以太网设备(1)讲解
- 格式:ppt
- 大小:1.50 MB
- 文档页数:12
CTRLink产品家族由集线器、交换机、接口转接器、路由器及网络视频产品。
集线器标识中继集线器而交换机表示交换集线器。
接口转接器提供双绞线至光纤电缆的转接。
现代工业以太网网络的接线采用双绞线或光纤的星型或环形拓扑。
如果网络连接的设备超过两个,需要集线器,它有两种基本的形式-集线器和交换机。
中继型集线器是最简单的集线器,它工作在物理层提供了网络扩展的最简单方式并兼容碰撞检测的规则在半双工共享型以太网中加强了内涵。
在不超过碰撞域的地理距离或电缆距离的限制下,最多可级联四个集线器。
中继型集线器工作在10Mbps。
可通过EI系列和EIM迷你型系列实现。
交换集线器实际上定义为网桥,即数据链路层设备。
网桥允许两个或多个以太网网络的链路,碰撞域在每个网络中有了分割。
使用交换机的优点是扩展规则更加简单,理论上允许交换机没有限制地级联。
交换机亦可配置在全双工方式下,消除半双工、共享型以太网网络。
交换型集线器包括EIS系列、EISM迷你型、EISC可配置型、和EISX紧凑型可管理和不可管理型。
连接光纤网络至双绞线网络可通过集线器或交换机实现。
接口转接器的功能类似。
与集线器类似,接口转接器定义为物理层设备。
接口转接器设备包括EIMC迷你型接口转接器。
协议以太网定义了ISO OSI开放系统互联标准模型的物理层和数据链路层。
在这两个层上定义了多个协议,其中以TCP/IP最流行。
即使在TCP之上,针对自动化行业有多个应用层协议,如Ethernet/IP,PROFInet,HSE,MODBUS/TCP,BACnet和一些私有协议。
由于CTRLink产品基于以太网技术,这些产品可在所有协议上工作,包括TCP/IP。
在选用CTRLink时,协议并不是考虑问题。
供电安全和方便起见,CTRLink产品工作在可调整的或不可调整的低压直流或交流电压。
直流电压的范围是10V~36V。
交流电压的范围是8~24 V,47~63Hz。
电源消耗按不同型号而变,但通常为5瓦或低于5瓦。
以太网的工作原理
以太网是一种广泛使用的局域网技术,其工作原理是基于CSMA/CD(Carrier Sense Multiple Access with Collision Detection,带冲突检测的载波侦听多路访问)协议。
在以太网中,计算机通过物理介质(例如电缆)连接在一起,形成一个局域网。
每个计算机都被称为一个节点,每个节点都有一个唯一的MAC地址。
当一个节点想要发送数据时,它先检测物理介质上是否有其他节点正在发送数据。
如果没有其他节点发送数据,该节点就可以开始发送数据。
如果检测到其他节点正在发送数据,该节点将等待一段时间,直到物理介质空闲为止,然后才发送数据。
在数据发送过程中,如果两个节点同时发送数据导致碰撞发生,它们会立即停止发送,并等待一个随机的时间后重新发送。
这种碰撞检测和重传机制被称为CSMA/CD。
为了确保数据传输的可靠性和顺序性,以太网使用了帧格式。
数据被分割成小的数据包,每个数据包都有自己的起始标志、目标MAC地址、源MAC地址、数据内容和一些校验位。
数
据包通过物理介质传输时,其他节点可以根据帧格式的标志位来识别和接收自己需要的数据。
另外,以太网支持半双工和全双工通信。
在半双工通信中,节点只能同时进行发送或接收操作,不能同时进行两者;而在全双工通信中,节点可以同时进行发送和接收操作,提高了传输
效率。
总之,以太网通过CSMA/CD协议、帧格式和物理介质来实现多个节点之间的数据传输,并且支持可靠性、顺序性和双工通信。
这种工作原理使得以太网成为一种广泛应用于局域网的技术。
转发器、集线器、⽹桥、交换机、路由器、⽹关区别今天查阅了很多资料,总算是对这些设备有了⼀些基础的认识。
⾸先,我们把这些设别按层分类。
第⼀层(物理层):转发器、集线器第⼆层(数据链路层):⽹桥、交换机第三层(⽹络层):路由器、⽹关在讲解这些设备之前,我们先重温⼀下⼏个术语介质:以太⽹设备连接到⼀个公共介质上,该介质为电⽓信号的传输提供了⼀条路径。
(传输介质:同轴铜电缆、双绞线、光纤)⽹段:我们将单个共享介质称作⼀个以太⽹段。
