的体积分数(H2S计)≤2 ×10-6 ,氯的质量分数(以HCL计)2×10-6,水的体积分数≤10×10-6 (5)催化剂:采用氧化铁系催化剂,即Fe203Cr2O3.K2CO3. 30 芳烃转化过程中发生反应的主要类型有哪些?从热力学角度来分析应采取哪些措施来提高目的产物的产率? (1)(a)芳烃歧化和烷基转移(b)烷烃基反应(c)异构化反应 (2)提高温度、合适的氢烃比、保持适当的氢分压。31.催化重整中发生的反应主要有哪些?氢气在催化重整中有哪些作用? (1)催化重整中发生的反应有五种:六元环烷脱氢反应、五元环烷的异构化反应、烷环化脱氢反应、异构化反应、加氢裂解化反应。 (2)氢在催化重整中的作用a)预加氢可以使能够让催化剂中毒的金属元素含量降到允许范围内b)使烯烃饱和,减少催化剂积碳,延长操作周期,c)控制氢油比,可降低催化剂的失活速率,提高催化剂的稳定性,延长催化剂寿命。d)循环氢气将大量热量带入反应器,氢油比高可减少反应床层温度降。 32.催化重整时,采用溶剂抽提分离芳烃的过程中,反映溶剂性能的主要指标是什么?除此之外,还要考虑溶剂的哪些性质? (1)主要指标:溶解性、选择性、黏度、沸点、气化潜热、化学稳定性、密度差、表面张力等。(2)操作参数:温度和含水量。 35.联碱法中,析碱后要得到氯化铵,得到氯化铵前,为什么要先吸氨?目的是什么?联碱法循环过程中α值、β值、γ值的含义是什么?为什么要控制这三个指标? (1)α值:指氨母液I中游离氨对二氧化碳的物质的量之比。氨母液I是析碱后第一次析碱的母液。(2)β值:氨母液II中游离氨与氯化钠的物质的量之比。(3)γ值:母液II中钠离子对结合氨的物质的量之比或物质的两浓度之比。(4)(α总要大于2)通过控制α,β,γ值,使HCO3-尽量转化成CO32-离子,生成正盐SL溶解度增大,有利于析出NH4CL。

万t连续催化重整装置主要危险因素分析

万t连续催化重整装置主要危险因素分析 一、引言 本文以锦州石化公司连续催化重整装置为例,分析了该装程的要紧危险性为火灾爆炸危险性,苴中包括物料的火灾爆炸危险性、生产过程的火灾危险性、爆炸性气体环境分区,该装置的要紧包括设备腐蚀危险。通过对要紧危险性分析,为该装巻的安全生产保证措施的制泄、初步设计及施工的绘制,提供重要的参考依据。 二、物料的火灾爆炸危险性 1.氢气 氢气即是连续重整装置的原料,也是该装置的要紧产品。氢气是无色无味的气体,爆炸极限为4.0%?75.0% (V/V),引燃温度为560°C,按照可燃气体火灾危险性分类原则,氢气属于甲类火灾危险物质。在髙压下,氢气爆炸范畴加宽,燃点降低,同时高压下钢与氢气接触易产生氢脆和氢腐蚀,这是氢管逍泄漏以致于显现损坏的重要缘故之一。按照《危险化学品名录》,氢气属于危险化学品第2类压缩气体和液化气体中的第1项易燃气体。 2.石脑油 石脑油是连续重整装置的要紧原料。石脑油为易燃易爆液体,引燃温度为35O°C,其闪点为一2°C,石脑汕属于甲类火灾危险性物质。在空气中浓度为1」%?8.7% (V/V)的范畴内,只要遇到明火或火花即能发生爆炸。按照《危险化学品划录》,石脑油属于危险化学品第3类易燃液体中的第2项中闪点液体。 3?液化石油气 液石石油气是该装置形成的气态坯混合物,石油气易受压而液化(液化坯),为甲A类火灾危险性物质。其要紧成分为C4以下的轻组分,要紧有丙烷、丁烷、丙烯、丁烯和丁二烯等,英气体比空气重1.5?2.0倍。闪点为-74°C,在空气中的爆炸极限浓度为2.25%?9.65% (V/V)o按照《危险化学品名录》,液化石油气属于危险化学品第2类压缩气体和液化气体中的第1项易燃气体。 4汽油 高辛烷值重整汽油是该装置的要紧产品,是液态婭类的混合物,含有少量的芳炷要紧是甲苯和二甲苯。汽油的引燃温度为415?530°C,闪点为一50°C,在空气中的爆炸极限浓度为 1.4%?7.8% (V/V),汽油的火灾危险性为甲B类可燃液体。按照《危险化学品划录》,汽油属于危险化学品第3类易燃液体中的第1项低闪点液体或第3类易烯液体中的第2项中闪点液体。 5.苯 连续重整装程的芳炷产品应该是苯、甲苯、二甲苯,但近年来生产中将甲苯、二甲苯憎分

