动力电池充放电实验
- 格式:ppt
- 大小:2.16 MB
- 文档页数:45
电动汽车动力电池及电池管理系统充放电实验报告一、实验目的:探究电动汽车动力电池的充放电过程,并了解电动汽车电池管理系统的工作原理。
二、实验原理:1.充电原理:电动汽车动力电池采用直流充电方式,将外部交流电转换成直流电,经过充电控制器将电能传输到电池中,实现对电力的补充。
2.放电原理:电动汽车动力电池在车辆运行时通过电子变流器将电能转换为直流电,供电给电动机运行。
三、实验仪器和材料:1.电动汽车动力电池组2.电池管理系统3.充电设备4.放电设备5.数字万用表6.示波器四、实验步骤:1.充电实验:a.连接充电设备和电动汽车动力电池组,确保接触良好。
b.开始充电,观察充电过程中电流和电压的变化,并记录数据。
c.当电动汽车动力电池组充满电时,停止充电,并记录充电时间。
2.放电实验:a.连接放电设备和电动汽车动力电池组,确保接触良好。
b.开始放电,观察放电过程中电流和电压的变化,并记录数据。
c.当电动汽车动力电池组放电完毕时,停止放电,并记录放电时间。
3.电池管理系统实验:a.连接电池管理系统和电动汽车动力电池组,确保接触良好。
b.检查电池管理系统的参数,并对其进行调整。
c.对电动汽车动力电池组进行充放电实验,并观察电池管理系统的工作情况和数据变化。
五、实验结果分析:根据充放电实验记录的数据,可以计算出电动汽车动力电池的充放电效率,评估电池的性能,并通过观察电池管理系统的工作情况,了解其对电池的保护和管理功能。
六、实验结论:通过电动汽车动力电池及电池管理系统的充放电实验,我们可以更深入地了解动力电池的工作原理和充放电过程,同时也认识到电池管理系统对动力电池的保护和管理的重要性。
此外,实验还可以为后续电动汽车动力电池的改进和研发提供参考数据和支持。
电动汽车用动力蓄电池电性能要求及试验方法1范围本文件规定了电动汽车用动力蓄电池(以下简称电池)的电性能要求和试验方法。
本文件适用于装载在电动汽车上的动力锂离子电池和金属氢化物镍电池单体,其他类型电池参照执行。
2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T10592—2008高低温试验箱技术条件GB/T19596电动汽车术语GB38031电动汽车用动力蓄电池安全要求3术语和定义GB/T19596及GB38031界定的以及下列术语及定义适用于本文件。
3.1初始容量initial capacity新出厂的动力电池,在室温下,完全充电后,以制造商规定且不小于1I3的电流放电至制造商规定的放电终止条件时所放出的容量(Ah)。
3.2高能量电池high energy battery室温下,最大允许持续输出电功率(W)和3I3倍率放电能量(Wh)的比值低于10的电池。
注:高能量电池一般应用于纯电动汽车和插电式混合动力电动汽车。
3.3高功率电池high power battery室温下,最大允许持续输出电功率(W)和3I3倍率放电能量(Wh)的比值不低于10的电池。
注:高功率电池一般应用于混合动力电动汽车。
4符号4.1缩略语下列缩略语适用于本文件。
FS:满量程(full scale)4.2符号下列符号适用于本文件。
I3:3h率放电电流(A),其数值等于额定容量值的1/3。
5要求5.1外观电池单体按6.2.1检验时,外观不得有变形及裂纹,表面无毛刺、干燥、无外伤、无污物,且宜有清晰、正确的标志。
5.2极性电池单体按6.2.2检验时,端子极性标识应正确、清晰。
5.3外形尺寸及质量电池单体按6.2.3检验时,电池外形尺寸、质量应符合制造商提供的产品技术条件。
5.4室温放电容量电池单体按6.2.5试验时,其初始容量应不低于额定容量,并且不超过额定容量的110%,同时所有测试对象初始容量极差不大于初始容量平均值的5%。
书山有路勤为径;学海无涯苦作舟
数学模型助力三元锂电池充放电动力学分析锰酸锂三元材料混合的锂离子电池正极体系,相对于其它单一活性材。
料的正极来说,较为复杂。
随着此体系不断用于商业化电池设计所采用,
理解其充放电过程中的锂离子脱嵌动力学过程,对电极设计工程师,变得尤为重要。