节点:连接到⽹段的设备称作站点或节点。
帧:节点使⽤称作帧的简短消息进⾏通信。
帧中必须包含源地址和⽬的地址。
⽹络直径:以太⽹⽹络上两台设备之间的最⼤距离。
CSMA/CD:带冲突检测的载波侦听多路访问。
概念转发器:实现电⽓信号的“再⽣”。
⽤于连接多个以太⽹段并且侦听每个⽹段,主要功能是延伸⽹段和改变传输媒体,从⽽实现信息位的转发。
它本⾝不执⾏信号的过滤功能。
集线器:⼀种典型或称为特殊的转发器。
它的作⽤可以简单的理解为将⼀些机器连接起来组成⼀个局域⽹。
⽹桥:可将两个(或更多)⽹段连接在⼀起,与转发器⼀样能够提⾼⽹络直径,但是⽹桥的不同之处在于它还有助于控制⽹络流量。
交换机:为⽹络上的每⼀个节点提供⼀个专⽤⽹段,能分辨出帧中的源MAC地址和⽬的MAC地址。
路由器:⼀种⾼级的⽹络设备,可以将单个⽹络从逻辑上划分为两个单独的⽹络。
尽管以太⽹⼴播可以通过⽹桥到达⽹络上的所有节点,但是它们⽆法通过路由器,因为路由器形成了⽹络的逻辑边界。
⽹关:⼀种复杂的⽹络连接设备,可以⽀持不同协议之间的转换,实现不同协议⽹络之间的互连。
⽹关具有对不兼容的⾼层协议进⾏转换的能⼒,能够实现异构设备之间的通信。
各个设备之间的关系:由于⽹络直径有限,因此转发器可以⽤来延长⽹络直径。
转发器只有两个接⼝,集线器可以看成⼀个多借⼝的转发器。
由于CSMA/CD⽅式,使得⽹段中⼀旦有⼀个站点发送帧,其他站点都会检测⾃⼰是否为⽬的站点,⽹桥利⽤这⼀特性在不同⽹段间转发数据。
以太网供电(PoE)为数据终端、无线接入点、网络摄像头或网络电话之类连接到以太网端口的设备提供一种有效的电源解决方案。
在以太网供电应用中,电源管理器件在以太网交换机和PoE“中跨”集线器中以及用电设备的DC-DC电源中用来转换电压和电流。
本文作者介绍了如何用电源管理器件在网络交换机、用电设备中实现高性能供电。
以太网指的是IEEE802.3标准所涵盖的各种局域网系统,这一术语还用来指用于如由高速数据线缆网络系统连接的中央文件服务器和多台PC机的协议。
任何像数据终端、无线接入点、网络摄像头或网络电话之类连接到以太网端口的设备都需要用电池或独立的交流电源为其供电,如果在传输数据的同时为连接到网络上的设备提供电源将非常好,而如果这种供电方式能利用现有的以太网电缆来传送,这样就将具备100%的向后兼容能力,那就再好不过了。
这正是IEEE802.3af标准定义的PoE标准所提供的,该标准的优点在于:由于每一个设备仅需要一套线缆,简化了连接各个设备的布线,并降低了布线成本;省去交流电源线以及交流适配器,使得工作环境更加安全、整洁并且开销更低;可以很容易地将设备从一处搬移到另一处;图1:向后兼容以太网交换机的"中跨"式集线器。
当交流主电源发生故障时,可以用不间断电源向设备继续供电;连接到以太网的设备可以被远程监控。
正是这些优点使得PoE成为一项从本质上改变了低功耗设备供电方式的全新技术。
能通过PoE技术供电的设备不胜枚举,可以在网站上查看其具体的门类与品种。
但是,当下推动PoE总有效市场增长(TAM, Total Available Market)的主力是两类用电设备:WLAN接入点和VoIP电话。
到2007年,前者的年复合增长率(CAGR)将为38%,达到1,500万台(数据来源:iSuppli)。
同时间,支持后者的企业网络预期将达到300万单位。
而这些用电设备的需求反过来也推动着现有的以太网交换机升级,从而具备支持PoE的能力。
以太网的解释以太网(EtherNet)以太网最早由Xerox(施乐)公司创建,在1980年,DEC、lntel和Xerox三家公司联合开发成为一个标准,以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3IEEE 802.3标准它规定了包括物理层的连线、电信号和介质访问层协议的内容。
以太网是当前应用最普遍的局域网技术。
它很大程度上取代了其他局域网标准,如令牌环、FDDI和ARCNET。
历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。
