初中数学人教版教材分析(4.3角)
- 格式:ppt
- 大小:1.19 MB
- 文档页数:59
2024年人教版初中七年级数学上册《余角和补角》精彩教案一、教学内容本节课选自2024年人教版初中七年级数学上册第四章《角的性质与分类》中的第4.3节“余角和补角”。
详细内容包括:1. 理解余角的定义及性质;2. 理解补角的定义及性质;3. 学会计算余角和补角;4. 掌握余角和补角的应用。
二、教学目标1. 知识与技能:让学生掌握余角和补角的定义,能够熟练计算余角和补角;2. 过程与方法:培养学生运用余角和补角的性质解决问题的能力;3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。
三、教学难点与重点1. 教学重点:余角和补角的定义及其性质;2. 教学难点:余角和补角的计算及应用。
四、教具与学具准备1. 教具:三角板、量角器;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入(1)请两名同学到讲台前演示:用三角板拼出两个互补的角;(2)引导学生观察并思考:什么是余角?什么是补角?2. 新知讲解(1)余角的定义:如果两个角的和等于90°,则这两个角互为余角;(2)补角的定义:如果两个角的和等于180°,则这两个角互为补角;(3)余角和补角的性质:互为余角的两个角的和为90°,互为补角的两个角的和为180°。
3. 例题讲解(1)找出互为余角和互为补角的例子;(2)计算给定角度的余角和补角。
4. 随堂练习(1)判断题:找出互为余角和互为补角的角;(2)计算题:计算给定角度的余角和补角。
5. 小组讨论(1)讨论余角和补角的性质;(2)讨论如何运用余角和补角解决实际问题。
六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°;补角:两个角的和等于180°。
3. 性质:互为余角的两个角的和为90°;互为补角的两个角的和为180°。
4. 例题及解答。
七、作业设计1. 作业题目(1)找出下列角的余角和补角:a. 30°b. 60°c. 120°(2)已知一个角的补角是80°,求这个角的度数。
§4.3.3《余角和补角》教学设计指导思想与理论依据《数学课程标准》中指出:“学生学习应当是一个生动活泼的、主动的和富有个性的过程.认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式.学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程”.本节课以任务研究的方式展开,通过学生的积极思考、动手实践、合作交流等方式经历探究的全过程,体现了学生的主体性和教师的主导作用.培养了学生的思维能力和创新能力.通过层层深入的设计,紧密连接学生前面所学知识,充分体现了维果斯基的“最近发展区”理论.通过动手、观察、推理从而解决问题,完成对知识的自我建构.。
教学内容本单元属于《课程标准》中“图形与几何”的课程内容,是几何学中最基础的部分,也是后续学习相交线与平行线、三角形、四边形、圆等几何知识的基础。
本单元是训练学生掌握学习几何方法及几何表达的基础和关键,后续学习其他几何知识几乎都要用到本单元中的有关概念及图形语言和符号语言,所有图形研究中涉及的线段与线段、角与角、线段与角之间的基本关系也都与本单元内容紧密相关,因此本单元具有承前启后的作用,在几何学习中占有极其重要的基础性地位。
余角和补角是本章中两个比较重要的基本概念,主要是让学生通过数量关系和图形关系,学习两角互余,互补的概念,然后通过自主探索方式、推出余角和补角的性质,最终使学生运用上述性质来解决问题。
同时,通过对余角和补角的性质的学习,为今后证明角的相等提供一种依据和方法,也为培养和发展学生的逻辑思维能力、观察分析能力、演绎归纳能力打下坚实的基础。
核心素养要求1、数学抽象:通过从具体实物中抽象出几何图形,发展数学抽象的素养。
2、直观想象、逻辑推理:通过探索余角和补角的性质,发展直观想象、逻辑推理的素养。
教学目标一、知识与技能在具体的现实情境中,理解余角、补角的概念,掌握余角和补角的性质.二、过程与方法通过余角和补角的学习过程,进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理。