间歇恒电流电位滴定法(galvanostatic intermittent titration technique)是用来研究如材料相变,结构转变以及质量传递等电极过程
动力学的常用方法,具体操作可简单描述为将电池进行连续几次的“恒定
电流脉冲放电—休息”的放电或充电过程,之后考察电压及材料的变化等。
近日,加拿大滑铁卢大学的毛治宇博士利用数学模型对锰酸锂三元材料
的混合体系的间歇恒电流电位滴定实验分析的结果进行了计算模拟,考察了此混合体系的锂离子电池的充放电动力学。
其论文发表在国际电化学学报上(Electrochimica Acta 222 (2016): 1741-1750.)。
经过分析预测,
当电池停止充放电,即保持开路状态时,锰酸锂和三元材料相互间仍然进行着充放电,锂离子在各活性材料表面进行着脱出或嵌入。
随后,日本研究者Takeshi Kobayashi 等在论文中“锂离子混合正极中锂离子的迁移”(Lithium Migration between Blended Cathodes of Lithium-ion Battery. Journal of Materials Chemistry A (2017).”,用具体实验得
出了与模型预测一致的结论,证明了模型分析的准确性。
专注下一代成长,为了孩子。
电动汽车能量流研究需要考虑电池充放电效率的影响,然而目前针对不同充放电模式下的充放电效率研究并不充分,实验方法、测试系统与分析结果仍不具备普遍适用性。
因此,本文提出了一种电动汽车充放电效率表征方法和试验方法,并搭建了测试台架系统;在此基础上,针对某款电动汽车动力电池,定量研究了不同充电模式、放电工况下充放电效率的变化规律,从而为整车能量流研究提供了一种有效的动力电池充放电效率测试方法,接下来就为大家详细的讲解一下希望对大家有所帮助。
1 动力电池及其充放电效率动力电池是电动汽车的能量来源,锂离子电池以其高能量密度和功率密度、长循环寿命、低自放电率等优势,成为电动汽车的首选动力电池;其中,磷酸铁锂电池(LiFePO4)和三元锂离子电池(NCA、NMC)等具有更高的安全性能,因此广泛应用于电动汽车领域。
图1 所示为锂离子电池的基本结构与工作原理示意图,其充放电过程是通过Li+在正负极柱之间嵌入和脱出实现的。
2 实验平台和测试方法实验平台结构包含试验箱、电池模拟器、12V 开关电源、冷却循环水机、上位机等试验仪器及设备。
其中,动力电池系统在实验过程中放置于试验箱内,由高压线连接至电池模拟器,通过控制电池模拟器的功率及电流方向,实现动力电池不同模式下的充放电;同时电池充放电数据通过CAN 总线进行通讯,并上传至上位机系统。
实验过程中,电池模拟器及电池管理系统BMS 实时检测动力电池组总电压、单体电压、电池组温度等参数并设置保护措施,从而保证实验过程电池处于安全工作状态。
3 实验及结果分析实验用动力电池系统采用三元电芯作为单体电池,整体模块标称能量为46kwh。
充放电过程中,设置系统总电压、单体电压、温度等参数的安全范围;一旦检测到参数超出上下限安全阈值,将电池模拟器输出电流设置为0,并切断电池模拟器与动力电池系统的连接。
实验过程中,分别采用2.6kw 慢充、6.6kw 定功率充电、快充、1/3C 标准充电(15.3kw)以及1C 充电(46kw)对电池包进行充电,并通过变功率、45kw、6.5kw 、14.9kw 以及28.4kw 等效模拟车辆NEDC 工况、1C 放电、60km/h 等速、90km/h 等速、120km/h 等5 种驾驶工况。
测试项目1.测试项目:循环特性(12℃*10Cycle):测试方式:电池在12±2℃的环境下以0、2C的电流进行充放电循环10次,再将电池在常温下标准充放电一次评价标准:解析结果:负极锂析出状态2.测试项目:电池倍率放电特性测试测试方式:池在室温下:①放电:CC 0、5C-下限电压;②休止10min;③充电CC/CV0、5C-上限电压 0、05C截止④休止5min;⑤放电 CC 0、2C-下线电压;⑥休止10min;⑦调整倍率至0、5C、1C、2C重复③~⑥步骤。
评价标准:放电容量,维持率3.测试项目:电池温度放电特性测试测试方式:电池在室温下以CC/CV 0、5C满充电至上限电压,0、05C截止; 然后分别在25℃、-20℃、-10℃、0℃、60℃的环境下放置2小时后进行0、2C放电至下限电压。