人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC 的老板写了一篇有关以太网潜力的备忘录。
但是梅特卡夫本人认为以太网是之后几年才出现的。
在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。
3com 对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。
这个通用的以太网标准于1980年9月30日出台。
当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。
而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。
Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。
受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。
以太网的解释以太网(EtherNe t)以太网最早由X e rox(施乐)公司创建,在1980年,D EC、lntel和X erox三家公司联合开发成为一个标准,以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3IEEE 802.3标准它规定了包括物理层的连线、电信号和介质访问层协议的内容。
以太网是当前应用最普遍的局域网技术。
它很大程度上取代了其他局域网标准,如令牌环、FDDI和AR CNET。
历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。
历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。
人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(RobertMetcalf e)给他PARC的老板写了一篇有关以太网潜力的备忘录。
但是梅特卡夫本人认为以太网是之后几年才出现的。
在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。
3com 对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。
这个通用的以太网标准于1980年9月30日出台。
当时业界有两个流行的非公有网络标准令牌环网和AR CNET,在以太网大潮的冲击下他们很快萎缩并被取代。
而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。
⽹络通信实验(1)STM32F4以太⽹简介STM32F4 以太⽹简介STM32F407 芯⽚⾃带以太⽹模块,该模块包括带专⽤ DMA 控制器的 MAC 802.3(介质访问控制)控制器,⽀持介质独⽴接⼝ (MII) 和简化介质独⽴接⼝ (RMII),并⾃带了⼀个⽤于外部 PHY 通信的 SMI 接⼝,通过⼀组配置寄存器,⽤户可以为 MAC 控制器和 DMA 控制器选择所需模式和功能。
STM32F4 ⾃带以太⽹模块特点包括:⽀持外部 PHY 接⼝,实现 10M/100Mbit/s 的数据传输速率通过符合 IEEE802.3 的 MII/RMII 接⼝与外部以太⽹ PHY 进⾏通信⽀持全双⼯和半双⼯操作可编程帧长度,⽀持⾼达 16KB 巨型帧可编程帧间隔(40~96 位时间,以 8 为步长)⽀持多种灵活的地址过滤模式通过 SMI(MDIO)接⼝配置和管理 PHY 设备⽀持以太⽹时间戳(参见 IEEE1588-2008),提供 64 位时间戳提供接收和发送两组 FIFO。
⽀持 DMASTM32F4 以太⽹功能框图如图从上图可以看出, STM32F4 是必须外接 PHY 芯⽚,才可以完成以太⽹通信的,外部 PHY芯⽚可以通过 MII/RMII 接⼝与 STM32F4 内部 MAC 连接,并且⽀持 SMI(MDIO&MDC)接⼝配置外部以太⽹ PHY 芯⽚SMI 接⼝,即站管理接⼝,该接⼝允许应⽤程序通过 2 条线:时钟(MDC)和数据线(MDIO)访问任意 PHY 寄存器。
