大学物理上电学讲座资料
- 格式:pptx
- 大小:667.81 KB
- 文档页数:31
§5.4 高斯定理一、电力线(电场线)为了对电场有一个比较直观的了解,可用图示的方法形象地描绘电场中的电场强度分布状况.为此在电场中作一系列有向曲线,使曲线上每一点的切线方向与该点的场强方向一致,这些有向曲线称为电力线(又称电场线),简称E 线.为了使电力线不仅能表示出电场中各点场强的方向,而且还能表示出场强的大小,我们规定:电场中任一点场强的大小等于在该点附近垂直通过单位面积的电力线数,即)(电场线密度E dSdN= (5.17) 按此规定,电场强度的大小E 就等于电力线密度,电力线的疏密描述了电场强度的大小分布,电力线稠密处电场强,电力线稀疏处电场弱.匀强电场的电力线是一些方向一致,距离相等的平行线.静电场的电力线具有以下特点:(1)电力线起自正电荷(或来自无穷远),终止负电荷(或伸向无穷远),但不会在无电荷的地方中断,也不会形成闭合线.(2)因为静电场中的任一点,只有一个确定的场强方向,所以任何两条电力线都不可能相交.二、电通量通过电场中某一个曲面的电力线数称为通过该曲面的电通量。
⎪⎭⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⋅⋅=θ=Φ⎰⎰)()()(cos c b a S d E S E ES ES e 图ϖϖϖϖ (5.18)若对封闭曲面,并规定面元法向n 的正向为从面内指向面外,则上式可表示为:⎪⎩⎪⎨⎧<>⋅=Φ⎰⎰小于穿入闭面的电场线从闭面穿出的电场线数大于穿入闭面的电场线从闭面穿出的电场线数00S e S d E ϖϖ (5.19) 三、高斯定理高斯(K.F.Gauss ,1777-1855年)是德国物理学家和数学家,他在实验物理和理论物理以及数学方面都做出了很多贡献,他导出的高斯定理是电磁学的一条重要规律.定理反映了静电场中任一闭面电通量和这闭面所包围的电荷之间的确定数量关系.下面在电通量概念的基础上,利用场的叠加原理推导高斯定理.1、包围点电荷 q 的球面的电通量以点电荷 q 所在点为中心,取任意长度r 为半径,作一球面S 包围这个点电荷 q ,如图5.6(a )所示,据点电荷电场的球对称性知,球面上任一点的电场强度E 的大小为204r qπε,方向都是以q 为原点的径向,则电场通过这球面的电通量为:⎪⎩⎪⎨⎧<>ε=πε=πε=⋅=Φ⎰⎰⎰⎰⎰⎰004402020qdS r qdS r q S d E SSSe ϖϖ 此结果与球面的半径r 无关,只与它包围的电荷有关.即通过以 q 为中心的任意球面的电通量都一样,均为q/0ε ,用电力线的图象来说,即当 q >0 时, e Φ> 0 ,点电荷的电力线从点电荷发出不间断的延伸到无限远处;q<0 时, e Φ< 0 ,电力线从无限远不间断地终止到点电荷.2、包围点电荷的任意封闭曲面S'的电通量S'和球面S 包围同一个点电荷q ,如图5.6(a )所示,由于电力线的连续性,可以得出通过任意封闭曲面S' 的电力线条数就等于通过球面S 的电力线条数.所以通过任意形状的包围点电荷q 的封闭曲面的电通量都等于q/0ε.3、如果闭面S' 不包围点电荷q如图5.6(b)所示.则由电力线的连续性可得,由一侧穿入S' 的电力线数就等于从另一端穿出S' 的电力线数,所以净穿出S' 的电力线数为零.即:0=⋅=Φ⎰⎰'S e S d E ϖϖ4、任意带电系统的电通量以上只讨论了单个点电荷的电场中,通过任一封闭曲面的电通量.我们把上结果推广到任意带电系统的电场中,把其看成是点电荷的集合.通过任一闭面S 的电通量为:⎰⎰∑∑⎰⎰⋅+=⋅=Φ+==Ssn i i n i i S e S d E E S d E ϖϖϖϖϖ)('11∑∑⎰⎰⎰⎰∑===ε=⋅=⋅=ni i n i S i S ni i q S d E S d E 10111ϖϖϖϖ5、高斯定理综上可得如下结论:在真空中通过任意闭合曲面的电通量等于该曲面内电荷电量的代数和除以 .这便是高斯定理 .其数学表达式为0101ε−−→−ε=⋅∑⎰⎰=q q S d E n i i S 写成'ϖϖ (5.20) 应当注意,高斯定理说明了通过封闭面的电通量,只与该封闭面所包围的电荷有关,并没有说封闭曲面上任一点的电场强度只与所包围的电荷有关.封闭面上任一点的电场强度应该由激发该电场的所有场源电荷(包括封闭面内、外所有的电荷)共同决定.四、高斯定理的应用高斯定理是反映静电场性质的一条普遍定律,它对后面要讨论的变化电场也是成立的.另外,在电荷分布具有某种对称性时,也可用高斯定理求该种电荷系统的电场分布,而且利用这种方法求电场要比库仑定律简便得多.下面通过例子来说明.例题 5.4 内、外半径分别为21R R 和的均匀带电球壳,总电荷为Q .求空间各点的电场强度。