催化重整过程安全

催化重整过程安全 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

催化重整过程安全汽油馏分的催化重整是一种石油化学加工过程,它是在催化剂的作用及一定温度、压力条件下,使汽油中烃分子重新排列成新的分子结构的过程,它不仅可以生产优质(高辛烷值)汽油,还可以生产芳烃。根据所用催化剂种类的不同,催化重整又可分为铂重整、铂铼重整和多金属重整等。 催化重整装置一般包括原料预处理、催化重整反应、稳定和分馏等3大部分。 原料是初馏~150℃(180℃)汽油馏分,先经预分馏塔,切取60~130℃馏分作为重整原料。而后与氢气混合,经过预加氢,把原料中的硫、氮、氧、烯烃和金属杂质分别转化为易于除去的硫化氢、氨、水、饱和烃和吸收金属杂质于催化剂中,以保证后面的重整催化剂不受害。预加氢所用催化剂是担体为氧化铝的钼酸钴或钼酸镍。预加氢是一种放热反应,所以反应温度不能过高,一般控制在320~370℃(铝酸钴)或280~340℃(钼酸镍)。压力大致是2.0~5.0MPa。采用固定床反应器。 国内催化重整一般采用3个固定床反应器串联运转,也可以采用4 个反应器,其中有3个反应器在运转,1个反应器在再生以恢复催化剂活性。有的装置还在后面设加氢反应器,目的是使重整生成油中的不饱和

烃转化为饱和烃,以保证最终芳烃产品的质量。3个主要的重整反应器大致在480~500℃范围内操作,因为主要的脱氢反应是强烈的吸热反应,要补充加入热量以保证反应温度,操作压力一般大于2.0MPa。所以3个反应器必须串联操作,其间反应器应当有附属部件热电偶管和催化剂引出管。无论是反应器还是再生器,为了严格控制温度,必须采用绝热措施。为了观察壁温,常在反应器外表涂上变色漆,只要温度超过规定指标就会通过颜色显示出来。对于铂重整来说,反应装置包括加氢精制反应器,由于高温、氢腐蚀和受压,要求采用较好的材质。 催化剂在装卸时,要防止破碎和污染,未再生的含碳催化剂卸出时,要预防自燃超温损坏。 加热炉是热的来源,在催化重整过程中,重整和预加氢的反应需要很大的炉子才能供应所需的反应热。因此加热炉的安全和稳定是很重要的。另外,过程中进料或塔底加热器、重沸器所需的热源,往往需要热载体加热炉供给,热载体在使用过程中要防止局部过热分解,防止进入水等低沸点介质造成气化超压爆炸。燃烧炉必须保证燃烧正常、调节及时。加热炉出口温度的高低,是反应器入口温度稳定的条件,但是炉温的变化又是与很多因素有关,例如燃料油的流量、压力、燃料的质量等。为了稳定炉温、保证整个装置的安全生产,加热炉应采用自动调节系统。

催化重整装置操作工(连续重整再生模块)技师理论知识试卷和答案

职业技能鉴定国家题库 催化重整装置操作工(连续重整再生模块)技师理论知 识试卷 : 注 意 事 项 1、考试时间:120分钟。 2、请首先按要求在试卷的标封处填写您的姓名、准考证号和所在单位的名称。 3、请仔细阅读各种题目的回答要求,在规定的位置填写您的答案。 4、不要在试卷上乱写乱画,不要在标封区填写无关的内容。 一、单项选择(第1题~第40题。选择一个正确的答案,将相应的字母填入题内的括号中。 每题1分,满分40分。) 1. 设备布置图中,非定型设备被遮盖的设备轮廓一般不画,如必须表示时,则用( )线表示。 A 、细实 B 、粗实 C 、细虚 D 、粗虚 $ 2. 下列选项中,属于技术改造的是( )。 A 、原设计系统的恢复的项目 B 、旧设备更新的项目 C 、工艺系统流程变化的项目 D 、新设备的更新项目 3. 在技术改造方案中不应该包括( )。 A 、验收标准 B 、改造的主要内容 C 、预计改造的效果及经济效益 D 、计划进度安排 4. 企业培训的成功有赖于培训( )的指导与规范。 * A 、制度 B 、内容 C 、计划 D 、措施 5. 一般当压力大于( )以后时,石油馏分的焓值不能查有关的图表资料求得。 A 、 B 、1MPa C 、7MPa D 、10MPa 6. 消除误差源是在( )将产生系统误差的因素和根源加以消除。 A 、测量进行之前 B 、测量过程中 C 、测量后 D 、最后计算时 考 答 题 不 准 超 过 此 线

