初中数学人教版教材分析(4.3角)
- 格式:ppt
- 大小:1.19 MB
- 文档页数:59
2024年人教版初中七年级数学上册《余角和补角》精彩教案一、教学内容本节课选自2024年人教版初中七年级数学上册第四章《角的性质与分类》中的第4.3节“余角和补角”。
详细内容包括:1. 理解余角的定义及性质;2. 理解补角的定义及性质;3. 学会计算余角和补角;4. 掌握余角和补角的应用。
二、教学目标1. 知识与技能:让学生掌握余角和补角的定义,能够熟练计算余角和补角;2. 过程与方法:培养学生运用余角和补角的性质解决问题的能力;3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。
三、教学难点与重点1. 教学重点:余角和补角的定义及其性质;2. 教学难点:余角和补角的计算及应用。
四、教具与学具准备1. 教具:三角板、量角器;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入(1)请两名同学到讲台前演示:用三角板拼出两个互补的角;(2)引导学生观察并思考:什么是余角?什么是补角?2. 新知讲解(1)余角的定义:如果两个角的和等于90°,则这两个角互为余角;(2)补角的定义:如果两个角的和等于180°,则这两个角互为补角;(3)余角和补角的性质:互为余角的两个角的和为90°,互为补角的两个角的和为180°。
3. 例题讲解(1)找出互为余角和互为补角的例子;(2)计算给定角度的余角和补角。
4. 随堂练习(1)判断题:找出互为余角和互为补角的角;(2)计算题:计算给定角度的余角和补角。
5. 小组讨论(1)讨论余角和补角的性质;(2)讨论如何运用余角和补角解决实际问题。
六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°;补角:两个角的和等于180°。
3. 性质:互为余角的两个角的和为90°;互为补角的两个角的和为180°。
4. 例题及解答。
七、作业设计1. 作业题目(1)找出下列角的余角和补角:a. 30°b. 60°c. 120°(2)已知一个角的补角是80°,求这个角的度数。
§4.3.3《余角和补角》教学设计指导思想与理论依据《数学课程标准》中指出:“学生学习应当是一个生动活泼的、主动的和富有个性的过程.认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式.学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程”.本节课以任务研究的方式展开,通过学生的积极思考、动手实践、合作交流等方式经历探究的全过程,体现了学生的主体性和教师的主导作用.培养了学生的思维能力和创新能力.通过层层深入的设计,紧密连接学生前面所学知识,充分体现了维果斯基的“最近发展区”理论.通过动手、观察、推理从而解决问题,完成对知识的自我建构.。
教学内容本单元属于《课程标准》中“图形与几何”的课程内容,是几何学中最基础的部分,也是后续学习相交线与平行线、三角形、四边形、圆等几何知识的基础。
本单元是训练学生掌握学习几何方法及几何表达的基础和关键,后续学习其他几何知识几乎都要用到本单元中的有关概念及图形语言和符号语言,所有图形研究中涉及的线段与线段、角与角、线段与角之间的基本关系也都与本单元内容紧密相关,因此本单元具有承前启后的作用,在几何学习中占有极其重要的基础性地位。
余角和补角是本章中两个比较重要的基本概念,主要是让学生通过数量关系和图形关系,学习两角互余,互补的概念,然后通过自主探索方式、推出余角和补角的性质,最终使学生运用上述性质来解决问题。
同时,通过对余角和补角的性质的学习,为今后证明角的相等提供一种依据和方法,也为培养和发展学生的逻辑思维能力、观察分析能力、演绎归纳能力打下坚实的基础。
核心素养要求1、数学抽象:通过从具体实物中抽象出几何图形,发展数学抽象的素养。
2、直观想象、逻辑推理:通过探索余角和补角的性质,发展直观想象、逻辑推理的素养。
教学目标一、知识与技能在具体的现实情境中,理解余角、补角的概念,掌握余角和补角的性质.二、过程与方法通过余角和补角的学习过程,进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理。