评价标准:放电容量,维持率4.测试项目:60℃/7天储存测试测试方式:将电池厚度测定后在室温下进行标准充电与放电,再进行满充电,接着将电池在60±2℃的环境中储存7天,最后在室温下放置2Hr后进行标准放电,记录储存前后放电容量,试验完成后进行尺寸外观检查。
评价标准:残存容量≥80%,外观无漏液。
参考项[恢复容量≥80%,内阻增加比例≤25%],厚度增加比例≤10%5.测试项目:常温/30天储存测试测试方式:将电池厚度测定后在室温下进行标准充电与放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存前后放电容量,试验完成后进行尺寸、外观检查。
评价标准:残存容量≥90%。
参考项[恢复容量≥95%,内阻增加比例≤25%]6.测试项目:85℃*4H储存测试测试方式:将电池厚度测定后在室温下进行标准充电与放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存前后放电容量,试验完成后进行尺寸、外观检查。
评价标准:残存容量≥90%。
试验题目:车用锂离子动力电池实验目录试验题目:车用锂离子动力电池实验 (1)1.实验目的: (2)2.动力电池简介 (2)a)车载动力电池介绍 (2)b)国内电动车用锂离子动力电池的标准 (2)3.实验仪器 (3)4.试验方法 (4)5.数据处理分析 (5)a)分析不同温度下、不同倍率下电池能放出或充进的电量 (5)b)电池的直流内阻特性(与温度、SOC关系) (7)c)电池开路电压与温度的关系 (9)d)电池的开路电压稳定时间 (10)e)电池的功率特性(与温度、SOC关系) (11)f)各温度下电池特性比较 (12)6.实验总结 (14)7.附录 (14)a)参考文献 (14)b)数据处理代码 (15)1.实验目的:1)了解动力电池主要性能参数2)了解动力电池基本性能试验标准及方法3)了解动力电池试验设备4)基本掌握试验结果分析方法2.动力电池简介a)车载动力电池介绍新能源汽车动力电池可以分为蓄电池和燃料电池两大类,蓄电池用于纯电动汽车(EV),混合动力电动汽车(HEV)及插电式混合动力电动汽车(PHEV);燃料电池专用于燃料电池汽车(FaV)。
主要类型有主要有阀控式铅酸蓄电池(VRLAB)、碱性电池(Cd-Ni)电池、MH-Ni 电池)、Li-ion 电池、聚合物Li-ion 电池、Zn-Ni 电池、锌-空气电池、超级电池、质子交换膜燃料电池(PEMFC)、直接甲醇燃料电池(DMFC)等。
而就电池性能而言,不同需求造成了对电池的性能需求不同。
HEV有汽油发动机作为动力来源,更强调加速性能和爬坡能力,因此更注重电池的比功率(要求高达800——1 200 W / kg);PHEV和EV完全以电池作为动力,更强调充电后的续驶能力,因而更关注电池的比能量(要求达到100——160 Wh/kg)。
在现有的新能源汽车动力电池中,锂离子电池生产成本相对较低,重复充电利用非常方便,相比其他可携带能源具有更高的成本优势。
测试项目1.测试项目:循环特性(12℃*10Cycle):测试方式:电池在12±2℃的环境下以0.2C的电流进行充放电循环10次,再将电池在常温下标准充放电一次评价标准:解析结果:负极锂析出状态2.测试项目:电池倍率放电特性测试测试方式:池在室温下:①放电:CC 0.5C-下限电压;②休止10min;③充电CC/CV0.5C-上限电压0.05C截止④休止5min;⑤放电CC 0.2C-下线电压;⑥休止10min;⑦调整倍率至0.5C、1C、2C重复③~⑥步骤。
评价标准:放电容量,维持率3.测试项目:电池温度放电特性测试测试方式:电池在室温下以CC/CV 0.5C满充电至上限电压,0.05C截止; 然后分别在25℃、-20℃、-10℃、0℃、60℃的环境下放置2小时后进行0.2C放电至下限电压。
评价标准:放电容量,维持率4.测试项目:60℃/7天储存测试测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃的环境中储存7天,最后在室温下放置2Hr后进行标准放电,记录储存前后放电容量,试验完成后进行尺寸外观检查。
评价标准:残存容量≥80%,外观无漏液。