7. 设备在实际使用中,当不能实现预定的功能和达不到规定的功能水平时,即称为( )。 A 、发生故障 B 、功能失效 、 C 、发生事故或功能失效 D 、发生故障或功能失效 8. 单位重量催化剂的内、外表面积之和叫做( )。 A 、堆比 B 、孔体积 C 、孔径 D 、比表面积 9. 第二代IFP (Regen B )连续重整再生工艺中,催化剂的提升气是( )。 A 、氮气 B 、氢气 C 、空气 D 、水蒸汽 10. 第一代UOP 连续重整再生工艺的再生压力为( )。 A 、常压 B 、 C 、 D 、 》 11. “逆流”移动床重整与“顺流”移动床重整工艺相比,下列说法错误的是( )。 A 、在相同的反应苛刻度下,“逆流”移动床重整的C 5+液收高 B 、在相同的反应苛刻度下,“逆流”移动床重整催化剂的平均积炭量高 C 、在相同的反应苛刻度下,“逆流”移动床重整的氢产率高 D 、在相同的反应苛刻度下,“逆流”移动床重整的芳烃产率高 12. 某催化重整装置掺炼焦化汽油,为保证产品合格,下列调整错误的是( )。 A 、预加氢反应系统提温操作 B 、重整反应系统减少注水量 — C 、重整反应系统提温操作 D 、重整反应系统提压操作 13. 精制油初馏点不合格时,下列处理错误的是( )。 A 、调整蒸发脱水塔顶回流量 B 、调整蒸发脱水塔顶压力 C 、调整蒸发脱水塔底温度 D 、调整蒸发脱水塔液面 14. 下列选项中,可以用来评价预加氢催化剂活性的是( )。 A 、预加氢反应耗氢量 B 、预加氢原料脱硫率 C 、预加氢原料芳烃转化率 D 、预加氢精制油辛烷值 15. 下列选项中,与加热炉热效率有关的操作参数是( )。 ! A 、加热炉炉膛温度 B 、加热炉过热空气系数 C 、加热炉瓦斯耗量 D 、加热炉出口温度 16. 氢脆现象是一种( )。 A 、化学腐蚀 B 、电化学腐蚀 C 、应力腐蚀 D 、均匀腐蚀 17. 下列各材质,不能用来制作预加氢反应器的是( )。 A 、0Cr13 B 、20# } C 、Mo Cr 14 12 D 、1Cr18Ni9Ti 18. 下列选项中,催化重整装置不可以采取紧急停车措施的是( )。 A 、重整循环机联锁停运 B 、反应系统法兰氢气大量外泄 C 、精制油水含量偏高 D 、系统燃料气中断

炼油化工装置的具体工艺流程

炼油化工装置的具体工艺流程 一般炼油厂主要由炼油工艺装置和辅助设施构成。炼油工艺装置的作用是将原油加工成液体的轻质燃料和重质燃料,其中轻质燃料包括汽油、煤油、轻柴油,重质燃料包括重柴油和锅炉专用燃料等。此外,通过炼油工艺装置,还能将原油分解成润滑油、气态烃、液态烃、化工原料、沥青、石油焦、石蜡等。根据产品类别分类的话,就分为了燃料型、燃料-化工型、燃料-润滑油型。 一、常减压蒸馏的主要工艺流程 常减压蒸馏主要分为4个步骤,分别为:原油脱盐脱水、初馏、常压蒸馏、减压蒸馏。 1原油脱盐脱水