角的比较和运算活动目标及重难点教学目标:知识与能力能正确运用角度表示方向,并能熟练运算和角有关的问题过程与方法能通过实际操作,体会方位角在是实际生活中的应用,培养学生的抽象思维. 情感、态度、价值观能积极参与数学学习活动,培养学生对数学的好奇心和求知欲教学重难点:重点:方位角的表示方法难点:方位角的准确表示教具准备量角器、时钟、四棱锥等,及多媒体教学设备和课件。
一、情景导入1.海上,缉私艇发现离它500海里处停着一艘可疑船只(如图),立即赶往检查.现请你确定缉私艇的航线,画出示意图.并用语言描述出来.A·可疑船B·缉私艇2.实际生活中,在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的方位。
有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?二、学习新知方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东300”,“南偏西400”等,方位角不能以正东,正西为基准,如不能说成“东偏北600,西偏南500”等,但A B有时如北偏东450时,我们可以说成东北方向.三、实践与应用例1 如图:指出图中射线OA、OB所表示的方向.例2 若灯塔位于船的北偏东300,那么船在灯塔的什么方位?(要让学生画出相应图形,结合图形来回答)(换成其它的方位角再回答然后找到规律)例3 如图,货轮O在航行过程中发现灯塔A在它的南偏东600的方向上,同时在它北偏东600,南偏西100,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线四、小结引导学生讨论本节课所学知识以及需要注意的问题五、作业设计课本第144页习题4.3第9题,第12题。
五、参考练习:1.请使用量角器、刻度尺画出下列点的位置.(1)点A在点O的北偏东300的方向上,离点O的距。
§4.3.2 角的比较与运算说课稿一、说教材一)说课内容:我说课的内容是初中数学课本七年级上册第四单元《几何图形初步》第三节。
二)教材分析《角的比较与运算》第一课时是初中数学课本七年级上册第四单元《几何图形初步》第三节,角的比较、角的和与差、角的平分线,这三个内容是本章重要的基础知识,也是后续学习图形与几何必备的基础。
比较两角的大小是本节知识的起点,角的和与差是问题的延伸,等分问题又是角的和与差的特殊化,这三个知识点相互之间是紧密联系的,而且与生活息息相关。
三)学情分析在前面已经学过线段的大小比较、线段的和与差,线段的中点,本节课可以采用类比的学习方法,便于理解与掌握。
这是学生的有利条件。
然而学生处于几何的启蒙阶段,如何正确的用图形语言、文字语言、符号语言综合描述所研究的对象将是他们的难处。
四)教学目标根据学生的年龄特点,认知规律及对教材的剖析与学生的分析,我确立了本课教学目标及重难点。
1、会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。
2、学生经历“观察——对比——归纳”的学习过程,培养用数学语言描述图形的能力及类比的数学思想方法。
3、培养学生爱思考的习惯,通过对角大小的比较,使学生体会数学的形象直观美,向学生渗透团结协作的合作精神,培养勇于探索的精神和解决问题的优化意识。
五)教学重难点重点:角的大小的比较方法,角平分线的定义难点:角的加减运算,角的平分线的运用六)教学具为了突出重点,突破难点,加大课堂练习密度,我采用了多媒体教学与教具。
二、说教学法教法:学生在前面学习过线段的大小比较,线段的和与差,线段的中点基础上,教师采用启发式教学,引导学生自主探索,合作交流,体会类比的数学思想。
学法:初一学生仍以形象思维能力为主,因此要充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展.三、教学流程(一)情景导入:以登山的情景导入新课,学生在选择登山路径的过程中,若考虑路径的长短,则是对线段的大小比较,若是考虑坡度的陡与缓,则是对角的大小比较。
初中数学七年级上册§4.3.3 余角与补角(1)学校:武都深圳中学教师:姜刘平初中数学七年级上册§4.3.3 余角与补角(1)教学目标:1、知识与技能:在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质及简单应用2、过程与方法:通过活动提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重、难点:1、重点:认识角的互余、互补关系及其性质,是本节课的重点。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