该接⼝⽀持访问多达 32 个 PHY,应⽤程序可以从 32 个 PHY 中选择⼀个 PHY,然后从任意 PHY 包含的 32 个寄存器中选择⼀个寄存器,发送控制数据或接收状态信息。
任意给定时间内只能对⼀个 PHY 中的⼀个寄存器进⾏寻址。
MII 接⼝,即介质独⽴接⼝,⽤于 MAC 层与 PHY 层进⾏数据传输。
STM32F407 通过 MII与 PHY 层芯⽚的连接如图MII_TX_CLK:连续时钟信号。
ethtool详解(一)ethtool详解一、什么是ethtool?ethtool是一个开源的命令行工具,用于管理和配置以太网接口设备。
它提供了丰富的功能,可以用于监控网络接口的状态、调整网络接口的参数、诊断网络接口的问题等。
二、ethtool的安装和基本用法1.安装ethtool:可以使用以下命令安装ethtool工具。
$ sudo apt-get install ethtool2.查看网络接口的状态:可以使用以下命令查看指定网络接口的状态。
$ ethtool eth0这个命令将会输出网络接口eth0的详细信息,包括当前的连接状态、速度、双工模式等。
3.调整网络接口的参数:可以使用以下命令调整指定网络接口的参数。
$ sudo ethtool -s eth0 speed 1000 duplex f ull autoneg off这个命令将会将网络接口eth0的速度设置为1000Mbps,双工模式设置为全双工,关闭自动协商功能。
三、ethtool的高级用法除了基本的用法之外,ethtool还提供了一些高级功能,用于进一步管理和调优网络接口设备。
1.查看网络接口的统计信息:可以使用以下命令查看指定网络接口的统计信息。
$ ethtool -S eth0这个命令将会输出网络接口eth0的详细统计信息,包括接收和发送的数据包数量、错误数量、丢弃数量等。
2.开启/关闭接口的Wake-on-LAN功能:可以使用以下命令开启或关闭指定网络接口的Wake-on-LAN功能。
$ sudo ethtool -s eth0 wol g这个命令将会开启网络接口eth0的Wake-on-LAN功能,允许通过网络远程唤醒计算机。
3.更改接口的网卡速率和双工模式:可以使用以下命令更改指定网络接口的网卡速率和双工模式。
$ sudo ethtool -s eth0 autoneg on $ sudo ethtool -s eth0 speed 100 duplex full这个命令将会开启网络接口eth0的自动协商功能,并将网卡速率设置为100Mbps,双工模式设置为全双工。
CTRLink工业以太网产品家族包括几个系列的产品,分别归类为集线器、交换机、接口转换器、路由器和视频产品。
现代的工业以太网网络都是以星型方式用双绞线或光纤连接的。
如果网络需要连接两个以上的设备,则需要使用集线器或交换机。
集线器是物理层的设备,提供简单的网络扩展,只要遵循冲突检测和在半双工的共享以太网网络中的增强继承的规则即可。
只要不超过冲突域的距离局限或线缆的局限,我们一次可以使用四个集线器。
集线器在10Mbps速率下工作。
科动有EI系列和EIM 迷你型系列的集线器。
交换机实际被归类为“网桥”,是链路层的产品。
网桥使两个分开的以太网网络连接起来,但却将各自网络的冲突域分隔开来。
使用交换机的好处是扩展的规则非常简单,可以级联,理论上没有数量上的限制。
交换机也可以设置为全双工通讯,排除了半双工共享以太网中所具有的冲突域。
科动的交换机有以下几个系列:EIS 互联型、EISK蝎王型、EIBA BAS 型、EISM 迷你型、EISC 可配置型、EISX、EICP 紧固型管理和非管理交换机。
EISB蓝锻精密型也有管理和非管理的分类。
将一个光纤网络连接到双绞线网络可以用集线器或交换机,也可以用接口转换器来连接。
接口转换器是归类于物理层的设备。
科动的接口转换器有:EIMC迷你型接口转换器,宽温型号可选。
通讯协议在ISO公开系统互联参考(OSI)模型里,以太网是定义在物理层和链路层的协议。