第6章静电场中的导体和电介质上一章已经讨论了真空中的静电场.在实际中,电场中总有导体或电介质(即绝缘体)存在.本章将讨论静电场与导体、电介质的相互作用和影响.对于导体本章只限于讨论各向同性的均匀金属导体.§6.1 静电场中的导体一、导体的静电平衡金属导体的电结构特征是在它的内部有可以自由移动的电荷——自由电子,将金属导体放在静电场中,它内部的自由电子将受静电场的作用而产生定向运动,并在导体侧面集结,使该侧面出现负电荷,而相对的另一侧面出现正电荷,这就是静电感应现象.由静电感应现象所产生的电荷,称为感应电荷.感应电荷同样在空间激发电场,将这部分电场称为附加电场,而空间任一点的电场强度是外加电场和附加电场的矢量和.在导体内部附加电场与外电场方向相反,随着感应电荷的增加,附加电场也随之增加,直至附加电场与外电场完全抵消,使导体内部的场强为零,这时自由电子的定向运动也就停止了.在金属导体中,自由电子没有定向运动的状态,称为静电平衡.所以有如下的静电平衡条件:(1)导体内部的场强处处为零(否则自由电子的定向运动不会停止);(2)导体表面上的场强处处垂直于导体表面(否则自由电子将会在沿表面分量的电场力的作用下作定向运动).由导体的静电平衡条件容易推出处于静电平衡状态的金属导体必具有下列性质:(1) 整个导体是等势体,导体表面是等势面(这是由于导体上的任意两点 a 和b 因导体内各处电场强度为零而使其电势差为零);(2) 导体内部不存在净电荷,电荷都分布在导体的表面上(这是由于导体内各处电场强度为零,使得在导体内任意一闭面的电通量为零).二、导体表面的电荷和电场处于静电平衡的金属导体,电荷只分布在导体的表面上,在导体表面上电荷的分布与导体本身的形状以及附近带电体的状况等多种因素有关.对于孤立导体,实验表明,导体曲率愈大处(例如尖端部分),表面电荷面密度也愈大;导体曲率较小处,表面电荷面密度也较小;在表面凹进去的地方(曲率为负),电荷密度更小.另外由高斯定理可以求出导体表面附近的场强与该表面处电荷面密度的关系.在导体表面紧邻处取一点P,以E 表示该处的电场强度,如图6.1所示.过P点做一个平行于导体表面的小面积元S ∆ ,并以此为底,以过P 点的导体表面法线为轴作一个封闭的扁筒,扁筒的另一底面S'∆在导体的内部.由于导体内部的场强为零,而表面紧邻处的场强又与表面垂直,所以通过此封闭扁筒的电通量就是通过S ∆面的电通量,以σ表示导体表面上P 点附近的面电荷密度,据高斯定理可得 n E S S E ˆ00εσ=−−−−−−−−→−ε∆σ=∆ϖ面垂直表面临近处的场强与表 (6.1) 其中n 是导体表面法线方向.上式表明带电导体表面附近的电场强度大小与该处面电荷密度成正比 .对于有尖端的导体,由于尖端处电荷密度很大,尖端处的电场也很强,当这里的电场强到一定值时,就可使空气中残留的离子在电场作用下发生激烈运动,使得空气电离而产生大量的带电粒子.与尖端上电荷异号的带电粒子受尖端电荷的吸引,飞向尖端,使尖端上的电荷中和掉;与尖端上电荷同号的带电粒子受到排斥而从尖端附近飞开.从外表上看,就好象尖端上的电荷被“喷射”出来放掉一样,这现象称为尖端放电.在尖端放电过程中,还可使原子受激发光而出现电晕.避雷针就是根据尖端放电的原理制成的.在高压设备中,为了防止因尖端放电而引起的危险和电能的浪费,可采取表面光滑的较粗导体.三、静电屏蔽1 导体空腔对于腔内没有带电体的空腔导体,如图 6.2(a)所示,在导体内部作一包围空腔的高斯面S,由于S 面上的场强在导体处于静电平衡状态时处处为零,由高斯定理可知导体空腔内表面上的电荷代数和为零,导体空腔内表面没有电荷分布[如图6.2 (a)],否则,若在导体内表面分布着等量异号电荷[如图6.2(b)],这时电力线就从导体空腔内表面某正电荷处出发,而终止到导体空腔内表面负电荷处,这与静电平衡时导体为等势体相矛盾;内表面上电荷密度为零,内表面附近也不会有电场.否则,若腔内空间存在电场,那么这种电场的电力线就只能在腔内空间闭合,这也是与静电场的性质相矛盾的,所以, 腔内没有电荷的导体空腔在静电平衡时,其内表面没有电荷分布;空腔内没有电场、电势处处相等并等于导体的电势.对于腔内有带电体的空腔导体,用高斯定理也不难证明,空腔内表面必定带有与腔内带电体等量异号的电荷.2 静电屏蔽根据导体空腔的性质,在导体空腔内部若不存在其它带电体,则无论导体外部电场如何分布,也不管导体空腔自身带电情况如何,只要处于静电平衡,腔内必定不存在电场.另外,如果空腔内部存在电量为+q 的带电体,则在空腔内、外表面必将分别产生-q 和+q 的电荷,外表面的电荷+q 将会在空腔外空间产生电场,如图6.3(a)所示.若将导体接地,则由外表面电荷产生的电场随之消失,于是腔外空间将不再受腔内电荷的影响,如图 6.3(b)所示.这种利用导体静电平衡性质使导体空腔内部空间不受腔外电荷和电场的影响,或者将导体空腔接地,使腔外空间免受腔内电荷和电场影响的现象,称为静电屏蔽.静电屏蔽在电磁测量和无线电技术中有广泛的应用.如常把测量仪器或整个实验室用金属壳或金属网罩起来,使测量免受外部的影响.作业(P141):6.9。