从地下采出的原油中含有一定比例的水分,这部分水分中含有矿物质盐类。如果原油中水分过大的话,不利于蒸馏塔稳定,容易损坏蒸馏塔。此外,水分过大势必需要延迟加热时间,增加了热量的吸取,增加了原料成本。水分中含有的矿物质盐会在蒸馏过程中产生腐蚀性的盐垢,附着在管道上,这样就会无形当中增加了原油的流动阻力,减慢了流动速度,增加了燃料消耗,所以需要对原油进行脱盐脱水处理。 2初馏 经过了第一步的脱盐脱水操作之后,原油要经过换热器提高温度,当温度达到200℃~250℃时,才可以进入初馏塔装置。在这里,将原油里剩余的水分、腐蚀性气体和轻汽油排出,这样就减少了塔的负担,保证了塔的稳定状态,起到了提高产品质量和尽可能多的回收原油的效果。 3常压蒸馏 从上一步骤出来的油叫拔顶油。经过输送泵进入常压炉后加热,加热要求是360℃左右,然后进入常压塔。从塔顶分离出来的油和气,经过冷凝和换热后,一些就成为汽油,一些就成为了煤油和柴油。 4减压蒸馏 减压蒸馏的主要工艺装置是减压塔,减压塔是将从常压塔里出来的重油,通过减压的方式进行二次加工和深加工。 二、催化裂化的主要工艺流程 催化裂化装置的原材料是需要二次加工和深加工的重质油。通过这道工序,可以将重质油裂解为我们需要的轻质油。 催化裂化的主要步骤为:反应-再生系统、分馏系统、吸收-稳定系统。

催化重整流程模拟

Kinetic Modeling of Naphtha Catalytic Reforming Reactions Jorge Ancheyta-Jua′rez*and Eduardo Villafuerte-Mac?′as Instituto Mexicano del Petro′leo,Eje Central La′zaro Ca′rdenas152,Me′xico07730D.F.,Mexico, and Instituto Polite′cnico Nacional,ESIQIE,Me′xico07738D.F.,Mexico Received February21,2000 In this work a kinetic model for the naphtha catalytic reforming process is presented.The model utilizes lumped mathematical representation of the reactions that take place,which are written in terms of isomers of the same nature.These groups range from1to11atoms of carbon for paraffins,and from6to11carbon atoms for naphthenes and aromatics.The cyclohexane formation via methylcyclopentane isomerization and paraffins isomerization reactions were considered in the model.Additionally,an Arrhenius-type variation was added to the model in order to include the effect of pressure and temperature on the rate constants.The kinetic parameters values were estimated using experimental information obtained in a fixed-bed pilot plant.The pilot reactor was loaded with different amounts of catalyst in order to simulate a series of three reforming reactors.The reformate composition calculated with the proposed model agrees very well with experimental information. 1.Introduction Catalytic reforming of straight run naphthas is a very important process for octane improvement and produc-tion of aromatic feedstocks for petrochemical industries. Hydrogen and lighter hydrocarbons are also obtained as side products.Generally,the reforming is carried out in three or four fixed bed reactors which operate adiabatically at temperatures between450and520°C, total pressures between10and35atm,and molar hydrogen-to-hydrocarbon ratios between3and8.The feed to the first reactor is a hydrodesulfurized naphtha cut,composed of normal and branched paraffins,five-and six-membered ring naphthenes,and single-ring aromatics. A large number of reactions occur in catalytic reform-ing,such as dehydrogenation and dehydroisomerization of naphthenes to aromatics,dehydrogenation of paraf-fins to olefins,dehydrocyclization of paraffins and olefins to aromatics,isomerization or hydroisomerization to isoparaffins,isomerization of alkylcyclopentanes,and substituted aromatics and hydrocracking of paraffins and naphthenes to lower hydrocarbons.The major reactions in the first reactor are endothermic and very fast,such as dehydrogenation of naphthenes.As the feedstock passes through the reactors,the reactions become less endothermic and the temperature dif-ferential across them decreases. Recently there has been a renewed interest in the reforming process,first,because reformate is a major source of aromatics in gasoline,and second,because of the new legislation of benzene and aromatics content in commercial gasolines.In this sense,refiners have reduced the severity of the industrial reforming plants in order to decrease the amount of aromatics in gasoline, however it adversely affects the reformate octane.1 Because of these reasons,it is very important to develop an appropriate kinetic model capable of predict-ing the detailed reformate composition in order to use it,in combination with a catalytic reforming reactor model,for simulation and optimization purposes. Various kinetic models to represent catalytic reform-ing have been reported in the literature,which have different levels of sophistication.2-6All of these models consider some or all of the reactions mentioned earlier and they idealize the complex naphtha mixture so that each of the three hydrocarbon classes,paraffins,naph-thenes,and aromatics,is represented by a single compound having the average properties of that class. The kinetic model of Krane et al.3is one of the more elaborate models which considers all possible reactions for each individual hydrocarbon.However,the temper-ature and pressure dependency on the rate constants was not reported.In addition,this model does not consider the formation of the main benzene precursor (N6:cyclohexane)via isomerization of methylcyclopen-tane(MCP),and it does not take into account the reaction rates of hydrocarbons with11atoms of carbon because only hydrocarbon up to10atoms of carbon are considered.In the present paper the Krane et al.model is extended in order to consider these deficiencies. *To whom correspondence should be addressed.Instituto Mexicano del Petro′leo.FAX:(+52-5)587-3967.E-mail:jancheyt@imp.mx. (1)Unzelman,G.H.Oil Gas J.1990,88(15),43. (2)Smith,R.B.Chem.Eng.Prog.1959,55(6),76-80. (3)Krane,H.G.;Groh, A. B.;Shulman, B. D.;Sinfeit,J.H. Proceedings of the5th World Petroleum Congress1959,39-51. (4)Henningsen,J.;Bundgaard,N.M.Chem.Eng.1970,15,1073-1087. (5)Ramage,M.P.;Grazianai,K.R.;Krambeck,F.J.Chem.Eng. Sci.1980,35,41-48. (6)Padmavathi,G.;Chaudhuri,K.K.Can.J.Chem.Eng.1997,75, 930-937. 1032Energy&Fuels2000,14,1032-1037 10.1021/ef0000274CCC:$19.00?2000American Chemical Society Published on Web08/02/2000