一、引入新课:1问题引入:回顾平角、周角定义2明确目标:a余角与补角概念b余角性质与补角性质C概念及性质的应用二、新知探究活动一请同学们拿出三角板并观察三角板每个角的度数,分小组用三角板拼图,要求用三角板的两个锐角组成直角。
励)教师活动:用多媒体演示通过上面的演示,我们看到有时两个角的和是90°,也就是两个角之和正好成一直角,在这种情况下,我们给出互为余角概念互为余角定义:如果两个锐角的和是一个直角90°,那么这两个角互为余角.简称互余.用数学式子表示为:因为∠1+∠2=90°,所以∠1与∠2互余.反之,因为∠1与∠2互余,所以∠1+∠2=90°找朋友:图中给出的各角,那些互为余角?教师活动:用多媒体演示变式练习:如图,将一三角板的直角顶点放在直线上(三角板和直线在同一平面内),随意绕该顶点在同一平面内转动三角板(三角板总在直线的上方),问∠1与∠2的和是否会发生变化?活动二:将自己准备好的长方形硬纸板沿一条直线剪开,如下图所示观察与思考:教师用多媒体演示 ∠α与∠β的关系通过上面的演示,我们看到有时两个角的和是180°,也就是两个角之和正好成一平角,在这种情况下,我们给出互为补角定义:如果两个角的和是一个平角,那么这两个角互为补角180°.简称互补.用数学式子表示为:因为∠1+∠2=180°,所以∠1与∠2互补.反之,因为∠1与∠2互补,所以∠1+∠2=180°.找朋友:图中给出的各角,那些互为补角?教师活动:用多媒体演示 活动三1、你能正确完成下面内容吗? 若∠1 + ∠2 =180 °, ( 已知 )则 . ( ) 若∠1和∠2互补, ( 已知 )则 . ( )αOABC由上面操作,你知道与∠AOB 有什么关系吗? 你是怎样判断的?ββα∠+∠O A B1 2 l若∠3 + ∠4 =90 °, ( 已知 )则 . ( ) 若∠3和∠4互余, ( 已知 )则 .( )2、你能快速完成下面的内容吗?需要注意的几点:①互余与互补是指两个角之间的关系,不能说单独的一个角是余角或补角,但可以说一个角是某一个角的余角或补角.②两个角是否互余或互补只跟这两个角的大小有关,与它们的位置无关,不要误认为互余或互补的角必须相邻. 知识抢答 判断: 1.如果∠1=30°,∠2=25°,∠3=35°,那么∠1、∠2、∠3这三个角称为互为余( ) 2.两块直角三角板中∠A=90°,∠D=90°,则∠A 与∠D 互为补角。
《4.3 角》教学反思本节重点在于:1、掌握角的定义(可从静态和动态两方面加以理解);2、角的表示方法,着重强调各自应注意的事项;3、角的大小的比较。
而从课堂反馈情况来看,学生在掌握角的表示方法时还有所欠缺,此外对角的角平分线知识的运用不够灵活。
角平分线的用途极大,要让学生充分理解它的概念,并对它的性质加以灵活运用,为以后的学习打好基础。
《新课程标准》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式,教师应激发学生学习的积极性,帮助他们在自主探索和合作交流的过程中真正理解数学知识与技能,数学思想和方法,从而获得广泛的数学活动经验。
秉着这样的理念,在整个教学设计上充分体现“以学生为中心”,我将教学思路拟订为“创景导入——自主探究——巩固内化——课堂拓展”,努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。
这节课的知识是在学生初步认识了直线,线段和角的基础上进行教学的,使学生对平面图形的最基本概念有了比较清楚的认识,这节课我的设计步骤: 1.创景引入,感受新知。
2.自主探究。
这部分教学主要以学生自主探究为主,让学生充分地观察再观察,并在师生互相提问解答中突破难点。
3.练习点拨。
在这个教学环节上,为突破难点有针对性地设计相关题型,提高学生解决问题的能力。
4.总结拓展。
课后,我个人觉得在概念的教学上可以从以下两方面进行:1、从学生已掌握的知识(如射线)出发,概括出角的定义;2、从学生身边所熟知的事物(如打开的折扇、转动的时钟等)抽象出角的定义。
无论是采取哪种方法都应该重点体现“角”的定义生成的过程,加深学生对定义的理解。
另外,在比较角的大小这个知识点中,也应体现比较方法的生成的过程。
在这方面,我应多加思考并设计好教学思路,---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。