参考项[恢复容量≥80%,内阻增加比例≤25%],厚度增加比例≤10%5.测试项目:常温/30天储存测试测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存前后放电容量,试验完成后进行尺寸、外观检查。
评价标准:残存容量≥90%。
参考项[恢复容量≥95%,内阻增加比例≤25%]6.测试项目:85℃*4H储存测试测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存前后放电容量,试验完成后进行尺寸、外观检查。
评价标准:残存容量≥90%。
动力锂电池的检测标准动力锂电池的检测标准通常包括多个方面,旨在确保其安全性、性能和质量。
以下是一些常见的动力锂电池检测标准:安全性测试:短路测试:检测电池是否在短路条件下发生异常反应。
过充电测试:模拟电池过充电情况,验证其过充电保护机制的有效性。
过放电测试:模拟电池过放电情况,验证其过放电保护机制的有效性。
温度稳定性测试:在高温或低温条件下测试电池的性能和稳定性。
电性能测试:容量测试:测量电池的实际容量,确保其符合规定标准。
放电性能测试:测试电池在不同负载条件下的放电性能。
充电性能测试:测试电池在不同充电条件下的充电性能。
内阻测试:测量电池的内部电阻,评估电池的电导率和功率性能。
循环寿命测试:充放电循环测试:模拟电池在正常使用条件下的充放电循环,评估其寿命和稳定性。
快充循环测试:测试电池在快速充电条件下的循环寿命。
环境适应性测试:温度适应性测试:在不同温度条件下测试电池的性能,确保其在广泛的温度范围内能够正常工作。
湿度适应性测试:测试电池在高湿度环境下的性能。
外观和结构检测:外观检查:检查电池外壳、连接器等外观部分,确保没有明显的缺陷或损坏。
尺寸和形状检测:测量电池的尺寸和形状,确保符合规定标准。
标签和标识检测:标签完整性检查:检查电池上的标签是否完整、清晰可辨,包括规定的标识和警告标语。
运输和储存测试:振动测试:模拟电池在运输和使用中的振动环境,确保其结构和性能不受影响。
冲击测试:检测电池在运输和使用中的冲击耐受性。
这些测试标准可以根据电池的具体用途和规模而有所不同。
制造商通常会遵循国际标准、行业标准和客户要求来进行动力锂电池的检测和认证。
动力电池充放电过程详解2018年,新能源汽车领域硝烟四起,长续航成为各家车企竞相争夺国内市场的重型武器。
各大车企都在以超长续航的新款车来招揽需求越来越高端的众多消费者。
2月底,腾势500正式亮相;3月底,吉利正式推出帝豪EV450新款车型;4月初,比亚迪一口气推出秦EV450、e5 450、宋EV400三款新车型,续航均在400公里以上。
但是从技术角度来讲,动力电池才是核心,才是决定电动汽车拥有超长续航能力的关键。
以交流慢充和直流快充两种充电方式为例,正确、合适的使用方式不仅能够最大限度地发挥动力电池的动力,而且可以延长电池的使用寿命。
从知识普及的角度,在动力电池现有能量密度技术水平基础上,有必要让消费者了解动力电池的充放电过程,各电池材料对充放电能力的影响,从而培养正确的使用习惯,延长动力电池的使用寿命,确保电动汽车的持续长久续航。
充放电电子互逃目前,各大电动汽车企业使用的比较盛行的动力电池类型主要有两种,一是磷酸铁锂电池,二是三元锂电池。
然而不论是哪一种电池,其充电的过程大致可以以下四个阶段,即恒流充电阶段、恒压充电阶段、充满阶段、浮充充电阶段。
在恒流充电阶段,充电电流保持恒定,充入电量快速增加,电池电压也随之上升。
到了恒压充电阶段,顾名思义,充电电压会保持恒定,虽然充入电量会继续增加,但是电池电压上升缓慢,充电电流也会下降。
到了电池充满阶段,充电电流下降到低于浮充转换电流,充电器充电电压降低到浮充电压。
在浮充充电阶段,充电电压会保持为浮充电压。
锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。
在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。
在整个充电过程中,正极上的电子会通过外部电路跑到负极上,正锂离子Li+从正极穿过电解液,穿过隔膜材料,最终到达负极,并在此停留与“驻地”的电子结合在一起,被还原成Li镶嵌在负极的碳素材料中。