在数据链路层上有许多协议,以TCP/IP最为突出,甚至在TCP/IP之上,还有几个专门针对应用层的协议Ethernet/IP,PROFInet,HSE,MODBUS/TCP,iDA,BACnet,以及一些私有的协议。
由于科动的产品是基于以太网的技术,我们的产品和这些协议包括TCP/IP都可以兼容。
我们的CTRLink集线器、交换机或接口转换器在这些协议下都可以正常的工作。
电源从安全和方便的角度考虑,科动的CTRLink产品可以在低压直流或交流的电源下工作。
以太网控制芯片讲解及应用通常采用的计算机网络体系结构是一个5层结构的模型,分别是物理层(PHY)、数据链路层(MAC)、网络层(IP)、传输层(Transport)以及应用层(Application)。
传统的以太网控制器将PHY和MAC整合到同一个芯片中,然后通过软件方式实现IP层及以上协议。
例如,ENC28J60就是一款内置物理层(PHY)及数据链路层(MAC)的以太网控制芯片,要实现单片机与网络的互联必须使用软件实现TCP/IP协议栈。
对于芯片厂商来说,必须提供基本的通信协议,如TCP、UDP等的软件代码;对于用户来说,则必须掌握一定的以太网技术及各种协议的知识,需要花费较多的学习时间才能掌握。
一个完整系统的实现一般需要耗费很多时间。
尤其对于低端的8位单片机来说,TCP/IP协议栈的软件实现方法会给MCU带来过重的负载,有可能无法完成数据通信功能。
韩国WIZnet公司生产的以太网控制芯片W5200整合了5层结构中的前4层,即物理层、数据链路层、网络层和传输层,并在内部利用硬件实现了TCP/IP协议栈。
开发者无需专业的网络知识,使用W5200如同控制外部存储器一样简单,为用户提供了最简单的网络接入方法。
全硬件TCP/IP 协议栈完全独立于主控芯片,可以降低主芯片负载且无需移植繁琐的TCP/IP协议栈,便于产品实现网络化更新。
W5200特点以太网控制芯片W5200具有以下特点:⑴W5200支持硬件TCP/IP协议,包括TCP、UDP、ICMP、IPv4、ARP、IGMP、PPPoE和以太网的PHY和MAC层,TCP/IP协议的硬件实现,使得应用协议的实现更简单容易。
⑵支持8个独立的SOCKET同时工作,可同时工作在不同的工作模式。
⑶支持低功耗模式,并支持网络唤醒,最大程度地减少功率消耗和发热。
⑷支持高速SPI接口(SPI MODE 0,3),SPI的时钟最高可达到80MHz,极大地提高了网络通信的护具传输速率。
1. 以太网(EtherN et)以太网最早是由Xero x(施乐)公司创建的,在1980年由DEC、Intel和Xerox三家公司联合开发为一个标准。
以太网是应用最为广泛的局域网,包括标准以太网(10Mbps)、快速以太网(100Mbp s)、千兆以太网(1000 Mbps)和10G以太网,它们都符合I EEE802.3系列标准规范。
以太网技术在网络技术中的发展如火如荼的主要原因便是它能够实现局域网、城域网等的技术的兼容,(1)标准以太网最开始以太网只有10M bps的吞吐量,它所使用的是CSMA/CD(带有冲突检测的载波侦听多路访问)的访问控制方法,通常把这种最早期的10Mbps以太网称之为标准以太网。
以太网主要有两种传输介质,那就是双绞线和同轴电缆。
所有的以太网都遵循IE EE 802.3标准,下面列出是I EEE 802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。
·10Base-5 使用粗同轴电缆,最大网段长度为500m,基带传输方法;·10Base-2 使用细同轴电缆,最大网段长度为185m,基带传输方法;·10Base-T 使用双绞线电缆,最大网段长度为100m;·1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;·10Broa d-36 使用同轴电缆(RG-59/U CATV),最大网段长度为3600m,是一种宽带传输方式;·10B ase-F 使用光纤传输介质,传输速率为10Mbps;(2)快速以太网(Fast Ethern et)随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。