催化化学习题及答案教学提纲

催化化学习题及答案

一、基本概念题 1. 催化剂的比活性:催化剂的比活性是相对于催化剂某一特定性质而言的活性。例如:催化剂每m2的活性。 2. 催化剂的选择性:催化剂有效地加速平行反应或串联反应中的某一个反应的性能。 3. 催化剂的机械强度:固体催化剂颗粒抵抗摩擦、冲击和本身的质量以及由于温变、相变而产生的应力的能力,统称为催化剂的机械强度。 4. 催化剂的密度:实际催化剂是多孔体,成型的催化剂粒团体积包括颗粒与颗粒之间的空隙V隙、颗粒内部实际的孔所占的体积V孔和催化剂骨架所具有的体积V真,即V堆=V隙+V孔+V真。(a)堆密度;(量筒)(b)颗粒密度;(压汞法)(c)真密度(氦气法) 5. 催化剂的比表面:通常以1g催化剂所具有的总表面积m2/g 6. 催化剂的比孔容:1g多孔性固体催化剂颗粒内部所有孔道的总体积。ml/g 7. 催化剂的孔隙率:多孔性固体催化剂颗粒内部所有孔道的总体积占催化剂颗粒体积的百分数。 收集于网络,如有侵权请联系管理员删除

8. 催化剂的孔分布:除了分子筛之外,一般催化剂中的孔道直径大小不一。不同大小的孔道占总孔道的百分数称为孔分布。不同范围的孔径(r>200nm称大孔,r<10nm微孔,r为10~200nm过渡孔) 有不同的测定方法。 9. 催化剂的平均孔半径:一般固体催化剂(分子筛除外)中孔道的粗细、长短和形状都是不均匀的,为了简化计算,可以把所有的孔道都看成是圆柱形的孔,并假定其平均长度为L,平均半径为r。 10. 催化剂中毒:催化剂在使用过程中,如果其活性的衰退是由于反应介质中存在少量杂质,或是由于催化剂在制备时夹杂有少量杂质而引起的,则称为催化剂的中毒。 11. 催化剂的寿命:催化剂在实际反应条件下,可以保持活性和选择性的时间称为催化剂的寿命。 12. 催化剂的活化:催化剂在投入实际使用之前,经过一定方法的处理使之变为反应所需的活化态的过程。 13. 转化数:单位活性中心在单位时间内进行转化的反应分子数 14. 转化率:反应物在给定的反应条件下转化为产品和副产品的百分数 收集于网络,如有侵权请联系管理员删除

相关主题
文本预览
相关文档 最新文档