POE供电技术详解(一)目前智能建筑中机电设备终端、网络终端、智能终端、各类型的传感器等设备对于网络的依赖越来越大,设备所依托的布线基础设施也随之增长,因而通过结构化布线进行供电的方案变得更具吸引力和市场前景。
POE供电技术的发展以太网供电(PoE),是一种借助于通信线缆的常见远程直流输电方法。
以太网供电技术不断在发生演变,经过了三个阶段。
最初是采用供电设备(PSE) ,供电功率大约由15 瓦增加到了最多30 瓦,当前进一步又增加到了供电90 瓦。
需要注意的是,所有的PoE 功率级和分类都遵循IEC 60950-1 中的SELV(安全特低电压)60 伏和LPS(限功率电源)100VA(瓦)的要求。
随着WLAN、VoIP、网络视频监控等新业务的飞速发展,大量的基于IP 终端出现在人们的日常生活中。
这些设备通常数量众多、位置特殊、布线复杂、设备取电困难,其实施部署不仅消耗大量人力物力,增加建网成本,而且延长了建设的时间。
采用PoE,成为低风险、可靠,且具有成本效益的应用,而且可使用与数据通信中相同的平衡双绞线线缆来完成输电,同时又不影响信息的传送和数据通信,从而提高了通信线缆的效用。
而且在目前由IEEE 802.3bt、IEEE 802.3at 和IEEE 802.3af 等标准为各种使用场景(从无线接入点(WAP) 到摄像头、照明和智能建筑系统(IBS) 设备)应用的所有类型电源加以分类。
最初的PoE 标准为IEEE 802.3af,由IEEE PoE 工作小组于2003 年推出。
该标准将技术的供电功率限制在12.95 瓦以下,当前全新的IEEE P802.3bt 标准旨在为支持PoE 的设备提供至少71.3 瓦的功率(假设信道长度为100 米)。
而设备制造商和电源制造商已经超前于当前标准,开始提供高于标准的设备。
远程供电的演变如下图所示。
术语(1)以太网供电(PoE)Power Over Ethernet2PoE 又被称为基于局域网的供电系统(PoL, Power over LAN )或有源以太网( ActiveEthernet),有时也被简称为以太网供电或远程供电。
以太网教案教案标题:以太网教学目标:1. 了解以太网的基本原理和组成部分。
2. 掌握以太网的传输速率以及常见的协议。
3. 掌握以太网的布线方式和常用的网络设备。
4. 能够配置和管理一个简单的以太网。
教学内容:1. 以太网的概念和基本原理。
2. 以太网的组成部分:网线、网卡、集线器、交换机等。
3. 以太网的传输速率和常用的协议:10Mbps、100Mbps、1000Mbps(千兆以太网)、TCP/IP、UDP等。
4. 以太网的布线方式:直通线、交叉线、光纤等。
5. 常用的以太网网络设备:集线器、交换机、路由器等。
6. 以太网的配置和管理:IP地址分配、子网掩码设置、网关配置等。
教学步骤:1. 导入:通过引导学生回忆日常生活中使用到的网络设备和接入方式,引发学生对以太网的兴趣。
2. 展示和讲解以太网的基本原理和组成部分,引导学生理解以太网的工作原理。
3. 分组讨论,学生根据所学内容,分析并总结以太网的传输速率和常用协议。
4. 演示以太网的布线方式和常见的网络设备,引导学生了解不同布线方式的优缺点。
5. 小组合作练习,要求学生配置和管理一个简单的以太网,包括IP地址分配、子网掩码设置、网关配置等。
6. 展示和总结学生的实际操作,让学生评价自己的配置和管理结果,并回答相关问题。
7. 拓展延伸:介绍以太网的发展历程和最新技术,展示以太网在各个领域的应用。
教学方法:1. 演示法:通过展示和讲解以太网的基本原理和组成部分,引导学生主动参与学习。
2. 合作学习:小组讨论、小组合作练习,促进学生之间的互动和合作,帮助学生深入理解所学内容。
3. 实践操作:通过配置和管理一个简单的以太网,让学生运用所学知识,提高实践操作能力。
教学评估:1. 通过小组讨论和合作练习,观察学生的表现和发言,评估学生对以太网的理解程度。
2. 监督、指导和评价学生的配置和管理操作,评估学生对以太网的实际应用能力。
3. 设计和布置相关的作业,通过书面作业等方式,评估学生对以太网的掌握程度。